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A B S T R A C T

Regular physical activity enhances systemic health and resilience, partly through the generation of reactive oxygen species (ROS) that serve as key modulators of 
redox-sensitive signaling pathways. This review explores how redox signaling mediates both local and systemic responses to exercise, with particular focus on skeletal 
muscle and aging. We first examine the compartmentalized generation of ROS within myofibers, highlighting the distinct contributions of mitochondrial and NADPH 
oxidase systems and the context-dependent nature of oxidative eustress versus distress. We then detail how redox signals initiate adaptive responses that extend 
beyond muscle through the release of exerkines, cytokines, peptides, and metabolites, and their packaging within extracellular vesicles (EVs). These circulating 
factors facilitate interorgan communication and reinforce systemic redox homeostasis. Aging disrupts these processes, leading to impaired redox signaling, neuro
muscular degeneration, and diminished responsiveness to exercise. Notably, animal models such as Sod1-deficient mice underscore the importance of neuronal redox 
control in sarcopenia. Finally, we highlight how exercise-induced EVs may counteract age-associated dysfunction by delivering redox-regulatory molecules to distant 
tissues. Understanding the molecular interplay between redox signals and systemic adaptation offers promising avenues for therapeutic strategies targeting metabolic 
and neuromuscular decline in aging.

1. Introduction

Physical activity is a cornerstone of preventive and therapeutic 
medicine, known to reduce risks of non-communicable diseases, 
including cardiovascular disease, diabetes, certain cancers, and neuro
degenerative disorders [1]. In older populations, exercise effectively 
mitigates frailty, sarcopenia, and cognitive decline, while enhancing 
musculoskeletal integrity and metabolic health [2]. These systemic 
benefits arise from integrated molecular and systemic processes, many 
of which are rooted in redox biology [3–5].

Reactive oxygen species (ROS), long vilified for their potential to 
damage biomolecules, have been recontextualized within the exercise 
physiology field [6,7]. At moderate levels and activities, some ROS serve 
essential signaling functions, a phenomenon termed “oxidative eustress” 
[8]. These molecules, produced transiently during exercise, activate 
pathways that enhance antioxidant gene expression, promote mito
chondrial biogenesis, and improve muscle contractility [9–13]. How
ever, an imbalance between excessive chronic ROS production and/or 
scavenger capacity can lead to oxidative distress, contributing to cellular 
damage and disease-states, including insulin resistance and cardiovas
cular dysfunction. The dual role of ROS in physiology and pathology is 
determined by their type, concentration, activity and subcellular 

location [14,15].
Redox signaling is inherently compartmentalized, with eukaryotic 

cells maintaining distinct redox environments across organelles [16]. 
The secretory pathway is strongly oxidizing, supporting disulfide bond 
formation in proteins destined for export [17]. The cytoplasm is 
comparatively reducing, with redox signaling sustained by NADPH ox
idases and nitric oxide synthases rather than metabolic oxidases [16]. 
Nuclear compartments also maintain a reduced redox potential but 
exhibit relative resistance to oxidation. Mitochondria represent one of 
the most reducing environments, characterized by high electron flux 
through the respiratory chain and pronounced sensitivity to oxidative 
perturbation. Skeletal muscle, which is structurally dominated by con
tractile myofibrils, the sarcoplasmic reticulum (SR), and transverse tu
bules, redox states exhibit marked subcellular heterogeneity [18]. 
Specific regions such as the subsarcolemmal, perinuclear, and neuro
muscular junction regions, each may engage uniquely in redox signaling 
during and after exercise, ensuring that ROS effectively exert their 
signaling functions, avoiding widespread oxidative damage [19]. Un
derstanding how organelle-specific redox dynamics coordinate during 
exercise stress is essential for elucidating mechanisms of muscle adap
tation and performance.

Mounting research points to dysregulation of redox signaling and 
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homeostasis as a fundamental mechanism underlying the gradual 
decline in skeletal muscle mass and function during aging, a condition 
known as sarcopenia [20,21]. Indeed, oxidized proteins, lipids, and DNA 
accumulate with age in human muscle, and this increase in damage is 
correlated with an age-dependent redox disruption [22]. Aging affects 
both the quantity and quality of skeletal muscle, involving muscle fiber 
atrophy, neuromuscular junction (NMJ) degeneration, and motor 
neuron loss associated with altered redox state [23]. This implies that 
loss of nerve-muscle connectivity could be a central mechanism in 
dysregulated redox signaling, compounding the functional decline in 
aged muscle [24].

Exercise remains a powerful intervention against age-related muscle 
decline [25], with programs tailored to older adults promoting sub
stantial improvements in strength, mitochondrial function, and meta
bolic health, all partially mediated through redox-sensitive pathways 
[26,27]. Beyond local effects, exercise initiates a cascade of systemic 
adaptations mediated by various circulating factors collectively termed 
“exerkines” that facilitate inter-organ communication and coordinate 
systemic responses to exercise [28]. Exerkines include metabolites, cy
tokines, peptides, and nucleic acids secreted by skeletal muscle, adipose 
tissue, liver, brain, and other organs [29]. Many of these exerkines are 
released and transported via EVs, which protect labile cargo such as 
RNA and proteins from degradation and facilitate targeted delivery to 
recipient tissues [30]. The release and action of exerkines and EVs can be 
influenced by the modification of tissue redox environment, and, criti
cally, exerkines and EVs can influence redox states in distant organs and 
enhance redox surveillance and systemic resilience against oxidative 
stress [31].

This review explores how intracellular and extracellular redox sig
nals mediate the physiological effects of exercise and how these pro
cesses become dysregulated with aging. As we age, the balance between 
oxidative eustress and distress becomes harder to maintain, particularly 
in skeletal muscle. Yet, exercise training provides a potent non- 
pharmacological intervention that revitalizes redox signaling, pro
motes systemic communication via exerkines and extracellular vesicles, 
and counteracts age- and disease-related redox dysregulation.

2. Intracellular redox signaling during rest and exercise

Some of the earliest evidence that oxidants are generated during 
muscular activity originated from studies detecting elevated lipid per
oxidation products in the exhaled air of exercising individuals [32]. This 
was followed by the seminal work of Davies and colleagues [33], who 
employed electron spin resonance (EPR) spectroscopy to demonstrate 
increased free radical content in skeletal muscle of rats subjected to 
treadmill running. Similar results were later reported by Jackson et al. 
[34] where intense muscle contraction increased the EPR signal in rat 
hind limbs. Collectively, these findings provided the foundation for the 
current consensus that oxidant molecules are produced in skeletal 
muscle both at rest and during contraction [34–36].

Among the ROS produced in skeletal muscle, superoxide anion (O2•
-) 

is a primary species, generated through the one-electron reduction of 
molecular oxygen. It is rapidly dismutated to hydrogen peroxide (H2O2), 
either spontaneously or by compartment-specific superoxide dismutase 
(SOD) isoforms [37]. Compared to O2•

-, H2O2 is more chemically stable 
and diffusible, making it the principal mediator of redox signaling in 
muscle cells [19,38,39]. However, its activity is spatially constrained by 
localized antioxidant systems that neutralize H2O2 near its site of pro
duction, resulting in distinct intracellular redox microdomains with 
tightly regulated oxidant–antioxidant dynamics [40,41].

Redox signaling conveys biological information through oxida
tion–reduction reactions or the formation of covalent adducts between 
redox-sensitive sensor proteins and second messengers [14]. However, 
not all redox reactions elicit signaling events; specificity is achieved 
through sensor proteins that undergo reversible oxidative modifications 
or form selective covalent interactions with target molecules [42]. One 

of the earliest redox-regulated responses to exercise identified was the 
induction of adaptive gene expression. Two landmark studies demon
strated that antioxidant supplementation impairs key molecular adap
tations to endurance training in human skeletal muscle [13,43]. 
Gomez-Cabrera et al. [43] showed that oral vitamin C suppressed the 
exercise-induced expression of PGC-1α, mitochondrial biogenesis, and 
mRNA levels of antioxidant enzymes. Similarly, Ristow et al. [13] re
ported that combined antioxidant supplementation blunted improve
ments in insulin sensitivity and antioxidant gene expression. 
Collectively, these findings inaugurated the recognition of redox 
signaling as a fundamental driver of skeletal muscle adaptation to 
endurance exercise in humans.

2.1. Subcellular redox signaling controlling exercise responses

The intricate architecture of skeletal muscle fibers further enhances 
the specificity of redox signaling [18,19]. Each fiber contains a dense 
arrangement of organelles, including mitochondria, myofibrils, trans
verse (T)-tubules, and the sarcoplasmic reticulum (SR) [19]. This highly 
organized structure allows for the establishment of discrete intracellular 
compartments, within which redox-sensitive signaling proteins, such as 
kinases, phosphatases, and transcription factors, reside in proximity to 
ROS-producing sites.

Redox potential differs markedly between these compartments [44]. 
For instance, the cytosol, mitochondrial matrix, and peroxisomes are 
maintained in a reducing state, whereas the endoplasmic reticulum (ER) 
and mitochondrial intermembrane space (IMS) are comparatively 
oxidizing [44,45]. In their tissue-specific cysteine proteomics study, 
Xiao et al. [17] reported that in mouse skeletal muscle, ~40 % of 
secretory pathway proteins and 16 % of Golgi proteins contained 
oxidized cysteine residues, compared with only ~10 % in nuclear, 
cytosolic, and mitochondrial proteins. These gradients may define 
compartment-specific thresholds for cysteine reactivity: oxidative en
vironments such as the ER favour disulfide bond formation and protein 
maturation, whereas reducing environments preserve cysteine thiols for 
reversible modifications central to redox signaling. As a result, 
H2O2-dependent signaling is not uniformly distributed but emerges 
within defined subcellular niches during exercise [19], insulin stimu
lation [46], and aging [17]. For detailed discussion of 
compartment-specific redox regulation in skeletal muscle, readers are 
referred to the following reviews [18,19].

2.2. Primary intracellular sources of ROS: mitochondria and NADPH 
oxidases

Mitochondria have long been considered a major source of ROS, 
primarily through electron leakage at Complexes I and III of the electron 
transport chain, which leads to the generation of O2•

- [47]. This is 
rapidly converted to H2O2 by mitochondrial superoxide dismutases: 
SOD2 in the matrix and SOD1 in the IMS. Early estimates from studies 
using isolated mitochondria suggested that 1–2 % of consumed oxygen 
was converted into superoxide under specific in vitro conditions [48]. 
However, this value has been widely misapplied to in vivo settings. More 
recent analyses in intact cells reveal that only ~0.12–0.15 % of mito
chondrial oxygen consumption results in H2O2 production, offering a 
more physiologically accurate estimate [49].

Fluorescent probes have enabled the determination of O2•
- and H2O2 

dynamics in intact contracting skeletal muscle fibers under both in vivo 
and in vitro conditions. Sakellariou et al. [36] added a key piece to this 
evolving understanding by demonstrating, through the use of the 
mitochondrial O2•

- -sensitive probe MitoSOX, that mitochondrial O2•
- 

levels do not increase during contractile activity. Building on this, sub
sequent investigations employing mitochondrial-targeted roGFP bio
sensors showed that neither muscle contraction nor endurance exercise 
increases H2O2 levels in the mitochondrial matrix, both in vitro [50] and 
in vivo [7]. These findings suggest that mitochondria may not be the 
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dominant source of ROS during exercise, as previously believed.
In fact, under physiological conditions, mitochondrial antioxidant 

systems consume H2O2 at rates exceeding production, so steady-state 
levels reflect a balance between these opposing processes [51]. During 
exercise, increased ADP levels resulting from elevated ATP turnover 
suppress mitochondrial ROS generation, while intracellular acidification 
during contractions may further shift mitochondrial redox status toward 
an antioxidant profile [52]. Accurate measurement of production re
quires inhibition of consumption pathways, for example using auranofin 
to block the thioredoxin/peroxiredoxin system and glutathione peroxi
dase inhibitors or GSH depletion to suppress the glutathione-dependent 
pathway [51]. Together, these data support the emerging view that 
mitochondrial H2O2 production is tightly regulated and likely not the 
principal driver of redox signaling during exercise.

2.2.1. Skeletal muscle NADPH oxidase 2
During the last decade, NADPH oxidase 2 (NOX2) has gained 

increasing recognition as a central enzymatic source of H2O2 in con
tracting skeletal muscle [53,54]. NOX2 is a multi-subunit complex 
consisting of a membrane-bound catalytic core (gp91phox and 
p22phox) and cytosolic regulatory components (p47phox, p67phox, 
p40phox, and Rac1), which assemble upon activation at specific sub
cellular sites such as the sarcolemma and transverse (T)-tubule [36,55]. 
In 2016, Henríquez-Olguín et al. [56] demonstrated that acute swim
ming exercise in mice stimulates NOX2 complex assembly in skeletal 
muscle, as evidenced by increased phosphorylation of p47phox, a key 
event that promotes its interaction with p22phox and facilitates the 
recruitment of gp91phox to the sarcolemma. Building on this, subse
quent studies revealed that both continuous moderate-intensity [7] and 
high-intensity interval exercise [57] stimulate NOX2-dependent H2O2 
production in mouse skeletal muscle, further confirming that NOX2 
activation is a conserved feature across multiple exercise modalities.

Pharmacological inhibition of NOX2, using agents such as apocynin 
or the more specific gp91ds-tat peptide, reduced ROS production during 
muscle contraction [35,36,58]. Moreover, studies employing a 
NOX2-specific biosensor (p47phox-roGFP) have demonstrated real-time 
NOX2 activation in response to contraction, with signal loss in 
gp91phox- and p47phox-null muscles [7,59]. Although roGFP has a 
limited dynamic range, several studies using subcellularly targeted 
Orp1–roGFP constructs in p47phox (Ncf1*) and Rac1 (Rac1 mKO) 
loss-of-function mouse models demonstrated that moderate-intensity 
exercise induces a cytosolic H2O2 signal in skeletal muscle, which is 
abolished in NOX2-deficient mice [7]. these findings were indepen
dently validated by Kano et al. [60], who expressed the ultrasensitive 
HyPer7 biosensor in tibialis anterior muscle fibers via in vivo electro
poration. Electrically induced eccentric contractions were then per
formed in anesthetized mice, revealing a sustained increase in cytosolic 
H2O2 that was significantly attenuated by pharmacological inhibition of 
NOX2, confirming its role as a primary source of contraction-induced 
H2O2 in vivo.

2.2.2. NADPH oxidase 4
NADPH oxidase 4 (NOX4), another member of the NOX family 

expressed in skeletal muscle, is primarily localized to the SR and 
possibly the mitochondrial IMS [53]. Unlike NOX2, NOX4 is constitu
tively active and may function as a redox sensor regulated by intracel
lular oxygen tension and ATP availability. Evidence from cancer cells 
suggests that ATP produced via OXPHOS binds to a ATP-binding domain 
of NOX4, keeping ROS output low, whereas decreased mitochondrial 
ATP levels relieve this inhibition and enhance NOX4 activity [61]. 
Although less thoroughly characterized, NOX4-derived ROS are 
believed to participate in redox-regulated processes such as calcium 
release and transcriptional regulation, particularly during the 
post-exercise recovery phase [62,63].

2.3. Downstream mechanisms of H2O2 signaling induced by exercise

Among ROS produced in muscle, H2O2 is uniquely suited to act as a 
signaling molecule: it is stable enough to diffuse locally yet sufficiently 
reactive to oxidize specific cysteine residues on redox-sensitive proteins 
[64]. This selectivity reflects multiple factors, including thiols with low 
pKa and high nucleophilicity, stabilization by the surrounding micro
environment, solvent accessibility, and participation in redox relay 
mechanisms such as those mediated by peroxiredoxins [65]. During 
exercise, transient bursts of H2O2 function as second messengers that 
activate adaptive signaling pathways in skeletal muscle [19]. Key to this 
process is reversible cysteine oxidation, such as sulfenic acid formation, 
disulfide bond formation, or sulfenylamide linkages, which can modu
late protein conformation, activity, or subcellular localization [65]. 
These modifications are reversible via thioredoxin and glutaredoxin 
systems, thereby restoring redox balance after signaling events have 
concluded. This mechanism enables H2O2 to specifically regulate tran
scription factors (e.g., Nrf2, FOXO), metabolic regulators like PGC-1α, 
and kinases involved in GLUT4 translocation during contraction [19]. 
Through selective oxidation of regulatory cysteines, H2O2 translates 
transient redox changes into robust cellular responses, including 
enhanced antioxidant defense, mitochondrial biogenesis, and 
insulin-independent glucose uptake, while preserving redox homeosta
sis post-exercise (Fig. 1). One of the key challenges in redox biology is 
achieving comprehensive mapping of cysteine oxidation events and 
elucidating their functional significance (Fig. 1).

3. Extracellular signals in the systemic response to exercise: the 
interplay of exerkines and EVs in the context of redox 
homeostasis

Adaptation to physical training results from long-term compensatory 
mechanisms aimed at preserving or restoring homeostasis disrupted by 
various exercise regimens. These adaptations occur across virtually all 
organ systems, highlighting the complexity and integrative nature of 
this multi-level biological process [66,67].

The concept of hormesis—whereby low doses of a stressor induce 
adaptive beneficial effects, applies well to exercise-induced systemic 
redox modulation [68]. Indeed, repeated exposure to moderate oxida
tive challenges via regular physical activity leads to upregulation of 
endogenous antioxidant systems, including SOD2, catalase, and gluta
thione peroxidase (GPx) [43]. This adaptive response improves systemic 
redox homeostasis and enhances the organism’s ability to counteract 
oxidative insults.

Beyond localized effects in skeletal muscle, exercise serves as a 
powerful regulator of systemic redox homeostasis through a dynamic 
balance between ROS production and antioxidant defenses [69,70]. 
Physical activity enhances endothelial function, partly by reducing 
oxidative stress and increasing nitric oxide (NO) bioavailability [71]. 
Improved vascular redox balance contributes to the prevention of 
atherosclerosis and hypertension [67]. Additionally, exercise modulates 
systemic inflammation, a key driver of redox imbalance, by down
regulating pro-inflammatory cytokines such as TNF-α and IL-6, and 
upregulating anti-inflammatory markers [72]. Furthermore, physical 
activity influences redox-sensitive pathways in metabolic tissues. In the 
liver and adipose tissue of cachectic tumor-bearing animals, exercise 
reduces lipid peroxidation and improves insulin sensitivity through 
enhanced antioxidant responses [73]. Exercise-induced ROS also play a 
role in muscle hypertrophy and repair by regulating satellite cell acti
vation and gene expression related to growth [74,75].

The extent of this modulation depends on exercise variables such as 
intensity, duration, frequency, and the individual’s training status. 
During moderate or well-calibrated intense exercise, ROS signal
ing—likely mediated by redox-sensitive thiol groups—plays a key role in 
numerous biological functions, including gene expression, vasodilation, 
cell growth, proliferation, and adaptation [76]. These processes 
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underpin exercise’s beneficial effects on healthy aging and its preventive 
or therapeutic potential in various diseases [77–80]. Endurance training 
in particular has been shown to elevate antioxidant enzyme activity both 
in muscle and systemically. For instance, studies have found that trained 
individuals exhibit higher baseline levels of SOD and GPx compared to 
sedentary controls, indicating a chronic adaptive upregulation [10,81,
82]. Resistance training also modulates redox status, though the 
mechanisms only partially overlap: while AMPK–PGC-1α–Nrf2 signaling 
shifts the balance toward metabolic resilience in endurance exercise, in 
resistance exercise the MAPK–NF-κB–mTOR signaling leads to a struc
tural/functional resilience [66]. It appears to induce more localized 
muscle adaptations with modest systemic antioxidant effects compared 
to endurance exercise [83], although systemic beneficial effects have 
been reported [84,85]. In older adults, both aerobic and resistance 
training improve systemic oxidative markers and mitochondrial func
tion [86].

During acute or exhaustive exercise, ROS production may surpass the 
cell’s antioxidant capacity, leading to oxidative damage, impaired 
cellular function, and apoptosis through a pro-inflammatory, redox- 
sensitive response [33,87,88]. However, these responses are typically 
followed by a rebound increase in antioxidant enzyme expression during 
recovery. Additionally, contracting muscle generates nitric oxide (NO), 
primarily via nitric oxide synthase isoforms NOS1 and NOS2. While NO 
acts as an important signaling molecule, it can also react with super
oxide to form peroxynitrite, which exacerbates oxidative stress by 
further depleting cellular thiol groups [89].

3.1. Redox signaling, exerkines, and exercise responses

Physical exercise induces widespread systemic adaptations that 
contribute to improved metabolic health, reduced inflammation, and 
enhanced resilience against chronic diseases. These adaptations are 

mediated not only by local responses in contracting skeletal muscles but 
also by endocrine and paracrine signals that orchestrate the cross-talk 
among organs such as the muscle, heart, brain, liver, and adipose tis
sue [90]. Emerging evidence points to exerkines and EVs as key medi
ators of this interorgan communication, with redox biology acting as a 
central regulator of their release and function [91,92].

Exerkines are a broad group of metabolites, hormones, and cytokines 
with endocrine, autocrine, and paracrine effects secreted into circula
tion during or after exercise and acting as signaling molecules. They 
include myokines (e.g., IL-6, irisin), hepatokines (e.g., FGF21), adipo
kines (e.g., adiponectin), and others released from various organs [93]. 
Exerkines can be grouped into two main categories based on their origin 
and function: 1) “metabolic exerkines”, such as lactate, are by-products 
of macronutrient metabolism and energy pathways [94], and 2) 
“physiologic exerkines”, that include hormones, growth factors, and 
cytokines, acting on specific tissues, cells, or organelles [95].

The term “myokines” has been introduced in 2003 by Pedersen et al. 
[96], who described IL-6 as one of the first identified myokines. IL-6 
increases acutely in response to exercise and has systemic effects 
including enhanced glucose uptake and lipid oxidation [97]. IL-6, along 
with lactate and adiponectin, has been shown to support brain mito
chondrial function, similarly to Brain Derived Neurotrophic Factor 
(BDNF) derived from immune cells [98–100]. Irisin, cleaved from 
FNDC5, promotes mitochondrial biogenesis, dynamics, and mitophagy 
in human adipocytes and is associated with upregulation of its receptor 
ITGA5 in human adipose tissue, which may serve as a compensatory 
response to enhance mitochondrial function and fat browning [101]. 
Though some controversy exists regarding irisin’s detectability and 
function in humans, emerging evidence supports its role in metabolic 
regulation and neuroprotection, making it a critical mediator of the 
body’s adaptation to exercise and a promising target for interventions in 
metabolic and neurodegenerative disorders [102,103]. Overall, 

Fig. 1. Exercise Redox Signaling via Cysteine Oxidation Networks. Contractile activity activates NOX2, leading to transient H2O2 production, a key redox signal. 
H2O2 is proposed to regulate adaptive responses via site-specific cysteine oxidation on yet-to-be-fully-identified redox-sensitive proteins involved in mitochondrial 
biogenesis, antioxidant defense, and the release of myokines and extracellular vesicles (EVs). These processes are spatially and temporally coordinated within 
cysteine oxidation networks, enabling both local muscle remodeling and systemic inter-organ communication.

D. Caporossi et al.                                                                                                                                                                                                                              Free Radical Biology and Medicine 242 (2026) 521–534 

524 



metabolic and physiologic exerkines interact to coordinate energy use, 
support mitochondrial health, and meet the body’s adaptive demands 
during physical activity.

Many exerkines are sensitive to redox status. IL-6 expression in 
skeletal muscle is stimulated by ROS and regulated by NF-κB and redox- 
dependent p38 MAPK pathways [35,56,90]. NOX2 inhibitors [21] and 
antioxidant supplementation blunts IL-6 release, highlighting the 
essential role of redox signaling in its regulation [55]. IL-6 subsequently 
acts systemically to mobilize energy substrates and regulate inflamma
tion, thus linking muscle oxidative stress to whole-body homeostasis 
[97]. ROS can also upregulate BDNF expression via CREB signaling 
pathways [104–106]. Exercise-induced oxidative eustress in the hippo
campus and peripheral tissues may therefore enhance BDNF levels, 
contributing to cognitive and mood benefits [107]. Finally, the expres
sion of Irisin is promoted by PGC-1α, a redox-sensitive transcriptional 
coactivator upregulated during mitochondrial ROS signaling, while 
FGF21 is modulated by AMPK and SIRT1 [108]. This positions irisin as a 
redox-dependent exerkine linking muscle oxidative status with systemic 
energy expenditure. For additional insight on this topic, the reader is 
referred to the recent article from Félix-Soriano and Stanford [109].

Aging is generally associated with a blunted exerkine response to 
physical activity [28,110]. Furthermore, the signaling pathways 

downstream of exerkines—including those mediated by nuclear factor 
erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant gene 
expression—are frequently impaired in aged tissues, limiting the ca
pacity for effective redox control [111]. Nevertheless, in aging pop
ulations, regular exercise can enhance mitochondrial efficiency, 
stimulate residual exerkine release, and activate antioxidant defenses, 
albeit often to a lesser degree than in younger subjects [112,113].

In summary, exerkines are key exercise-induced signaling molecules 
that link redox biology to systemic health by supporting mitochondrial 
function, energy balance, and cellular resilience. Although aging re
duces exerkine responsiveness and antioxidant signaling, regular exer
cise can still enhance redox homeostasis and help counteract age-related 
decline, making exerkines a promising target for healthy aging and 
disease prevention.

3.2. Extracellular vesicles in exercise responses

EVs are broadly categorized into three major types based on their 
size and origin: exosomes (30–150 nm), microvesicles (100–1000 nm), 
and apoptotic bodies (>1000 nm). Exosomes originate from the endo
somal system and are secreted upon fusion of multivesicular bodies with 
the plasma membrane, whereas microvesicles bud directly from the 

Fig. 2. Exerkines and exercise-induced EVs as key mediators of interorgan communication. Systemic effects of exercise are mediated not only by local ad
aptations within contracting skeletal muscle but also by endocrine and paracrine signaling that coordinates communication among the muscle, heart, brain, liver, and 
adipose tissue. Extracellular vesicles (EVs) and soluble or EV-associated exerkines constitute a key interorgan communication network, both dependent on and 
capable of modulating redox homeostasis. Exerkines, including myokines, hepatokines, adipokines, and other metabolites, hormones, and cytokines, regulate redox 
balance by influencing endoplasmic reticulum and mitochondrial stress responses, reactive oxygen species (ROS) signaling, and metabolic efficiency, collectively 
reducing oxidative stress. Likewise, exercise-modulated EV cargo (e.g., microRNAs, functional or post-translationally modified proteins) enhances antioxidant ca
pacity, suppresses oxidative stress, and activates detoxification pathways, thereby contributing to the maintenance of systemic redox homeostasis.
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plasma membrane [114]. Additional types of EVs have been described. 
For an exhaustive overview of EVs biology, the reader is directed to 
up-to-date, dedicated reviews [115–117].

The precise composition of EVs varies depending on the cell type and 
physiological condition, including exercise stimuli. In vivo studies from 
animal and human models have shown that acute and chronic exercise 
modulate the release, composition, and bioactivity of circulating EVs 
[93,118]. Both endurance and resistance exercises significantly increase 
the concentration of plasma EVs, with peaks occurring immediately 
post-exercise and gradually returning to baseline within a few hours 
[92].

These EVs are derived from various tissues, including skeletal mus
cle, endothelium, platelets, immune cells, and even the central nervous 
system (Fig. 2) [93]. One of the first studies to report exercise-induced 
EVs found elevated levels of circulating exosomes carrying skeletal 
muscle-specific proteins and microRNAs (miRNAs) after acute treadmill 
running in mice and humans [119]. These findings support the notion 
that muscle-derived EVs act as messengers in muscle-to-organ commu
nication, especially under physical stress [92]. Nevertheless, the tissue 
origin of exercise-induced EVs is diverse, reflecting the multi-systemic 
nature of exercise-induced adaptations [120]. Studies utilizing proteo
mic, transcriptomic, and surface marker profiling have identified several 
tissues involved in EVs release in the human bloodstream, such as 
skeletal muscle [119], endothelial cells [121], platelet and blood cells 
[122], adipose tissue [123], brain and neural tissues [124].

The cargo of exercise-induced EVs includes a rich repertoire of pro
teins, lipids, and RNAs, notably miRNAs that modulate gene expression 
in target cells (Fig. 2). For instance, skeletal muscle-derived EVs carrying 
IL-6 mRNA or protein can activate immune cells and modulate inflam
mation in subjects, supporting the anti-inflammatory role of regular 
exercise [122]. Specific miRNAs such as miR-1, miR-133a, and miR-206, 
all involved in muscle development and regeneration, are enriched in 
muscle-derived EVs post-exercise in a mice model of type 2 diabetes 
[125]. These miRNAs influence not only muscle repair and adaptation 
but also systemic metabolic pathways.

EVs have been shown to mediate the transfer of mitochondrial 
components, and in some cases intact mitochondria, between cells, a 
process that can profoundly influence redox homeostasis by altering 
mitochondrial ROS production, antioxidant capacity, and metabolic 
coupling in recipient cells [114]. Although antioxidant enzymes have 
been identified in exercise-induced EVs, suggesting a role in modulating 
oxidative stress [93,126]. EVs from exercised muscle have been shown 
to stimulate endothelial cells, thereby enhancing angiogenesis, likely 
through VEGF-associated signaling pathways [127]. This intercellular 
communication may contribute to the well-known vascular benefits of 
physical activity. EVs released during exercise also play crucial roles in 
cardiovascular health. Endothelial cell-derived EVs contribute to nitric 
oxide signaling, improve endothelial function, and reduce arterial 
stiffness [128]. Furthermore, EVs from exercised individuals are 
enriched in cardioprotective antioxidants [31,126] and miRNAs such as 
miR-126 and miR-222 [129], which protect cardiac cells from oxidative 
stress damage and regulate vascular integrity and angiogenesis.

In metabolic tissues, EVs have been shown to enhance insulin 
sensitivity and glucose uptake. For example, EVs from exercised mice 
improved insulin signaling in adipocytes and hepatocytes in vitro, an 
effect attributed to the delivery of AMPK-activating components [130]. 
This supports the growing consensus that EVs are key mediators of the 
anti-diabetic effects of exercise [131]. The central nervous system is also 
a target of the exercise benefits mediated by EVs. Exercise increases the 
release of neuronal and astrocytic EVs, which contain neurotrophic 
factors such as BDNF and miR-124—both known to support neuro
genesis and synaptic plasticity [132,133]. These EVs may cross the 
blood-brain barrier or exert peripheral actions that indirectly influence 
brain health. Moreover, exercise-induced EVs are implicated in modu
lating systemic inflammation [30]. They can suppress the activation of 
pro-inflammatory macrophages and promote the expansion of 

anti-inflammatory Tregs, contributing to the systemic 
anti-inflammatory profile observed in physically active individuals [72].

Thus, exercise-induced EVs emerge as versatile mediators of inter
organ communication, carrying molecular cargo that supports metabolic 
regulation, vascular and cardiac protection, neuroplasticity, and redox 
homeostasis. While evidence for mitochondrial transfer remains limited, 
the diverse bioactive contents of these vesicles highlight their central 
role in translating physical activity into systemic health benefits.

4. Redox signaling in age-related muscle decline

The progressive decline in skeletal muscle mass and functional ca
pacity with age, referred to as sarcopenia, poses significant health 
challenges, contributing to instability, increased susceptibility to falls, 
and the eventual loss of independence in older adults [134]. By the 
seventh decade of life, reductions in muscle cross-sectional area and 
strength reach 25–30 % and 30–40 %, respectively [135]. This deteri
oration arises not only from a reduction in the number of muscle fibers 
but also from the atrophy and weakening of those that remain [136,
137].

This phenomenon is well-documented in both humans and animal 
models. Rodent studies mirror the age-related muscle deterioration seen 
in humans, validating their use in ageing research [138,139]. 
Age-associated neuromuscular degradation occurs concurrently with a 
loss of motor neurons, further exacerbating muscle weakness. In both 
humans and rodents, aging results in the degeneration of 25–50 % of 
motor neurons [140,141]. Disruption in the integrity of NMJs and fiber 
denervation are common findings in aged muscle tissue, with studies 
reporting that nearly 15 % of muscle fibers in older mice are fully 
denervated and that over 80 % of NMJs exhibit morphological impair
ments [142].

4.1. Oxidative damage and lifespan considerations

At the cellular level, ageing is accompanied by an accumulation of 
oxidative damage to macromolecules such as lipids, proteins, and DNA 
[143,144]. Although early investigations in non-mammalian species 
demonstrated that reducing ROS extended lifespan [145,146], more 
recent mammalian studies suggest that oxidative damage is not the sole 
determinant of longevity [147,148]. However, increased ROS activity 
and oxidative stress are implicated in the pathophysiology of many 
age-related diseases and dysfunctions [149].

Ageing also impairs the body’s ability to adapt to physiological 
stressors, particularly those involving redox signaling [150]. In skeletal 
muscle, aging leads to diminished exercise-induced adaptations, 
including reduced acute stress responses [151], compromised mito
chondrial biogenesis [152,153], and blunted anabolic responses [154]. 
The mechanisms underlying these impairments are unclear but func
tionally they decrease the effectiveness of physical activity in preserving 
muscle mass and strength. Notably, genetic interventions targeted at 
some of the specific attenuated pathways have shown promise in 
counteracting these age-related deficiencies [155–157].

4.2. Genetic manipulation and the role of Sod1

In mammalian models, the role of oxidative stress in aging has been 
investigated through various genetic manipulations. A landmark study 
by Pérez et al. (2009) [147] examined 18 mouse models with altered 
antioxidant gene expression. Despite significant variations in tissue 
oxidative damage, these manipulations did not influence lifespan, 
challenging the oxidative damage theory of aging. Nonetheless, further 
analyses revealed that under chronic stress conditions, such as those 
leading to pathological phenotypes, enhanced antioxidant defences 
mitigated some age-associated deteriorations [158].

Among the models studied, mice lacking Cu/Zn superoxide dismut
ase (Sod1) showed a unique phenotype. Sod1-deficient mice exhibited a 
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20 % reduction in lifespan and accelerated skeletal muscle aging, 
making them a valuable model for studying sarcopenia [159]. In-depth 
characterization of these Sod1KO mice revealed mitochondrial abnor
malities, NMJ degeneration, and a loss of muscle strength that resem
bled aging-associated phenotypes in wild-type mice [160–162].

To delineate the tissue-specific impact of Sod1 loss, researchers 
created mouse models with targeted deletions. Muscle-specific deletion 
of Sod1 (mSod1KO) had minimal effects on muscle mass and function, 
suggesting that muscle-intrinsic ROS dysregulation alone is insufficient 
to induce sarcopenia [163]. Conversely, neuron-specific Sod1 expres
sion in a Sod1KO background (SynTgSodKO) prevented NMJ degener
ation and muscle atrophy, underscoring the importance of neuronal 
redox balance [164]. Additional studies using embryonic 
neuron-specific Sod1 knockouts [165] did not recapitulate the severe 
phenotype, possibly due to developmental compensations. However, 
inducible neuron-specific Sod1 deletions in adulthood (i-mn-Sod1KO) 
led to a premature onset of muscle atrophy and NMJ disintegration in 
older mice, reinforcing the central role of motor neurons in age-related 
muscle decline [162].

Research has consistently shown that mitochondrial hydrogen 
peroxide production increases with age in skeletal muscle [166,167]. In 
Sod1KO mice, this elevated ROS production is linked to NMJ deterio
ration and fiber denervation [164,168]. Nerve transection experiments 
demonstrated that denervation also significantly increased mitochon
drial peroxide generation, both in denervated and adjacent innervated 
fibers, suggesting a non-cell autonomous mechanism [169]. Proteomic 
analyses comparing Sod1KO and mSod1KO mice show distinct molec
ular changes in nerves and muscles, implicating disrupted redox sig
nalling in the peripheral nervous system as a major factor in the muscle 
loss that occurs in this model of accelerated age-related muscle aging 
[168]. These findings challenge the notion that oxidative damage per se 
drives sarcopenia, pointing instead to impaired signalling pathways 
(Fig. 2).

The effects of a specific lack of Sod1 to accelerate muscle ageing are 
somewhat surprising and have been attributed to an increase in oxida
tive damage in these mice. While the function of Sod1 is the dismutation 
of superoxide to hydrogen peroxide in the cytosol and mitochondrial 
IMS, these mice also show an increase in muscle mitochondrial 
hydrogen peroxide generation which appears to contribute to the muscle 
degeneration [165,167]. An additional mechanism by which Sod1 
deficiency may contribute to muscle loss involves peroxynitrite, a 
reactive nitrogen species formed by the interaction of superoxide and 
nitric oxide. Elevated peroxynitrite levels in Sod1KO mice have been 
shown to nitrate essential proteins in motor neurons, such as nerve 
growth factors, compromising neuromuscular communication [170,
171]. Comparative studies with mitochondrial matrix-localized MnSOD 
(Sod2) further emphasize the tissue-specific role of Sod1. While Sod2 
deletion impairs oxidative metabolism, it does not trigger premature 
muscle aging [172].Thus the effect of Sod1 deficiency to cause prema
ture muscle loss is highly specific and appears related to location of the 
protein in the cytosol and IMS and additionally a key role for this protein 
in ROS regulation in motor neuron health [172].

Given the similarities between Sod1KO mice and aged wild-type 
animals, including the occurrence of markers of frailty such as weight 
loss, reduced activity, and systemic inflammation, these models may 
provide a relevant platform for aging studies [173]. Recent analyses of 
i-mnSod1KO mice confirmed accelerated aging features, including 
reduced axonal caliber and simplified NMJ architecture, mimicking 
advanced aging in wild-type controls [24].

4.3. Redox adaptations to exercise and the role of local denervation

The diminished capacity for redox-mediated adaptations to exercise 
in both aged and Sod1-deficient mice further implicates dysregulation of 
ROS signalling in muscle decline. Sod1KO mice fail to exhibit normal 
transcriptional responses to contractile activity, resembling old wild- 

type mice [174]. Elevated ROS production, particularly H2O2, likely 
drive increased expression of antioxidant enzymes, which may buffer 
critical cysteine oxidation events necessary for signalling [175].

It has been proposed that recurrent cycles of localized denervation 
and re-innervation throughout life create redox fluctuations that impair 
mitochondrial function and inhibit redox-sensitive adaptation mecha
nisms [176] (Fig. 3). The ensuing suppression of exercise-induced 
signaling responses in aging muscle could be a direct consequence of 
this denervation-induced elevation of mitochondrial ROS generation 
[175].

In conclusion ageing-associated muscle loss is a multifactorial pro
cess, driven by the convergence of motor neuron degeneration, impaired 
redox signalling, mitochondrial dysfunction, and disrupted muscle 
adaptation mechanisms. While oxidative damage is a hallmark of ageing 
tissues, current evidence suggests that it is the dysregulation of redox 
signalling that plays a more critical role in sarcopenia. The Sod1KO 
mouse model and its tissue-specific variants have been instrumental in 
uncovering these mechanisms. Going forward, therapeutic strategies 
that target neuronal redox homeostasis and support mitochondrial 
integrity hold promise in mitigating muscle degeneration and preserving 
physical function in the elderly.

5. Redox modulation of EVs during exercise and aging

Recent evidence suggests that ROS and redox signaling also plays a 
pivotal role in the biogenesis, release, cargo composition, and functional 
properties of EVs [177]. This relationship is bidirectional: redox mod
ulation and oxidative stress influence both the number and content of 
exosomes and microvesicles produced by cells. At the same time, EVs 
can directly or indirectly modulate ROS types in both the extracellular 
and intracellular compartments [178]. Understanding how redox bal
ance influences EV biology provides insight into physiological and 
pathological states, particularly those characterized by oxidative stress, 
such as cancer, cardiovascular disease, neurodegeneration, and re
sponses to exercise [126].

Studies have demonstrated that oxidative stress can upregulate EV 
release by promoting intracellular calcium influx and cytoskeletal 
rearrangement, key processes required for vesicle budding and exocy
tosis [179]. For instance, H2O2 has been shown to enhance exosome 
secretion in various cell types, including endothelial and cancer cells 
[180]. At the molecular level, redox-sensitive proteins such as thio
redoxins, peroxiredoxins, and glutathione peroxidases modulate the 
machinery involved in EV formation, including the ESCRT complex and 
small GTPases [181]. This suggests that the intracellular redox state can 
act as a switch, controlling the intensity and quality of EV-mediated 
communication.

The redox environment also significantly influences the composition 
of EV cargo. Cells exposed to oxidative stress selectively load stress- 
responsive molecules into EVs, including damaged proteins, mitochon
drial DNA (mtDNA), oxidized lipids, and microRNAs that regulate 
redox-sensitive pathways [182,183]. For example, EVs from 
oxidative-stressed endothelial cells carry miR-210 and miR-34a, which 
modulate mitochondrial function and angiogenesis in recipient cells 
[184]. Similarly, exercise-induced EVs, released under transient redox 
imbalance, often contain antioxidant enzymes such as SOD1 and SOD2, 
glutathione S-transferase, and peroxiredoxin-1, suggesting a mechanism 
for systemic redox buffering [31,93,126,185]. This adaptive transfer of 
antioxidant defense components via EVs highlights their role in main
taining redox homeostasis across tissues.

EV biogenesis, cargo composition, and release dynamics are signifi
cantly altered during aging, contributing to age-associated tissue 
dysfunction and systemic inflammation [186,187]. Senescent cells 
release EVs enriched in pro-inflammatory cytokines, matrix-modifying 
enzymes, and microRNAs that promote tissue degeneration and im
mune dysregulation [188,189]. Notably, aged individuals often exhibit 
elevated levels of EVs carrying inflammatory markers, which have been 
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linked to frailty and metabolic disturbances [190,191]. As indicated 
above, physical exercise is a potent modulator of EV release and 
composition, representing a possible countermeasure against 
aging-related changes in EV biology [190,191]. Besides this premise, 
experimental results are still minimal. Using in vitro and in vivo com
plementary studies, Kim et al. demonstrated in 2015 that aerobic exer
cise reduces the release of endothelial microparticles in prehypertensive 
individuals and that these beneficial effects are, in part, mediated by 
shear stress-induced mitochondrial biogenesis [192]. Recently, Radak’s 
group [193] found that the proteomic profile of EV cargo from older 
adults is associated with the acceleration of the biological age estimator 
DNAmFitAge (AgeAccelFit). On the contrary, old mice treated with 
small EVs derived from adipose mesenchymal stem cells (ADSCs) of 
young animals show an improvement in several parameters usually 
altered with aging, including, among others, pro-regenerative effects 
and a decrease in oxidative stress, inflammation, and senescence 
markers in muscle and kidney [194]. Finally, in mice and humans, 
Abdelsaid et al. [131] demonstrated that exercise improves the angio
genic potential of circulating exosomes in type 2 diabetes in a 
SOD3-dependent manner, introducing the possibility that 
exercise-induced EVs might deliver bioactive cargo that modulates 
redox homeostasis signaling, thereby reducing oxidative stress and 
preserving cellular function during aging [195].

6. Conclusions

Redox signaling is a key mediator of exercise-induced adaptations in 
skeletal muscle and across organ systems. Controlled ROS production, 
especially H2O2 from sources like NOX2, drives beneficial responses 
such as mitochondrial biogenesis, antioxidant defense, and metabolic 
regulation. Exercise also promotes systemic resilience via redox- 
sensitive exerkines and EVs, which mediate inter-organ communication.

With aging, redox signaling becomes dysregulated, contributing to 
sarcopenia and neuromuscular decline. However, regular exercise can 

restore redox balance, enhance stress responses, and slow muscle 
degeneration. Targeting redox-regulated pathways and EV signaling 
offers promising strategies to support muscle health and systemic 
function during aging.

Despite these advances, important gaps remain. The functional sig
nificance of cysteine oxidation networks in exercise and aging is still 
incompletely defined, particularly in linking site-specific modifications 
to physiological outcomes. In addition, the pharmacological potential of 
targeting redox-dependent interorgan communication, for example be
tween skeletal muscle, liver, adipose tissue, and brain, remains largely 
unexplored in the context of metabolic and aging-related diseases. 
Finally, while neuronal redox control has been implicated in sarcopenia, 
the mechanisms of neuron to muscle redox communication are only 
beginning to be uncovered and require further study.
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Fig. 3. NMJ Dysfunction Links Aging and Inactivity to Muscle Atrophy. Aging and physical inactivity contribute to neuromuscular junction (NMJ) dysfunction, 
marked by disrupted retrograde signaling, AChR fragmentation, and increased ROS. These changes impair proteostasis and promote muscle atrophy, contributing to 
frailty and disease progression in conditions such as sarcopenia and chronic illness.
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A. Somaida, M. Somiya, K. Soroczyńska, J. Sotillo, F. Souza-Fonseca-guimaraes, 
S. Spada, H.V.M. Spiers, J.D. Spitzberg, A. Srivastava, A.K. Srivastava, E. Stępień, 
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[136] J. Lexell, D. Downham, M. Sjöström, Distribution of different fibre types in human 
skeletal muscles. Fibre type arrangement in m. vastus lateralis from three groups 
of healthy men between 15 and 83 years, J. Neurol. Sci. 72 (1986) 211–222, 
https://doi.org/10.1016/0022-510X(86)90009-2.

[137] S.V. Brooks, J.A. Faulkner, Contractile properties of skeletal muscles from young, 
adult and aged mice, J. Physiol. 404 (1988) 71–82, https://doi.org/10.1113/ 
JPHYSIOL.1988.SP017279.

[138] F. Demontis, R. Piccirillo, A.L. Goldberg, N. Perrimon, Mechanisms of skeletal 
muscle aging: insights from Drosophila and mammalian models, DMM Disease 
Models and Mechanisms 6 (2013) 1339–1352, https://doi.org/10.1242/ 
DMM.012559.

[139] J.N. Cobley, G.K. Sakellariou, D.J. Owens, S. Murray, S. Waldron, W. Gregson, W. 
D. Fraser, J.G. Burniston, L.A. Iwanejko, A. McArdle, J.P. Morton, M.J. Jackson, 
G.L. Close, Lifelong training preserves some redox-regulated adaptive responses 
after an acute exercise stimulus in aged human skeletal muscle, Free Radic. Biol. 
Med. 70 (2014) 23–32, https://doi.org/10.1016/j.freeradbiomed.2014.02.004.

[140] B.E. Tomlinson, D. Irving, The numbers of limb motor neurons in the human 
lumbosacral cord throughout life, J. Neurol. Sci. 34 (1977) 213–219, https://doi. 
org/10.1016/0022-510X(77)90069-7.

[141] M.J. Campbell, A.J. McComas, F. Petito, Physiological changes in ageing muscles, 
J. Neurol. Neurosurg. Psychiatry 36 (1973) 174–182, https://doi.org/10.1136/ 
JNNP.36.2.174.

[142] A. Vasilaki, N. Pollock, I. Giakoumaki, K. Goljanek-Whysall, G.K. Sakellariou, 
T. Pearson, A. Kayani, M.J. Jackson, A. McArdle, The effect of lengthening 
contractions on neuromuscular junction structure in adult and old mice, Age 38 
(2016) 259–272, https://doi.org/10.1007/S11357-016-9937-7.

[143] B. Drew, P.A. Dirks, C. Selman, R. Gredilla, A. Lezza, G. Barja, C. Leeuwenburgh, 
Effects of aging and caloric restriction on mitochondrial energy production in 
gastrocnemius muscle and heart, Am. J. Physiol. Regul. Integr. Comp. Physiol. 
284 (2003), https://doi.org/10.1152/AJPREGU.00455.2002.
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