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ABSTRACT

Regular physical activity enhances systemic health and resilience, partly through the generation of reactive oxygen species (ROS) that serve as key modulators of
redox-sensitive signaling pathways. This review explores how redox signaling mediates both local and systemic responses to exercise, with particular focus on skeletal
muscle and aging. We first examine the compartmentalized generation of ROS within myofibers, highlighting the distinct contributions of mitochondrial and NADPH
oxidase systems and the context-dependent nature of oxidative eustress versus distress. We then detail how redox signals initiate adaptive responses that extend
beyond muscle through the release of exerkines, cytokines, peptides, and metabolites, and their packaging within extracellular vesicles (EVs). These circulating
factors facilitate interorgan communication and reinforce systemic redox homeostasis. Aging disrupts these processes, leading to impaired redox signaling, neuro-
muscular degeneration, and diminished responsiveness to exercise. Notably, animal models such as Sod1-deficient mice underscore the importance of neuronal redox
control in sarcopenia. Finally, we highlight how exercise-induced EVs may counteract age-associated dysfunction by delivering redox-regulatory molecules to distant
tissues. Understanding the molecular interplay between redox signals and systemic adaptation offers promising avenues for therapeutic strategies targeting metabolic

and neuromuscular decline in aging.

1. Introduction

Physical activity is a cornerstone of preventive and therapeutic
medicine, known to reduce risks of non-communicable diseases,
including cardiovascular disease, diabetes, certain cancers, and neuro-
degenerative disorders [1]. In older populations, exercise effectively
mitigates frailty, sarcopenia, and cognitive decline, while enhancing
musculoskeletal integrity and metabolic health [2]. These systemic
benefits arise from integrated molecular and systemic processes, many
of which are rooted in redox biology [3-5].

Reactive oxygen species (ROS), long vilified for their potential to
damage biomolecules, have been recontextualized within the exercise
physiology field [6,7]. At moderate levels and activities, some ROS serve
essential signaling functions, a phenomenon termed “oxidative eustress”
[8]. These molecules, produced transiently during exercise, activate
pathways that enhance antioxidant gene expression, promote mito-
chondrial biogenesis, and improve muscle contractility [9-13]. How-
ever, an imbalance between excessive chronic ROS production and/or
scavenger capacity can lead to oxidative distress, contributing to cellular
damage and disease-states, including insulin resistance and cardiovas-
cular dysfunction. The dual role of ROS in physiology and pathology is
determined by their type, concentration, activity and subcellular
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location [14,15].

Redox signaling is inherently compartmentalized, with eukaryotic
cells maintaining distinct redox environments across organelles [16].
The secretory pathway is strongly oxidizing, supporting disulfide bond
formation in proteins destined for export [17]. The cytoplasm is
comparatively reducing, with redox signaling sustained by NADPH ox-
idases and nitric oxide synthases rather than metabolic oxidases [16].
Nuclear compartments also maintain a reduced redox potential but
exhibit relative resistance to oxidation. Mitochondria represent one of
the most reducing environments, characterized by high electron flux
through the respiratory chain and pronounced sensitivity to oxidative
perturbation. Skeletal muscle, which is structurally dominated by con-
tractile myofibrils, the sarcoplasmic reticulum (SR), and transverse tu-
bules, redox states exhibit marked subcellular heterogeneity [18].
Specific regions such as the subsarcolemmal, perinuclear, and neuro-
muscular junction regions, each may engage uniquely in redox signaling
during and after exercise, ensuring that ROS effectively exert their
signaling functions, avoiding widespread oxidative damage [19]. Un-
derstanding how organelle-specific redox dynamics coordinate during
exercise stress is essential for elucidating mechanisms of muscle adap-
tation and performance.

Mounting research points to dysregulation of redox signaling and
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homeostasis as a fundamental mechanism underlying the gradual
decline in skeletal muscle mass and function during aging, a condition
known as sarcopenia [20,21]. Indeed, oxidized proteins, lipids, and DNA
accumulate with age in human muscle, and this increase in damage is
correlated with an age-dependent redox disruption [22]. Aging affects
both the quantity and quality of skeletal muscle, involving muscle fiber
atrophy, neuromuscular junction (NMJ) degeneration, and motor
neuron loss associated with altered redox state [23]. This implies that
loss of nerve-muscle connectivity could be a central mechanism in
dysregulated redox signaling, compounding the functional decline in
aged muscle [24].

Exercise remains a powerful intervention against age-related muscle
decline [25], with programs tailored to older adults promoting sub-
stantial improvements in strength, mitochondrial function, and meta-
bolic health, all partially mediated through redox-sensitive pathways
[26,27]. Beyond local effects, exercise initiates a cascade of systemic
adaptations mediated by various circulating factors collectively termed
“exerkines” that facilitate inter-organ communication and coordinate
systemic responses to exercise [28]. Exerkines include metabolites, cy-
tokines, peptides, and nucleic acids secreted by skeletal muscle, adipose
tissue, liver, brain, and other organs [29]. Many of these exerkines are
released and transported via EVs, which protect labile cargo such as
RNA and proteins from degradation and facilitate targeted delivery to
recipient tissues [30]. The release and action of exerkines and EVs can be
influenced by the modification of tissue redox environment, and, criti-
cally, exerkines and EVs can influence redox states in distant organs and
enhance redox surveillance and systemic resilience against oxidative
stress [31].

This review explores how intracellular and extracellular redox sig-
nals mediate the physiological effects of exercise and how these pro-
cesses become dysregulated with aging. As we age, the balance between
oxidative eustress and distress becomes harder to maintain, particularly
in skeletal muscle. Yet, exercise training provides a potent non-
pharmacological intervention that revitalizes redox signaling, pro-
motes systemic communication via exerkines and extracellular vesicles,
and counteracts age- and disease-related redox dysregulation.

2. Intracellular redox signaling during rest and exercise

Some of the earliest evidence that oxidants are generated during
muscular activity originated from studies detecting elevated lipid per-
oxidation products in the exhaled air of exercising individuals [32]. This
was followed by the seminal work of Davies and colleagues [33], who
employed electron spin resonance (EPR) spectroscopy to demonstrate
increased free radical content in skeletal muscle of rats subjected to
treadmill running. Similar results were later reported by Jackson et al.
[34] where intense muscle contraction increased the EPR signal in rat
hind limbs. Collectively, these findings provided the foundation for the
current consensus that oxidant molecules are produced in skeletal
muscle both at rest and during contraction [34-36].

Among the ROS produced in skeletal muscle, superoxide anion (Oze")
is a primary species, generated through the one-electron reduction of
molecular oxygen. It is rapidly dismutated to hydrogen peroxide (H205),
either spontaneously or by compartment-specific superoxide dismutase
(SOD) isoforms [37]. Compared to Oge”, HyO5 is more chemically stable
and diffusible, making it the principal mediator of redox signaling in
muscle cells [19,38,39]. However, its activity is spatially constrained by
localized antioxidant systems that neutralize HoO5 near its site of pro-
duction, resulting in distinct intracellular redox microdomains with
tightly regulated oxidant-antioxidant dynamics [40,41].

Redox signaling conveys biological information through oxida-
tion-reduction reactions or the formation of covalent adducts between
redox-sensitive sensor proteins and second messengers [14]. However,
not all redox reactions elicit signaling events; specificity is achieved
through sensor proteins that undergo reversible oxidative modifications
or form selective covalent interactions with target molecules [42]. One
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of the earliest redox-regulated responses to exercise identified was the
induction of adaptive gene expression. Two landmark studies demon-
strated that antioxidant supplementation impairs key molecular adap-
tations to endurance training in human skeletal muscle [13,43].
Gomez-Cabrera et al. [43] showed that oral vitamin C suppressed the
exercise-induced expression of PGC-1a, mitochondrial biogenesis, and
mRNA levels of antioxidant enzymes. Similarly, Ristow et al. [13] re-
ported that combined antioxidant supplementation blunted improve-
ments in insulin sensitivity and antioxidant gene expression.
Collectively, these findings inaugurated the recognition of redox
signaling as a fundamental driver of skeletal muscle adaptation to
endurance exercise in humans.

2.1. Subcellular redox signaling controlling exercise responses

The intricate architecture of skeletal muscle fibers further enhances
the specificity of redox signaling [18,19]. Each fiber contains a dense
arrangement of organelles, including mitochondria, myofibrils, trans-
verse (T)-tubules, and the sarcoplasmic reticulum (SR) [19]. This highly
organized structure allows for the establishment of discrete intracellular
compartments, within which redox-sensitive signaling proteins, such as
kinases, phosphatases, and transcription factors, reside in proximity to
ROS-producing sites.

Redox potential differs markedly between these compartments [44].
For instance, the cytosol, mitochondrial matrix, and peroxisomes are
maintained in a reducing state, whereas the endoplasmic reticulum (ER)
and mitochondrial intermembrane space (IMS) are comparatively
oxidizing [44,45]. In their tissue-specific cysteine proteomics study,
Xiao et al. [17] reported that in mouse skeletal muscle, ~40 % of
secretory pathway proteins and 16 % of Golgi proteins contained
oxidized cysteine residues, compared with only ~10 % in nuclear,
cytosolic, and mitochondrial proteins. These gradients may define
compartment-specific thresholds for cysteine reactivity: oxidative en-
vironments such as the ER favour disulfide bond formation and protein
maturation, whereas reducing environments preserve cysteine thiols for
reversible modifications central to redox signaling. As a result,
H,02-dependent signaling is not uniformly distributed but emerges
within defined subcellular niches during exercise [19], insulin stimu-
lation [46], and aging [17]. For detailed discussion of
compartment-specific redox regulation in skeletal muscle, readers are
referred to the following reviews [18,19].

2.2. Primary intracellular sources of ROS: mitochondria and NADPH
oxidases

Mitochondria have long been considered a major source of ROS,
primarily through electron leakage at Complexes I and III of the electron
transport chain, which leads to the generation of Oge™ [47]. This is
rapidly converted to HyO, by mitochondrial superoxide dismutases:
SOD2 in the matrix and SOD1 in the IMS. Early estimates from studies
using isolated mitochondria suggested that 1-2 % of consumed oxygen
was converted into superoxide under specific in vitro conditions [48].
However, this value has been widely misapplied to in vivo settings. More
recent analyses in intact cells reveal that only ~0.12-0.15 % of mito-
chondrial oxygen consumption results in HoO5 production, offering a
more physiologically accurate estimate [49].

Fluorescent probes have enabled the determination of Oze” and HyO,
dynamics in intact contracting skeletal muscle fibers under both in vivo
and in vitro conditions. Sakellariou et al. [36] added a key piece to this
evolving understanding by demonstrating, through the use of the
mitochondrial Oqe™ -sensitive probe MitoSOX, that mitochondrial Oge”
levels do not increase during contractile activity. Building on this, sub-
sequent investigations employing mitochondrial-targeted roGFP bio-
sensors showed that neither muscle contraction nor endurance exercise
increases HoO5 levels in the mitochondrial matrix, both in vitro [50] and
in vivo [7]. These findings suggest that mitochondria may not be the
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dominant source of ROS during exercise, as previously believed.

In fact, under physiological conditions, mitochondrial antioxidant
systems consume H3O» at rates exceeding production, so steady-state
levels reflect a balance between these opposing processes [51]. During
exercise, increased ADP levels resulting from elevated ATP turnover
suppress mitochondrial ROS generation, while intracellular acidification
during contractions may further shift mitochondrial redox status toward
an antioxidant profile [52]. Accurate measurement of production re-
quires inhibition of consumption pathways, for example using auranofin
to block the thioredoxin/peroxiredoxin system and glutathione peroxi-
dase inhibitors or GSH depletion to suppress the glutathione-dependent
pathway [51]. Together, these data support the emerging view that
mitochondrial HyO, production is tightly regulated and likely not the
principal driver of redox signaling during exercise.

2.2.1. Skeletal muscle NADPH oxidase 2

During the last decade, NADPH oxidase 2 (NOX2) has gained
increasing recognition as a central enzymatic source of HoO; in con-
tracting skeletal muscle [53,54]. NOX2 is a multi-subunit complex
consisting of a membrane-bound catalytic core (gp9lphox and
p22phox) and cytosolic regulatory components (p47phox, p67phox,
p40phox, and Racl), which assemble upon activation at specific sub-
cellular sites such as the sarcolemma and transverse (T)-tubule [36,55].
In 2016, Henriquez-Olguin et al. [56] demonstrated that acute swim-
ming exercise in mice stimulates NOX2 complex assembly in skeletal
muscle, as evidenced by increased phosphorylation of p47phox, a key
event that promotes its interaction with p22phox and facilitates the
recruitment of gp91phox to the sarcolemma. Building on this, subse-
quent studies revealed that both continuous moderate-intensity [7] and
high-intensity interval exercise [57] stimulate NOX2-dependent HyO
production in mouse skeletal muscle, further confirming that NOX2
activation is a conserved feature across multiple exercise modalities.

Pharmacological inhibition of NOX2, using agents such as apocynin
or the more specific gp91ds-tat peptide, reduced ROS production during
muscle contraction [35,36,58]. Moreover, studies employing a
NOX2-specific biosensor (p47phox-roGFP) have demonstrated real-time
NOX2 activation in response to contraction, with signal loss in
gp91phox- and p47phox-null muscles [7,59]. Although roGFP has a
limited dynamic range, several studies using subcellularly targeted
Orpl-roGFP constructs in p47phox (Ncfl*) and Racl (Racl mKO)
loss-of-function mouse models demonstrated that moderate-intensity
exercise induces a cytosolic HyO5 signal in skeletal muscle, which is
abolished in NOX2-deficient mice [7]. these findings were indepen-
dently validated by Kano et al. [60], who expressed the ultrasensitive
HyPer7 biosensor in tibialis anterior muscle fibers via in vivo electro-
poration. Electrically induced eccentric contractions were then per-
formed in anesthetized mice, revealing a sustained increase in cytosolic
H,0, that was significantly attenuated by pharmacological inhibition of
NOX2, confirming its role as a primary source of contraction-induced
H50; in vivo.

2.2.2. NADPH oxidase 4

NADPH oxidase 4 (NOX4), another member of the NOX family
expressed in skeletal muscle, is primarily localized to the SR and
possibly the mitochondrial IMS [53]. Unlike NOX2, NOX4 is constitu-
tively active and may function as a redox sensor regulated by intracel-
lular oxygen tension and ATP availability. Evidence from cancer cells
suggests that ATP produced via OXPHOS binds to a ATP-binding domain
of NOX4, keeping ROS output low, whereas decreased mitochondrial
ATP levels relieve this inhibition and enhance NOX4 activity [61].
Although less thoroughly characterized, NOX4-derived ROS are
believed to participate in redox-regulated processes such as calcium
release and transcriptional regulation, particularly during the
post-exercise recovery phase [62,63].
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2.3. Downstream mechanisms of H,0; signaling induced by exercise

Among ROS produced in muscle, HyO, is uniquely suited to act as a
signaling molecule: it is stable enough to diffuse locally yet sufficiently
reactive to oxidize specific cysteine residues on redox-sensitive proteins
[64]. This selectivity reflects multiple factors, including thiols with low
pKa and high nucleophilicity, stabilization by the surrounding micro-
environment, solvent accessibility, and participation in redox relay
mechanisms such as those mediated by peroxiredoxins [65]. During
exercise, transient bursts of HoO5 function as second messengers that
activate adaptive signaling pathways in skeletal muscle [19]. Key to this
process is reversible cysteine oxidation, such as sulfenic acid formation,
disulfide bond formation, or sulfenylamide linkages, which can modu-
late protein conformation, activity, or subcellular localization [65].
These modifications are reversible via thioredoxin and glutaredoxin
systems, thereby restoring redox balance after signaling events have
concluded. This mechanism enables Hy0- to specifically regulate tran-
scription factors (e.g., Nrf2, FOXO), metabolic regulators like PGC-1a,
and kinases involved in GLUT4 translocation during contraction [19].
Through selective oxidation of regulatory cysteines, HoO, translates
transient redox changes into robust cellular responses, including
enhanced antioxidant defense, mitochondrial biogenesis, and
insulin-independent glucose uptake, while preserving redox homeosta-
sis post-exercise (Fig. 1). One of the key challenges in redox biology is
achieving comprehensive mapping of cysteine oxidation events and
elucidating their functional significance (Fig. 1).

3. Extracellular signals in the systemic response to exercise: the
interplay of exerkines and EVs in the context of redox
homeostasis

Adaptation to physical training results from long-term compensatory
mechanisms aimed at preserving or restoring homeostasis disrupted by
various exercise regimens. These adaptations occur across virtually all
organ systems, highlighting the complexity and integrative nature of
this multi-level biological process [66,67].

The concept of hormesis—whereby low doses of a stressor induce
adaptive beneficial effects, applies well to exercise-induced systemic
redox modulation [68]. Indeed, repeated exposure to moderate oxida-
tive challenges via regular physical activity leads to upregulation of
endogenous antioxidant systems, including SOD2, catalase, and gluta-
thione peroxidase (GPx) [43]. This adaptive response improves systemic
redox homeostasis and enhances the organism’s ability to counteract
oxidative insults.

Beyond localized effects in skeletal muscle, exercise serves as a
powerful regulator of systemic redox homeostasis through a dynamic
balance between ROS production and antioxidant defenses [69,70].
Physical activity enhances endothelial function, partly by reducing
oxidative stress and increasing nitric oxide (NO) bioavailability [71].
Improved vascular redox balance contributes to the prevention of
atherosclerosis and hypertension [67]. Additionally, exercise modulates
systemic inflammation, a key driver of redox imbalance, by down-
regulating pro-inflammatory cytokines such as TNF-a and IL-6, and
upregulating anti-inflammatory markers [72]. Furthermore, physical
activity influences redox-sensitive pathways in metabolic tissues. In the
liver and adipose tissue of cachectic tumor-bearing animals, exercise
reduces lipid peroxidation and improves insulin sensitivity through
enhanced antioxidant responses [73]. Exercise-induced ROS also play a
role in muscle hypertrophy and repair by regulating satellite cell acti-
vation and gene expression related to growth [74,75].

The extent of this modulation depends on exercise variables such as
intensity, duration, frequency, and the individual’s training status.
During moderate or well-calibrated intense exercise, ROS signal-
ing—likely mediated by redox-sensitive thiol groups—plays a key role in
numerous biological functions, including gene expression, vasodilation,
cell growth, proliferation, and adaptation [76]. These processes
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Fig. 1. Exercise Redox Signaling via Cysteine Oxidation Networks. Contractile activity activates NOX2, leading to transient HO production, a key redox signal.
H,0, is proposed to regulate adaptive responses via site-specific cysteine oxidation on yet-to-be-fully-identified redox-sensitive proteins involved in mitochondrial
biogenesis, antioxidant defense, and the release of myokines and extracellular vesicles (EVs). These processes are spatially and temporally coordinated within
cysteine oxidation networks, enabling both local muscle remodeling and systemic inter-organ communication.

underpin exercise’s beneficial effects on healthy aging and its preventive
or therapeutic potential in various diseases [77-80]. Endurance training
in particular has been shown to elevate antioxidant enzyme activity both
in muscle and systemically. For instance, studies have found that trained
individuals exhibit higher baseline levels of SOD and GPx compared to
sedentary controls, indicating a chronic adaptive upregulation [10,81,
82]. Resistance training also modulates redox status, though the
mechanisms only partially overlap: while AMPK-PGC-1a-Nrf2 signaling
shifts the balance toward metabolic resilience in endurance exercise, in
resistance exercise the MAPK-NF-kB-mTOR signaling leads to a struc-
tural/functional resilience [66]. It appears to induce more localized
muscle adaptations with modest systemic antioxidant effects compared
to endurance exercise [83], although systemic beneficial effects have
been reported [84,85]. In older adults, both aerobic and resistance
training improve systemic oxidative markers and mitochondrial func-
tion [86].

During acute or exhaustive exercise, ROS production may surpass the
cell’s antioxidant capacity, leading to oxidative damage, impaired
cellular function, and apoptosis through a pro-inflammatory, redox-
sensitive response [33,87,88]. However, these responses are typically
followed by a rebound increase in antioxidant enzyme expression during
recovery. Additionally, contracting muscle generates nitric oxide (NO),
primarily via nitric oxide synthase isoforms NOS1 and NOS2. While NO
acts as an important signaling molecule, it can also react with super-
oxide to form peroxynitrite, which exacerbates oxidative stress by
further depleting cellular thiol groups [89].

3.1. Redox signaling, exerkines, and exercise responses
Physical exercise induces widespread systemic adaptations that

contribute to improved metabolic health, reduced inflammation, and
enhanced resilience against chronic diseases. These adaptations are
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mediated not only by local responses in contracting skeletal muscles but
also by endocrine and paracrine signals that orchestrate the cross-talk
among organs such as the muscle, heart, brain, liver, and adipose tis-
sue [90]. Emerging evidence points to exerkines and EVs as key medi-
ators of this interorgan communication, with redox biology acting as a
central regulator of their release and function [91,92].

Exerkines are a broad group of metabolites, hormones, and cytokines
with endocrine, autocrine, and paracrine effects secreted into circula-
tion during or after exercise and acting as signaling molecules. They
include myokines (e.g., IL-6, irisin), hepatokines (e.g., FGF21), adipo-
kines (e.g., adiponectin), and others released from various organs [93].
Exerkines can be grouped into two main categories based on their origin
and function: 1) “metabolic exerkines”, such as lactate, are by-products
of macronutrient metabolism and energy pathways [94], and 2)
“physiologic exerkines”, that include hormones, growth factors, and
cytokines, acting on specific tissues, cells, or organelles [95].

The term “myokines” has been introduced in 2003 by Pedersen et al.
[96], who described IL-6 as one of the first identified myokines. IL-6
increases acutely in response to exercise and has systemic effects
including enhanced glucose uptake and lipid oxidation [97]. IL-6, along
with lactate and adiponectin, has been shown to support brain mito-
chondrial function, similarly to Brain Derived Neurotrophic Factor
(BDNF) derived from immune cells [98-100]. Irisin, cleaved from
FNDCS5, promotes mitochondrial biogenesis, dynamics, and mitophagy
in human adipocytes and is associated with upregulation of its receptor
ITGAS in human adipose tissue, which may serve as a compensatory
response to enhance mitochondrial function and fat browning [101].
Though some controversy exists regarding irisin’s detectability and
function in humans, emerging evidence supports its role in metabolic
regulation and neuroprotection, making it a critical mediator of the
body’s adaptation to exercise and a promising target for interventions in
metabolic and neurodegenerative disorders [102,103]. Overall,
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metabolic and physiologic exerkines interact to coordinate energy use,
support mitochondrial health, and meet the body’s adaptive demands
during physical activity.

Many exerkines are sensitive to redox status. IL-6 expression in
skeletal muscle is stimulated by ROS and regulated by NF-xB and redox-
dependent p38 MAPK pathways [35,56,90]. NOX2 inhibitors [21] and
antioxidant supplementation blunts IL-6 release, highlighting the
essential role of redox signaling in its regulation [55]. IL-6 subsequently
acts systemically to mobilize energy substrates and regulate inflamma-
tion, thus linking muscle oxidative stress to whole-body homeostasis
[97]. ROS can also upregulate BDNF expression via CREB signaling
pathways [104-106]. Exercise-induced oxidative eustress in the hippo-
campus and peripheral tissues may therefore enhance BDNF levels,
contributing to cognitive and mood benefits [107]. Finally, the expres-
sion of Irisin is promoted by PGC-1a, a redox-sensitive transcriptional
coactivator upregulated during mitochondrial ROS signaling, while
FGF21 is modulated by AMPK and SIRT1 [108]. This positions irisin as a
redox-dependent exerkine linking muscle oxidative status with systemic
energy expenditure. For additional insight on this topic, the reader is
referred to the recent article from Félix-Soriano and Stanford [109].

Aging is generally associated with a blunted exerkine response to
physical activity [28,110]. Furthermore, the signaling pathways

EXTRACELLULAR VESICLES (EVs)
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downstream of exerkines—including those mediated by nuclear factor
erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant gene
expression—are frequently impaired in aged tissues, limiting the ca-
pacity for effective redox control [111]. Nevertheless, in aging pop-
ulations, regular exercise can enhance mitochondrial efficiency,
stimulate residual exerkine release, and activate antioxidant defenses,
albeit often to a lesser degree than in younger subjects [112,113].

In summary, exerkines are key exercise-induced signaling molecules
that link redox biology to systemic health by supporting mitochondrial
function, energy balance, and cellular resilience. Although aging re-
duces exerkine responsiveness and antioxidant signaling, regular exer-
cise can still enhance redox homeostasis and help counteract age-related
decline, making exerkines a promising target for healthy aging and
disease prevention.

3.2. Extracellular vesicles in exercise responses

EVs are broadly categorized into three major types based on their
size and origin: exosomes (30-150 nm), microvesicles (100-1000 nm),
and apoptotic bodies (>1000 nm). Exosomes originate from the endo-
somal system and are secreted upon fusion of multivesicular bodies with
the plasma membrane, whereas microvesicles bud directly from the
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Fig. 2. Exerkines and exercise-induced EVs as key mediators of interorgan communication. Systemic effects of exercise are mediated not only by local ad-
aptations within contracting skeletal muscle but also by endocrine and paracrine signaling that coordinates communication among the muscle, heart, brain, liver, and
adipose tissue. Extracellular vesicles (EVs) and soluble or EV-associated exerkines constitute a key interorgan communication network, both dependent on and
capable of modulating redox homeostasis. Exerkines, including myokines, hepatokines, adipokines, and other metabolites, hormones, and cytokines, regulate redox
balance by influencing endoplasmic reticulum and mitochondrial stress responses, reactive oxygen species (ROS) signaling, and metabolic efficiency, collectively
reducing oxidative stress. Likewise, exercise-modulated EV cargo (e.g., microRNAs, functional or post-translationally modified proteins) enhances antioxidant ca-
pacity, suppresses oxidative stress, and activates detoxification pathways, thereby contributing to the maintenance of systemic redox homeostasis.
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plasma membrane [114]. Additional types of EVs have been described.
For an exhaustive overview of EVs biology, the reader is directed to
up-to-date, dedicated reviews [115-117].

The precise composition of EVs varies depending on the cell type and
physiological condition, including exercise stimuli. In vivo studies from
animal and human models have shown that acute and chronic exercise
modulate the release, composition, and bioactivity of circulating EVs
[93,118]. Both endurance and resistance exercises significantly increase
the concentration of plasma EVs, with peaks occurring immediately
post-exercise and gradually returning to baseline within a few hours
[92].

These EVs are derived from various tissues, including skeletal mus-
cle, endothelium, platelets, immune cells, and even the central nervous
system (Fig. 2) [93]. One of the first studies to report exercise-induced
EVs found elevated levels of circulating exosomes carrying skeletal
muscle-specific proteins and microRNAs (miRNAs) after acute treadmill
running in mice and humans [119]. These findings support the notion
that muscle-derived EVs act as messengers in muscle-to-organ commu-
nication, especially under physical stress [92]. Nevertheless, the tissue
origin of exercise-induced EVs is diverse, reflecting the multi-systemic
nature of exercise-induced adaptations [120]. Studies utilizing proteo-
mic, transcriptomic, and surface marker profiling have identified several
tissues involved in EVs release in the human bloodstream, such as
skeletal muscle [119], endothelial cells [121], platelet and blood cells
[122], adipose tissue [123], brain and neural tissues [124].

The cargo of exercise-induced EVs includes a rich repertoire of pro-
teins, lipids, and RNAs, notably miRNAs that modulate gene expression
in target cells (Fig. 2). For instance, skeletal muscle-derived EVs carrying
IL-6 mRNA or protein can activate immune cells and modulate inflam-
mation in subjects, supporting the anti-inflammatory role of regular
exercise [122]. Specific miRNAs such as miR-1, miR-133a, and miR-206,
all involved in muscle development and regeneration, are enriched in
muscle-derived EVs post-exercise in a mice model of type 2 diabetes
[125]. These miRNAs influence not only muscle repair and adaptation
but also systemic metabolic pathways.

EVs have been shown to mediate the transfer of mitochondrial
components, and in some cases intact mitochondria, between cells, a
process that can profoundly influence redox homeostasis by altering
mitochondrial ROS production, antioxidant capacity, and metabolic
coupling in recipient cells [114]. Although antioxidant enzymes have
been identified in exercise-induced EVs, suggesting a role in modulating
oxidative stress [93,126]. EVs from exercised muscle have been shown
to stimulate endothelial cells, thereby enhancing angiogenesis, likely
through VEGF-associated signaling pathways [127]. This intercellular
communication may contribute to the well-known vascular benefits of
physical activity. EVs released during exercise also play crucial roles in
cardiovascular health. Endothelial cell-derived EVs contribute to nitric
oxide signaling, improve endothelial function, and reduce arterial
stiffness [128]. Furthermore, EVs from exercised individuals are
enriched in cardioprotective antioxidants [31,126] and miRNAs such as
miR-126 and miR-222 [129], which protect cardiac cells from oxidative
stress damage and regulate vascular integrity and angiogenesis.

In metabolic tissues, EVs have been shown to enhance insulin
sensitivity and glucose uptake. For example, EVs from exercised mice
improved insulin signaling in adipocytes and hepatocytes in vitro, an
effect attributed to the delivery of AMPK-activating components [130].
This supports the growing consensus that EVs are key mediators of the
anti-diabetic effects of exercise [131]. The central nervous system is also
a target of the exercise benefits mediated by EVs. Exercise increases the
release of neuronal and astrocytic EVs, which contain neurotrophic
factors such as BDNF and miR-124—both known to support neuro-
genesis and synaptic plasticity [132,133]. These EVs may cross the
blood-brain barrier or exert peripheral actions that indirectly influence
brain health. Moreover, exercise-induced EVs are implicated in modu-
lating systemic inflammation [30]. They can suppress the activation of
pro-inflammatory macrophages and promote the expansion of
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anti-inflammatory  Tregs, contributing to  the  systemic
anti-inflammatory profile observed in physically active individuals [72].

Thus, exercise-induced EVs emerge as versatile mediators of inter-
organ communication, carrying molecular cargo that supports metabolic
regulation, vascular and cardiac protection, neuroplasticity, and redox
homeostasis. While evidence for mitochondrial transfer remains limited,
the diverse bioactive contents of these vesicles highlight their central
role in translating physical activity into systemic health benefits.

4. Redox signaling in age-related muscle decline

The progressive decline in skeletal muscle mass and functional ca-
pacity with age, referred to as sarcopenia, poses significant health
challenges, contributing to instability, increased susceptibility to falls,
and the eventual loss of independence in older adults [134]. By the
seventh decade of life, reductions in muscle cross-sectional area and
strength reach 25-30 % and 30-40 %, respectively [135]. This deteri-
oration arises not only from a reduction in the number of muscle fibers
but also from the atrophy and weakening of those that remain [136,
1371.

This phenomenon is well-documented in both humans and animal
models. Rodent studies mirror the age-related muscle deterioration seen
in humans, validating their use in ageing research [138,139].
Age-associated neuromuscular degradation occurs concurrently with a
loss of motor neurons, further exacerbating muscle weakness. In both
humans and rodents, aging results in the degeneration of 25-50 % of
motor neurons [140,141]. Disruption in the integrity of NMJs and fiber
denervation are common findings in aged muscle tissue, with studies
reporting that nearly 15 % of muscle fibers in older mice are fully
denervated and that over 80 % of NMJs exhibit morphological impair-
ments [142].

4.1. Oxidative damage and lifespan considerations

At the cellular level, ageing is accompanied by an accumulation of
oxidative damage to macromolecules such as lipids, proteins, and DNA
[143,144]. Although early investigations in non-mammalian species
demonstrated that reducing ROS extended lifespan [145,146], more
recent mammalian studies suggest that oxidative damage is not the sole
determinant of longevity [147,148]. However, increased ROS activity
and oxidative stress are implicated in the pathophysiology of many
age-related diseases and dysfunctions [149].

Ageing also impairs the body’s ability to adapt to physiological
stressors, particularly those involving redox signaling [150]. In skeletal
muscle, aging leads to diminished exercise-induced adaptations,
including reduced acute stress responses [151], compromised mito-
chondrial biogenesis [152,153], and blunted anabolic responses [154].
The mechanisms underlying these impairments are unclear but func-
tionally they decrease the effectiveness of physical activity in preserving
muscle mass and strength. Notably, genetic interventions targeted at
some of the specific attenuated pathways have shown promise in
counteracting these age-related deficiencies [155-157].

4.2. Genetic manipulation and the role of Sod1l

In mammalian models, the role of oxidative stress in aging has been
investigated through various genetic manipulations. A landmark study
by Pérez et al. (2009) [147] examined 18 mouse models with altered
antioxidant gene expression. Despite significant variations in tissue
oxidative damage, these manipulations did not influence lifespan,
challenging the oxidative damage theory of aging. Nonetheless, further
analyses revealed that under chronic stress conditions, such as those
leading to pathological phenotypes, enhanced antioxidant defences
mitigated some age-associated deteriorations [158].

Among the models studied, mice lacking Cu/Zn superoxide dismut-
ase (Sod1) showed a unique phenotype. Sod1-deficient mice exhibited a
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20 % reduction in lifespan and accelerated skeletal muscle aging,
making them a valuable model for studying sarcopenia [159]. In-depth
characterization of these Sod1KO mice revealed mitochondrial abnor-
malities, NMJ degeneration, and a loss of muscle strength that resem-
bled aging-associated phenotypes in wild-type mice [160-162].

To delineate the tissue-specific impact of Sod1l loss, researchers
created mouse models with targeted deletions. Muscle-specific deletion
of Sod1l (mSod1KO) had minimal effects on muscle mass and function,
suggesting that muscle-intrinsic ROS dysregulation alone is insufficient
to induce sarcopenia [163]. Conversely, neuron-specific Sod1l expres-
sion in a Sod1KO background (SynTgSodKO) prevented NMJ degener-
ation and muscle atrophy, underscoring the importance of neuronal
redox balance [164]. Additional studies using embryonic
neuron-specific Sod1 knockouts [165] did not recapitulate the severe
phenotype, possibly due to developmental compensations. However,
inducible neuron-specific Sod1 deletions in adulthood (i-mn-Sod1KO)
led to a premature onset of muscle atrophy and NMJ disintegration in
older mice, reinforcing the central role of motor neurons in age-related
muscle decline [162].

Research has consistently shown that mitochondrial hydrogen
peroxide production increases with age in skeletal muscle [166,167]. In
Sod1KO mice, this elevated ROS production is linked to NMJ deterio-
ration and fiber denervation [164,168]. Nerve transection experiments
demonstrated that denervation also significantly increased mitochon-
drial peroxide generation, both in denervated and adjacent innervated
fibers, suggesting a non-cell autonomous mechanism [169]. Proteomic
analyses comparing Sod1KO and mSod1KO mice show distinct molec-
ular changes in nerves and muscles, implicating disrupted redox sig-
nalling in the peripheral nervous system as a major factor in the muscle
loss that occurs in this model of accelerated age-related muscle aging
[168]. These findings challenge the notion that oxidative damage per se
drives sarcopenia, pointing instead to impaired signalling pathways
(Fig. 2).

The effects of a specific lack of Sod1 to accelerate muscle ageing are
somewhat surprising and have been attributed to an increase in oxida-
tive damage in these mice. While the function of Sod1 is the dismutation
of superoxide to hydrogen peroxide in the cytosol and mitochondrial
IMS, these mice also show an increase in muscle mitochondrial
hydrogen peroxide generation which appears to contribute to the muscle
degeneration [165,167]. An additional mechanism by which Sod1
deficiency may contribute to muscle loss involves peroxynitrite, a
reactive nitrogen species formed by the interaction of superoxide and
nitric oxide. Elevated peroxynitrite levels in Sod1KO mice have been
shown to nitrate essential proteins in motor neurons, such as nerve
growth factors, compromising neuromuscular communication [170,
171]. Comparative studies with mitochondrial matrix-localized MnSOD
(Sod2) further emphasize the tissue-specific role of Sodl. While Sod2
deletion impairs oxidative metabolism, it does not trigger premature
muscle aging [172].Thus the effect of Sod1 deficiency to cause prema-
ture muscle loss is highly specific and appears related to location of the
protein in the cytosol and IMS and additionally a key role for this protein
in ROS regulation in motor neuron health [172].

Given the similarities between Sod1KO mice and aged wild-type
animals, including the occurrence of markers of frailty such as weight
loss, reduced activity, and systemic inflammation, these models may
provide a relevant platform for aging studies [173]. Recent analyses of
i-mnSod1KO mice confirmed accelerated aging features, including
reduced axonal caliber and simplified NMJ architecture, mimicking
advanced aging in wild-type controls [24].

4.3. Redox adaptations to exercise and the role of local denervation

The diminished capacity for redox-mediated adaptations to exercise
in both aged and Sod1-deficient mice further implicates dysregulation of
ROS signalling in muscle decline. Sod1KO mice fail to exhibit normal
transcriptional responses to contractile activity, resembling old wild-
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type mice [174]. Elevated ROS production, particularly Hy0-, likely
drive increased expression of antioxidant enzymes, which may buffer
critical cysteine oxidation events necessary for signalling [175].

It has been proposed that recurrent cycles of localized denervation
and re-innervation throughout life create redox fluctuations that impair
mitochondrial function and inhibit redox-sensitive adaptation mecha-
nisms [176] (Fig. 3). The ensuing suppression of exercise-induced
signaling responses in aging muscle could be a direct consequence of
this denervation-induced elevation of mitochondrial ROS generation
[175].

In conclusion ageing-associated muscle loss is a multifactorial pro-
cess, driven by the convergence of motor neuron degeneration, impaired
redox signalling, mitochondrial dysfunction, and disrupted muscle
adaptation mechanisms. While oxidative damage is a hallmark of ageing
tissues, current evidence suggests that it is the dysregulation of redox
signalling that plays a more critical role in sarcopenia. The Sod1KO
mouse model and its tissue-specific variants have been instrumental in
uncovering these mechanisms. Going forward, therapeutic strategies
that target neuronal redox homeostasis and support mitochondrial
integrity hold promise in mitigating muscle degeneration and preserving
physical function in the elderly.

5. Redox modulation of EVs during exercise and aging

Recent evidence suggests that ROS and redox signaling also plays a
pivotal role in the biogenesis, release, cargo composition, and functional
properties of EVs [177]. This relationship is bidirectional: redox mod-
ulation and oxidative stress influence both the number and content of
exosomes and microvesicles produced by cells. At the same time, EVs
can directly or indirectly modulate ROS types in both the extracellular
and intracellular compartments [178]. Understanding how redox bal-
ance influences EV biology provides insight into physiological and
pathological states, particularly those characterized by oxidative stress,
such as cancer, cardiovascular disease, neurodegeneration, and re-
sponses to exercise [126].

Studies have demonstrated that oxidative stress can upregulate EV
release by promoting intracellular calcium influx and cytoskeletal
rearrangement, key processes required for vesicle budding and exocy-
tosis [179]. For instance, H,O5 has been shown to enhance exosome
secretion in various cell types, including endothelial and cancer cells
[180]. At the molecular level, redox-sensitive proteins such as thio-
redoxins, peroxiredoxins, and glutathione peroxidases modulate the
machinery involved in EV formation, including the ESCRT complex and
small GTPases [181]. This suggests that the intracellular redox state can
act as a switch, controlling the intensity and quality of EV-mediated
communication.

The redox environment also significantly influences the composition
of EV cargo. Cells exposed to oxidative stress selectively load stress-
responsive molecules into EVs, including damaged proteins, mitochon-
drial DNA (mtDNA), oxidized lipids, and microRNAs that regulate
redox-sensitive pathways [182,183]. For example, EVs from
oxidative-stressed endothelial cells carry miR-210 and miR-34a, which
modulate mitochondrial function and angiogenesis in recipient cells
[184]. Similarly, exercise-induced EVs, released under transient redox
imbalance, often contain antioxidant enzymes such as SOD1 and SOD2,
glutathione S-transferase, and peroxiredoxin-1, suggesting a mechanism
for systemic redox buffering [31,93,126,185]. This adaptive transfer of
antioxidant defense components via EVs highlights their role in main-
taining redox homeostasis across tissues.

EV biogenesis, cargo composition, and release dynamics are signifi-
cantly altered during aging, contributing to age-associated tissue
dysfunction and systemic inflammation [186,187]. Senescent cells
release EVs enriched in pro-inflammatory cytokines, matrix-modifying
enzymes, and microRNAs that promote tissue degeneration and im-
mune dysregulation [188,189]. Notably, aged individuals often exhibit
elevated levels of EVs carrying inflammatory markers, which have been
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Fig. 3. NMJ Dysfunction Links Aging and Inactivity to Muscle Atrophy. Aging and physical inactivity contribute to neuromuscular junction (NMJ) dysfunction,
marked by disrupted retrograde signaling, AChR fragmentation, and increased ROS. These changes impair proteostasis and promote muscle atrophy, contributing to

frailty and disease progression in conditions such as sarcopenia and chronic illness.

linked to frailty and metabolic disturbances [190,191]. As indicated
above, physical exercise is a potent modulator of EV release and
composition, representing a possible countermeasure against
aging-related changes in EV biology [190,191]. Besides this premise,
experimental results are still minimal. Using in vitro and in vivo com-
plementary studies, Kim et al. demonstrated in 2015 that aerobic exer-
cise reduces the release of endothelial microparticles in prehypertensive
individuals and that these beneficial effects are, in part, mediated by
shear stress-induced mitochondrial biogenesis [192]. Recently, Radak’s
group [193] found that the proteomic profile of EV cargo from older
adults is associated with the acceleration of the biological age estimator
DNAmFitAge (AgeAccelFit). On the contrary, old mice treated with
small EVs derived from adipose mesenchymal stem cells (ADSCs) of
young animals show an improvement in several parameters usually
altered with aging, including, among others, pro-regenerative effects
and a decrease in oxidative stress, inflammation, and senescence
markers in muscle and kidney [194]. Finally, in mice and humans,
Abdelsaid et al. [131] demonstrated that exercise improves the angio-
genic potential of circulating exosomes in type 2 diabetes in a
SOD3-dependent manner, introducing the possibility that
exercise-induced EVs might deliver bioactive cargo that modulates
redox homeostasis signaling, thereby reducing oxidative stress and
preserving cellular function during aging [195].

6. Conclusions

Redox signaling is a key mediator of exercise-induced adaptations in
skeletal muscle and across organ systems. Controlled ROS production,
especially HypO5 from sources like NOX2, drives beneficial responses
such as mitochondrial biogenesis, antioxidant defense, and metabolic
regulation. Exercise also promotes systemic resilience via redox-
sensitive exerkines and EVs, which mediate inter-organ communication.

With aging, redox signaling becomes dysregulated, contributing to
sarcopenia and neuromuscular decline. However, regular exercise can
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restore redox balance, enhance stress responses, and slow muscle
degeneration. Targeting redox-regulated pathways and EV signaling
offers promising strategies to support muscle health and systemic
function during aging.

Despite these advances, important gaps remain. The functional sig-
nificance of cysteine oxidation networks in exercise and aging is still
incompletely defined, particularly in linking site-specific modifications
to physiological outcomes. In addition, the pharmacological potential of
targeting redox-dependent interorgan communication, for example be-
tween skeletal muscle, liver, adipose tissue, and brain, remains largely
unexplored in the context of metabolic and aging-related diseases.
Finally, while neuronal redox control has been implicated in sarcopenia,
the mechanisms of neuron to muscle redox communication are only
beginning to be uncovered and require further study.
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