

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

1 **Optimizing Prescription of Resistance Training for Body**
2 **Composition, Muscle Strength, and Physical Performance in**
3 **Older Adults with Sarcopenia: A Systematic Review and Meta-**
4 **Analysis**

5

6 **Key points**

7 1. Effectiveness of RT: this review confirms that resistance training is
8 a robust and effective intervention for improving muscle mass,
9 strength, and physical performance in older adults with sarcopenia.

10

11 2. Optimization via FITT-VP: by applying the FITT-VP framework, the
12 study identified a dose-response relationship, providing practical
13 thresholds for training volume to optimize specific outcomes such as
14 muscle strength and walking ability.

15

16 3. Clinical and Practical Relevance: findings offer the first evidence-
17 based blueprint for tailoring RT protocols, supporting the
18 development of precise clinical guidelines and enabling practitioners
19 to prescribe targeted, individualized interventions to enhance
20 functional outcomes and quality of life.

21

22

23

24

25

26

27

28

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

29

30

31

32 **Abstract**

33

34 **Objective:** This systematic review and meta-analysis aimed to address key gaps
35 in understanding the role of resistance training (RT) as an intervention to
36 mitigate age-related sarcopenia. Specifically, it examined: (i) effects on body
37 composition and physical performance; (ii) moderating influences of age and
38 training intensity; and (iii) the presence of a dose-response relationship within
39 the FITT-VP framework.

40

41 **Methods:** A comprehensive search of multiple databases identified randomized
42 controlled trials (RCTs) evaluating RT in older adults with sarcopenia. Data on
43 body composition, muscle strength (MS), and functional performance were
44 extracted. Moderator analyses assessed the impact of participant and
45 intervention characteristics, and meta-regression was performed to explore
46 dose-response patterns.

47

48 **Results:** Twenty-five RCTs involving 1,302 participants were included. RT
49 produced significant improvements in MS ($ES = 0.71$), lean mass (LM,
50 [$ES = 0.22$]), fat mass (FM, [$ES = -0.17$]), walking ability (WA, [$ES = 0.41$]), grip
51 strength ([GS, [$ES = 0.55$]]), muscle quality (MQ, [$ES = 1.25$]) (all $p < 0.05$), but
52 this large effect size was based on only two studies and requires caution
53 interpretation. Dose-response meta-regression revealed a significant non-linear
54 relationship between total RT duration and functional gains, with optimal
55 estimated cumulative volumes of $\sim 2,716$ min for WA.

56

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

57 **Conclusion:** RT is a robust, evidence-based strategy for enhancing MS,
58 functional performance, and body composition in sarcopenic older adults.
59 **Findings suggest approximate cumulative duration ranges (~1,043 min for MS**
60 **and ~2,716 min for WA) that were associated with maximal gains in pooled**
61 **analyses. These values should be interpreted as exploratory**
62 **indicators supporting individualized programming within the FITT-VP**
63 **framework.** Clinicians and exercise practitioners should tailor intensity (60–80%
64 1RM), frequency, and progression to optimize adherence, effectiveness, and
65 long-term functional outcomes in sarcopenia management.

66

67 **Keywords:** Aging Population, Exercise Therapy, Postural Balance, Hand
68 Strength, Rehabilitation, Randomized Controlled Trials

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

85

86

87

88

89

90

91

92 **1 Introduction**

93 The global demographic shift toward an aging population has evolved from a
94 projected scenario to an immediate public health challenge. According to the
95 United Nations World Population Prospects (2022), the number of individuals
96 aged 60 years and older is expected to reach 2.1 billion by 2050 ^[1]. This
97 unprecedented rise has placed age-related conditions such as sarcopenia at the
98 forefront of geriatric care. Sarcopenia, a progressive skeletal muscle disorder
99 characterized by declines in **muscle mass (MM)**, strength, and physical
100 performance ^[2] is associated with frailty, falls and fractures ^[3], impaired
101 mobility and respiratory capacity ^[4], cognitive decline ^[5], diminished quality of
102 life ^[5], increased mortality ^[6], and **limited physical function** ^[7]. Its prevalence
103 increases steeply with age, affecting roughly 10–16% of older adults globally ^[8]
104 and up to 50% of adults aged 80 years and above ^[9]. Given this increase and its
105 socioeconomic consequences, prevention and treating sarcopenia is critical for
106 maintaining independence and reducing care-related costs in aging societies.

107

108 Pharmacological therapies have yet to demonstrate consistent benefits for
109 sarcopenia, with most agents offering limited efficacy and safety profiles ^[10,11].
110 In contrast, exercise interventions, particularly resistance training (RT) have

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

111 become the cornerstone of sarcopenia management, endorsed by the American
112 College of Sports Medicine (ACSM) as a first-line treatment [12,13]. RT, defined
113 as planned, progressive exercise using external or body-weight resistance to
114 elicit skeletal muscle adaptation [14], improves **muscle quantity (MQ)** and
115 function through both neural and hypertrophic mechanisms [15]. Evidence
116 indicates that RT **promotes 30-60% gains in strength** [16], **increases in lean**
117 **mass (LM) (5-10%)** [16], and measurable improvements in postural balance
118 (approximately 20-30%) [17], **gait speed (GS)** (0.08-0.2 m/s) [18,19], and overall
119 mobility (8-15% range of motion gain) [20]. Meta-analytic data confirm
120 1.1 kg increase in LM among sarcopenic older adults [16]. These gains are
121 clinically meaningful: enhanced lower-limb strength reduces the likelihood of
122 progressing to severe sarcopenia (OR = 0.65, 95% CI 0.52-0.81) [21], while
123 higher GS correlates with reduced hospitalizations for heart failure (OR = 0.88,
124 95% CI 0.84-0.92) [22] **and lower all-cause mortality** [23]. Collectively, these
125 outcomes position RT as a disease-modifying intervention capable of breaking
126 the vicious cycle of muscle loss, functional decline, and disability.

127
128 Despite robust evidence supporting RT, key knowledge gaps persist regarding
129 its long-term efficacy and optimal implementation. Meta-analyses by
130 Peterson et al. (2011) [16] reported significant increase in LM (1.1kg, 95% CI 1.0-
131 1.2) and reductions in **fat mass (FM)** (1.0 kg, 95% CI 0.7-1.3) after 18-20 weeks,
132 corroborated by Beckwée et al. (2019) [24] and Liao et al. (2017) [25]. Yet,
133 inconsistencies remain concerning sustainability and intensity.
134 Reginster et al. (2021) [26] identified diminished effects beyond 12 months,
135 whereas Aagaard et al. (2010) [27] emphasized cumulative adaptations with
136 prolonged RT. Sherrington et al. (2019) [28] demonstrated RT's ability to enhance
137 GS (0.08 m/s, 95% CI 0.04-0.12) and reduce falls by 23% (95% CI 15-31%),
138 though substantial heterogeneity ($I^2 > 70\%$) across trials remains [18,29-31]. Such

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

139 variations in **moderate to high** intensity (60–80% 1RM), frequency, and
140 duration hinder the identification of optimal RT prescriptions for sarcopenic
141 populations.

142

143 Although the FITT-VP framework (Frequency, Intensity, Time, Type, Volume,
144 Progression) provides a systematic basis for exercise prescription [14,32],
145 previous studies have predominantly used it for descriptive categorization
146 rather than quantitative optimization [33]. The lack of integrated analysis of its
147 parameters, frequency, intensity, and overall volume interact to determine
148 training outcomes has limited the translation of experimental evidence into
149 precise clinical guidance [34,35]. Recent consensus statements, including Bae et
150 al. (2025) [36], highlight the urgent need for precision exercise prescription in
151 older adults. However, quantitative thresholds linking RT characteristics to
152 specific gains in muscle strength (MS) and mobility remain undefined.

153

154 Accordingly, this systematic review and meta-analysis aims to elucidate the
155 effectiveness and optimization of RT in older adults with sarcopenia. Specifically,
156 it (i) evaluates whether RT improves body composition and physical
157 performance; (ii) examines whether its efficacy is moderated by individual or
158 intervention-related factors (e.g., age, intensity, session frequency); and (iii) quantifies the dose-response
159 relationship within a FITT-VP-based analytical framework. By explicitly situating
160 this analysis within a quantitative FITT-VP model, the study advances beyond
161 descriptive evidence to identify empirically derived training volume thresholds
162 for key functional outcomes, providing an evidence-based foundation for
163 individualized RT optimization in sarcopenia management.

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

165 **2 Method**

166 **2.1 Design**

167 This study was conducted following the Preferred Reporting Items for
168 Systematic Reviews and Meta-Analyses (PRISMA) guidelines [37] to ensure
169 methodological transparency and rigor. The protocol for this systematic review
170 has been prospectively registered on the PROSPERO platform (Registration ID:
171 CRD420251061962), while the protocol registration was done after study
172 retrieval and before data analysis.

173 **2.2 Search strategy**

174 A comprehensive literature search was conducted across five databases
175 (PubMed, Cochrane Library, Embase, SPORTDiscus, and Web of Science Core
176 Collection) on April 7th-15th, 2025, with an updated search on September 19th,
177 2025 to verify completeness. The search strategy employed Boolean operators
178 and was rigorously structured according to PICOS framework principles,
179 combining free-text terms with Medical Subject Headings (MeSH) to ensure
180 methodological thoroughness and precision. The core search syntax included:
181 (“sarcopenia” OR “muscle loss” OR “muscle atrophy” OR “muscle weakness”)
182 AND (“resistance training” OR “resistance exercise” OR “strength training” OR
183 “weight training” OR “weight exercise” OR “elastic band” OR “progressive
184 resistance” OR “grip strengthener” OR “1 RM” OR “TRX training”) AND (“aged”
185 OR “elderly” OR “older adults” OR “seniors” OR “geriatric”). No date or sample
186 size restrictions were applied during the search process. Additionally, we
187 searched Google Scholar and ResearchGate and performed backward and
188 forward snowballing via reference lists and citing articles to ensure the evidence
189 base was as comprehensive as possible. The complete database search strategy

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

190 is available in Supplementary Material S28.

191 **2.3 Selection process**

192 All duplicate records were removed with EndNote 21 (Clarivate Analytics,
193 Philadelphia, PA, USA). Subsequently, the remaining records were exported and
194 independently screened by two authors (YJ and ZYT) based on predefined
195 eligibility criteria. Initial screening was performed by reviewing titles and
196 abstracts. Any discrepancies between reviewers were resolved through
197 discussion with reference to the established criteria, with consensus achieved
198 through mutual agreement. In cases where consensus could not be reached, the
199 third author (HKZ) was consulted for arbitration. To enhance screening
200 efficiency while maintaining rigorous oversight, we employed an AI-assisted
201 approach using the ASReview tool (following the methodology described by
202 Quan et al. [38]). ASReview applies active learning to prioritize relevant records,
203 which has been validated to maintain sensitivity comparable to full manual
204 screening in systematic reviews across multiple domains [38,39]. To mitigate
205 potential algorithmic bias and prevent the oversight of relevant records, we
206 implemented a multi-layer supervision mechanism as recommended in recent
207 AI-assisted systematic review frameworks [39]. Specifically, all records excluded
208 by ASReview underwent full manual verification by an independent researcher
209 (ZYT). This ensured that no potentially eligible study was erroneously discarded
210 by the AI algorithm. Furthermore, to strengthen quality control, a second
211 researcher (YJ) cross-checked a random sample of 20% of the AI-excluded
212 records, with no discrepancies found, confirming the robustness of the AI-
213 assisted screening process.

214

215 Finally, full-text articles were comprehensively evaluated by two independent
216 researchers (ZYT and YJ) to determine final eligibility. Any disagreements during

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

217 full-text screening were resolved using the same consensus protocol applied
218 during title and abstract screening.

219 **2.4 Eligibility criteria**

220 This systematic review adhered to strict PICOS criteria (Population, Intervention,
221 Comparison, Outcome, Study design) criteria [40], including only randomized
222 controlled trials (RCTs) published in English peer-reviewed journals involving
223 adults aged ≥ 60 years with sarcopenia diagnosed according to **recognized**
224 **definitions** (e.g., European Working Group on Sarcopenia in Older People
225 [EWGSOP] [2], Asian Working Group for Sarcopenia [AWGS] [41], or Foundation
226 for the National Institutes of Health [FNIH] criteria [42], or **author defined cut**
227 **offs**). In some trials, participants were described as having sarcopenic
228 obesity when sarcopenia definitions were applied in conjunction with obesity
229 criteria based on Body Mass Index (BMI) or body-fat percentage (BFP) [43]. Given
230 that sarcopenic obesity represents a distinct phenotype, these studies were
231 flagged as a potential source of heterogeneity, and sensitivity analysis and
232 subgroup analysis were used to investigate whether this phenotype significantly
233 affected the main effect pooling; if significant effects were found, exclusion was
234 performed [44].

235
236 The study population included both community-dwelling and institutionalized
237 individuals with stable chronic comorbidities. Eligible interventions focused on
238 RT as the primary modality (e.g., free weights, machines, and elastic bands),
239 requiring explicit reporting of at least two of the following dose parameters:
240 frequency, intensity, duration, or volume. Comparators included no exercise,
241 non-RT interventions, or alternative RT regimens. The intervention measures of
242 the experimental group were based on the control group with the addition of RT
243 program. Primary outcomes included Body Composition Metrics (e.g., BMI, PBF,

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

244 FM, Body Fat Mass [BFM], **Body weight** [BW], Skeletal Muscle Mass [SMM] and
 245 LM), Muscle Quantity Index (e.g., Skeletal Muscle Index [SMI]), Muscle
 246 Function Metrics (e.g., GS, MS and Muscle Quality [MQ]) and Physical
 247 Performance Metric (e.g., **Walking Ability** [WA]). We excluded animal studies,
 248 secondary analyses, conference abstracts, and grey literature to ensure
 249 methodological rigor.

250 **2.5 Data extraction**

251 Two independent researchers (ZYT and YJ) systematically extracted data using
 252 a predefined standardized Excel template, capturing: (1) study characteristics
 253 (e.g., author, year), (2) participant characteristics (e.g., sex, age, weight, height,
 254 sample size and sarcopenic obesity), (3) RT intervention parameters (modality,
 255 intensity, frequency, duration, training sets and training repetition), (4)
 256 information on training adherence (attendance, session completion) and safety
 257 (adverse events or withdrawal reasons), and (5) body composition and physical
 258 performance outcomes. If adherence or safety data were missing, it was
 259 recorded as “not reported,” and adherence was expressed as the percentage of
 260 attended sessions out of the total prescribed. For graphical or inaccessible data,
 261 corresponding authors were contacted twice within 14 days; unresponsive cases
 262 were resolved using WebPlotDigitizer v4.8 (<https://apps.automeris.io/wpd4/>), a
 263 validated high-accuracy tool^[45]. This rigorous approach ensured comprehensive
 264 and reproducible data collection in accordance with PRISMA guidelines^[46].

265 **2.6 Data conversion**

266 We systematically extracted mean values, standard deviations (SDs) and sample
 267 sizes from primary studies to calculate pre-post intervention differences. When
 268 only confidence intervals or standard errors (SEs) were reported, we converted

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

269 them according to the Cochrane Handbook [40]. Given that correlation
 270 coefficients (r) between pre- and post-RT intervention measurements were
 271 rarely reported in included studies, we conservatively assumed r = 0.50 based
 272 on Cochrane recommendations [40]. To account for potential bias from small
 273 sample sizes, which were typical among eligible studies, we applied Hedges and
 274 Olkin's g correction for effect size calculations [47]. The following conversion
 275 formulas were used:

276

$$277 \quad SD_{pooled} = \sqrt{\frac{((n_1-1) \times SD_1^2 + (n_2-1) \times SD_2^2)}{(n_1+n_2-2)}}$$

278

$$279 \quad Effect\ Size = \frac{(Mean_{post} - Mean_{pre})}{SD_{pooled}} \times \left(1 - \frac{3}{4(n_1+n_2-2)-1}\right)$$

280

281 The effect sizes (ES) were calculated using the following parameters: n_1 and n_2
 282 represent the sample sizes of the control and experimental groups at baseline
 283 and post-intervention, respectively; SD_1 and SD_2 denote the standard deviations
 284 of the control and experimental groups at baseline and post-intervention; and
 285 $Mean_{pre}$ and $Mean_{post}$ indicate the mean values at baseline and post-intervention.
 286 The magnitude of the ES was classified according to established clinical
 287 significance thresholds: < 0.2 (negligible), 0.2–0.5 (small), 0.5–0.8 (moderate),
 288 and > 0.8 (large) [48]. This standardized approach ensured consistent
 289 interpretation of intervention effects across studies while accounting for
 290 variability in baseline characteristics and outcome measurements.

291 2.7 Assessment of methodological quality

292 Two independent investigators (ZYT and YJ) evaluated the methodological
 293 quality and reporting completeness of included studies using the TESTEX tool

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

294 (specifically designed for exercise training research) and the Cochrane Risk of
 295 Bias 2.0 (RoB 2.0) tool. The TESTEX scale (total score: 15 points-5 for study
 296 quality and 10 for reporting quality) assesses 12 core criteria, addressing
 297 limitations of traditional tools by eliminating redundant items (e.g., blinding)
 298 while incorporating critical exercise-specific standards such as training dosage,
 299 intensity adjustment and control group activity monitoring [49]. Risk of bias was
 300 assessed using the RoB 2 tool [50] across five domains: randomization process,
 301 deviations from intended interventions, missing outcome data, outcome
 302 measurement, and selective reporting. Each study was independently evaluated
 303 by two reviewers (ZYT & YJ), with disagreements resolved through discussion.

304 **2.7.1. Quality of Evidence Assessment**

305 Certainty of evidence was graded using the GRADE framework [51], considering
 306 study limitations, consistency, directness, precision, and publication bias. This
 307 approach ensures a systematic and rigorous appraisal of both methodological
 308 quality and the reliability of findings [52].

309
 310 Outcomes assessed included: Body composition indices: BMI, PBF, FM, SMM;
 311 Muscle quantity: SMI; Muscle function: GS, overall MS, and MQ; Physical
 312 performance: WA. Each outcome began as having “high” quality of evidence
 313 (reflecting the randomized design) and was subject to potential downgrading
 314 based on five domains: (1) risk of bias, (2) inconsistency (I^2 heterogeneity), (3)
 315 indirectness (variations in PICOS elements), (4) imprecision (wide confidence
 316 intervals), and (5) publications bias (funnel plot asymmetry or Egger’s test).

317 **2.8 Statistical analysis**

318 **2.8.1. Meta-analysis framework**

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

319 All data analyses were conducted according to the recommendations of
 320 the Cochrane Handbook for Systematic Reviews of Interventions [53] and Hedges
 321 & Olkin's Statistical Methods for Meta-Analysis [47]. Effect sizes (standardized
 322 mean differences, SMDs) and their 95% confidence intervals were calculated. A
 323 random-effects model was adopted to account for variability across studies [54].
 324 Statistical heterogeneity was quantified by the I^2 statistic, with 25%, 50%, and
 325 75% indicating low, moderate, and high heterogeneity, respectively [53,55].

326

327 Exercise intensity for RT was categorized into low (< 50% 1RM), moderate (50-
 328 75% 1RM), and high (> 75% 1RM) levels based on the ACSM Guidelines for
 329 Exercise Testing and Prescription (2021) and previous RT meta-analyses in older
 330 adults [32,34,56]. This criterion provides a physiologically meaningful and
 331 reproducible framework for intensity classification, ensuring transparency and
 332 comparability.

333

334 Dose-response relationships were further modeled using fractional-polynomial
 335 regression following Hedges & Olkin [47,57]. A non-linear meta-regression model
 336 was applied to examine potential dose-response patterns between cumulative
 337 RT volume and outcomes of interest. Because this analysis used aggregated
 338 trial-level data, it represents an exploratory approach that can reveal
 339 associative trends but cannot establish causal relationships or precise clinical
 340 thresholds. Publication bias was examined via Egger's regression test and visual
 341 funnel-plot inspection; a p-value < 0.05 indicated potential bias [58].

342 2.8.2. Moderators analysis

343 Potential sources of heterogeneity and moderating factors (e.g., baseline
 344 participant characteristics and training protocols) were analyzed, with
 345 categorical variables examined via subgroup analysis and continuous variables

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

346 via meta-regression [59]. Specifically, participants' age and BMI were included
 347 in the meta-regression analysis.

348 Meta-regression analyses were performed only for outcomes that had sufficient
 349 data across studies (≥ 10 effect sizes with distinct training durations) [60].
 350 Specifically, analyses were feasible for MS and WA. Other outcomes (e.g., LM,
 351 FM, and MQ) were excluded due to insufficient and highly heterogeneous data,
 352 which precluded reliable estimation.

353 **2.8.3. Training dose determination and model fitting**

354 Exercise volume was calculated according to the ACSM guidelines as session
 355 duration \times frequency \times cycle (weeks) [32]. Cumulative training volume (CTV)
 356 was selected as the primary dose metric, representing total accumulated
 357 duration of RT exposure (session time \times weekly frequency \times intervention weeks).
 358 This metric provides an integrated measure of workload across diverse protocols
 359 and reflects the fundamental determinants of neuromuscular adaptation under
 360 progressive overload. Using CTV allows modeling of non-linear dose-response
 361 relationships between total training dose and clinical outcomes (MS, WA, and
 362 body-composition indices), aligning with the FITT-VP framework by
 363 quantitatively operationalizing its "Volume" and "Time" components [34].

364
 365 Because a strictly linear increase in rehabilitation effectiveness with increasing
 366 total exercise volume is biologically implausible, and preliminary comparisons
 367 indicated a better fit for nonlinear than for linear specifications, we focused on
 368 modelling potential nonlinear dose-response patterns [61]. Excluding linear
 369 relationships, a nonlinear association between total exercise volume and
 370 improvement in sarcopenia-related outcomes was examined using a restricted
 371 cubic spline (RCS) framework, comparing models with 3, 4, and 5 knots and
 372 retaining the specification that provided the best overall fit [62]. For nonlinear

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

373 models exhibiting a clear inverted U-shaped trend, the dose corresponding to
 374 the maximum effect (i.e., the point on the fitted curve at which the effect size
 375 was maximized and the 95% CI did not cross 0) was extracted. A piecewise linear
 376 regression model was then constructed to validate this cut-point, with the
 377 likelihood ratio test (LRT) used to calculate the chi-square statistic; a p-value <
 378 0.05 confirmed the statistical significance of the cut-point [63].

379 **2.8.4. Sensitivity analyses and publication bias**

380 We adopted a three-stage hybrid strategy to diagnose potential publication bias:
 381 (1) a multilevel meta-regression-based Egger's regression test; (2)
 382 nonparametric Trim-and-Fill imputation under a random-effects framework; and
 383 (3) contour-enhanced funnel plot inspection combined with Egger's regression
 384 testing (asymmetry significance threshold: $p > 0.05$) [58,64,65]. Sensitivity
 385 analyses were conducted using cluster-robust variance estimation with small-
 386 sample correction to account for within-study dependence and sampling
 387 variability. Systematic variation of key parameters was used to assess the
 388 stability of model coefficients across clinically relevant ranges, with model
 389 recalibration triggered when perturbations altered effect direction or statistical
 390 significance ($p < 0.05$). When results remained invariant across parameter
 391 ranges, the original estimates were retained [66].

392 **3 Results**

393 **3.1 Literature search results**

394 The PRISMA flow diagram for the study selection process is presented in Figure
 395 1. Literature searches in 5 electronic databases (PubMed, Embase, Cochrane
 396 Library, Web of Science, and SPORTDiscus) initially yielded 7,919 publications.
 397 After removal of 4,514 duplicates, 3,405 unique records remained for title and

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

398 abstract screening. Following this screening, 3,373 records were excluded as
399 not meeting the predefined inclusion criteria. The full texts of 32 articles were
400 assessed for eligibility, of which 14 were excluded for various reasons (e.g.,
401 unavailable full text, abstract only, irrelevant intervention, inappropriate control,
402 unsuitable design, or non-eligible participants). Ultimately, 18 studies from the
403 database search met the inclusion criteria. In addition, other sources (Google
404 Scholar and ResearchGate) yielded 4 additional reports, of which 2 met the
405 eligibility criteria after full-text assessment. Combining these 20 new
406 studies with 5 studies retained from the previous version, a total of 25 studies
407 were included in the final meta-analysis.

408

409 **INSERT Figure 1**

410 **3.2 Characteristics of included studies**

411 The meta-analysis included 25 RCTs comprising a total of 1,302 patients living
412 with sarcopenia. Individual study sample sizes varied from 7 to 36 participants,
413 with ages spanning 60.4 to 87.1 years, BMI ranging from 18.96 to 31.4 kg/m²,
414 and cohorts consisting of either single-sex or mixed-sex populations.
415 Geographically, the studies represented diverse ethnic groups: 11 studies
416 involved Chinese participants, 4 focused on Japanese populations, 2 examined
417 Spanish, German, and Brazilian cohorts, respectively, while single studies were
418 conducted in Korean, Iranian, Swedish, and Italian populations, respectively.

419

420 Notably, Among the 25 included RCTs diagnostic standards for sarcopenia
421 varied (EWGSOP, n = 9; AWGS, n = 10; FNIH, n = 2; author defined cut offs, n
422 = 4), with the latter (author-defined cutoffs) tailored to their specific study
423 populations. Additionally, 6 trials explicitly enrolled sarcopenic obese
424 participants and were analysed separately in sensitivity testing to account for

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

425 the unique clinical characteristics of this subgroup.

426

427 Among the 25 included RCTs, 25 reported explicit adherence data. Mean
 428 training attendance ranged from 64.5% to 100%, indicating
 429 generally high compliance. Studies incorporating supervision or progressive
 430 elastic band protocols often reached adherence $\geq 97.6\%$. Regarding safety, no
 431 major adverse events (e.g., falls, fractures, cardiovascular) were
 432 documented. Several studies noted mild, transient muscle soreness and fatigue
 433 that resolved spontaneously. A detailed summary appears in Supplementary
 434 Material S29.

435

436 All interventions implemented RT-based protocols, with exercise modalities
 437 including weight training, kettlebell training, elastic band training, body-weight
 438 training, and chair MS training. Detailed participant characteristics and
 439 intervention protocols are summarized in Supplementary Material S2.

440 **3.3 Effects of RT on body composition**

441 A meta-analysis of 25 studies evaluated the effects of RT on body composition
 442 compared to control conditions, revealing consistent improvements across
 443 multiple parameters. The findings demonstrate nuanced effects on various
 444 metrics, as detailed below: FM (16 studies; effect size [ES] = -0.17, 95% CI [-
 445 0.26, -0.07], $p < 0.01$), indicating a consistent benefit in decreasing adipose
 446 tissue. Moreover, RT significantly increased LM (11 studies; ES = 0.22, 95% CI
 447 [0.04, 0.39], $p < 0.05$), supporting its efficacy in promoting muscle hypertrophy.
 448 Results for other body composition variables (e.g., BMI, PBF, BFM, BW, and
 449 SMM) that did not reach statistical significance are presented in Figure 2. In
 450 addition, sensitivity analysis results showed that the pooled results were stable,
 451 see Supplementary Materials S11.

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

452 **3.4 Effects of RT on Muscle Quantity Index**

453 Our analysis of 11 studies evaluated the impact of RT on the SMI, a key indicator
 454 of MQ relative to body size. The results demonstrated a significant positive effect
 455 of RT on SMI ($ES = 0.52$, 95% CI [0.24, 0.80], $p < 0.01$) (Figure 2). In addition,
 456 sensitivity analysis results showed that the pooled results were stable, see
 457 Supplementary Materials S12.

458 **3.5 Effects of RT on Muscle Function**

459 A meta-analysis of 19 studies evaluated the effects of RT on GS, revealing a
 460 significant improvement ($ES = 0.55$, 95% CI [0.34, 0.76], $p < 0.01$). Similarly,
 461 21 studies assessed RT's impact on overall MS, demonstrating a robust positive
 462 effect ($ES = 0.71$, 95% CI [0.50, 0.71], $p < 0.01$). Additionally, 2 studies
 463 examined RT's influence on MQ, showing a significant enhancement ($ES = 1.25$,
 464 95% CI [0.08, 2.42], $p < 0.05$) (Figure 2). In addition, sensitivity analysis results
 465 showed that the pooled results were stable, see Supplementary Materials S13.

466 **3.6 Effects of RT on Physical Performance**

467 The pooled analysis of 16 studies evaluated the effects of RT on WA, a key
 468 indicator of physical performance. The results demonstrated a significant
 469 improvement in WA following RT ($ES = 0.41$, 95% CI [0.11, 0.72], $p < 0.05$)
 470 (Figure 2). In addition, sensitivity analysis results showed that the pooled results
 471 were stable, see Supplementary Materials S14.

472

473 **INSERT Figure 2**

474 **3.7 RT dose-response effects**

475 **A three-level meta-analysis integrating data from multiple randomized trials**

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

476 demonstrated that RT significantly improved MS
 477 ($ES = 0.71$, 95% CI [0.50, 0.71], $p < 0.01$). Sensitivity analyses confirmed the
 478 robustness of these pooled results (Supplementary Material S13). To further
 479 explore non-linear volume patterns, restricted cubic spline (RCS)
 480 meta-regression was conducted on aggregated study-level data. For MS, the
 481 curve suggested an apparent peak at approximately 1,043 minutes of total
 482 training volume, though this trend did not reach statistical significance
 483 ($LRT \chi^2 = 0.33$, $p = 0.56$); **thus, should be considered a potential inflection**
 484 **point rather than a definitive physiological threshold, consistent with**
 485 **the exploratory nature of the trend.** For WA, a significant non-linear
 486 relationship was observed, indicating that an optimal cumulative RT volume of
 487 roughly 2,716 minutes could yield maximal functional improvement (LRT
 488 $\chi^2 = 6.18$, $p < 0.05$), see Figure 3. Dose-response modeling was limited to MS
 489 and WA because these outcomes provided sufficient data points for calculating
 490 cumulative training time, other endpoints (e.g., LM, FM, MQ) showed positive
 491 RT effects but lacked complete FITT-VP parameter reporting, preventing
 492 reliable non-linear estimation.

493

494 **INSERT Figure 3**

495 **3.8 Assessment of Publication Bias and Certainty of Evidence**

496 Publication bias was assessed using funnel plot inspection and Egger's
 497 regression test for all primary and secondary outcomes. Among the indicators,
 498 only GS ($p = 0.0406$), MS ($p < 0.01$), and WA ($p = 0.011$) demonstrated potential
 499 small-study effects, while the remaining outcomes showed p -values > 0.05 ,
 500 suggesting minimal risk of bias overall (see Supplementary Material S27).
 501 Minor asymmetry observed in the body composition analyses may reflect small-

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

502 study effects rather than true publication bias, yet this possibility cannot be
503 excluded. The presence of potential bias was considered in the GRADE certainty
504 appraisal, with body composition outcomes downgraded by one level for “risk of
505 publication bias.”

506

507 The GRADE assessment indicated that, for all outcomes, the risks of bias,
508 inconsistency and indirectness were judged as not serious, and no additional
509 concerns were identified. However, imprecision was rated as serious for several
510 key functional outcomes, including GS, overall MS, MQ, SMI, and WA, resulting
511 in low to very low certainty of evidence for these domains. In contrast, outcomes
512 related to body composition including LM, SMM, BW, BFM, BMI, BFP and total
513 FM showed no serious limitations across any domain, and were therefore graded
514 as having moderate certainty of evidence. Overall, these findings suggest that
515 the evidence is more robust for body composition changes, whereas conclusions
516 regarding improvements in muscle function and physical performance should be
517 interpreted with greater caution due to imprecision and lower certainty.

518

519 Final summary ratings (“high,” “moderate,” “low,” or “very low”) and the
520 justification for any downgrading are presented in Supplementary Material S26.
521 This systematic grading ensures transparent evaluation of both the
522 methodological rigor and the reliability of synthesized evidence.

523 **3.9 Assessment of methodological quality and level of evidence**

524 The methodological quality and risk of bias of the 25 included studies were
525 assessed using the TESTEX scale and Cochrane RoB 2.0 tool, with overall
526 evidence-level assessment results are presented in Supplementary Material S23,
527 S24. The studies exhibited robust methodological performance in key domains,
528 including clearly defined eligibility criteria (100% fulfillment) and comparable

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

529 baseline characteristics between groups (100% fulfillment). Randomization
 530 processes were consistently well-executed, with all studies rated as low risk in
 531 the RoB 2.0 randomization domain and TESTEX scores ranging from 5 to 10
 532 (median = 7), indicating high reliability of the primary outcome data. Despite
 533 these strengths, several limitations were noted. Allocation concealment was
 534 universally absent (0% fulfillment in TESTEX), and assessor blinding was
 535 implemented in only 32% of studies. Furthermore, outcome measures were
 536 assessed in $\geq 85\%$ of participants in just 44% of studies, with some studies
 537 showing elevated risks of missing outcome data. These deficiencies contributed
 538 to potential implementation bias and led to unclear overall risk-of-bias ratings
 539 in three studies [67-69] due to uncertainties in deviations from intended
 540 interventions, as per RoB 2.0. Nevertheless, 22 studies were classified as having
 541 low overall risk of bias.

542 4 Discussion

543 This systematic review and meta-analysis comprehensively evaluated the effects
 544 of RT on body composition, muscle function, and physical performance in older
 545 adults with sarcopenia. **The findings demonstrate that RT elicits**
 546 **significant improvements in MS, GS, MM, SMI, and WA,**
 547 **while producing a small but statistically significant reduction in FM.** A
 548 large pooled effect was also observed for MQ (ES = 1.25). However, this
 549 estimate was derived from only two studies and should therefore be interpreted
 550 cautiously. **Although the reduction in FM was statistically significant**
 551 **(ES = -0.17), the magnitude of the effect is small and may not translate**
 552 **into clinically meaningful body fat changes. This modest response likely**
 553 **reflects that most RT interventions were not primarily designed to**
 554 **produce fat-loss, but rather to enhance MS and MQ.** Future research with

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

555 larger samples and standardized MQ measurement methods is warranted to
556 validate this result.

557

558 A nonlinear dose-response relationship was identified, suggesting that optimal
559 total training volumes approximately 2,716 minutes for WA may maximize
560 functional gains. Although a nonlinear trend was observed for MS, the likelihood
561 ratio test did not reach statistical significance ($p = 0.56$). Consequently, the
562 identified 1,043 minute threshold should be considered an approximate
563 indicator of total RT exposure rather than a definitive prescription. These
564 findings reinforce RT as a clinically robust, evidence-based modality for
565 sarcopenia management and extend beyond general efficacy by providing
566 actionable optimization parameters.

567

568 Unlike previous reviews that described FITT-VP components qualitatively, the
569 present study quantifies dose-response thresholds, thereby operationalizing this
570 framework for practical implementation. The recent meta-analysis provided
571 valuable evidence on exercise interventions in older adults with sarcopenic
572 obesity [70]. In contrast, our review integrates a broader sarcopenia spectrum
573 including both sarcopenic and sarcopenic-obese populations, and employs
574 quantitative meta-regression within the FITT-VP framework [32]. Together, these
575 works offer complementary perspectives [34]. Kim et al. (2023) [70] established
576 the general efficacy of RT, whereas the present study identifies dose-specific
577 prescriptions and thresholds applicable to diverse sarcopenic phenotypes. The
578 identified cumulative training volumes (~1,043 min for MS, ~2,716 min for WA)
579 not only complement prior conceptual recommendations [71] but also transform
580 descriptive associations into precise, evidence-based guidance for individualized
581 RT prescription. By integrating the FITT-VP framework, this quantitative
582 approach addresses key limitations of previous meta-analyses such as protocol

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

583 heterogeneity and provides a methodological foundation for developing
584 personalized, clinically translatable interventions to improve muscle function,
585 mobility, and overall quality of life in aging populations [60].

586

587 **4.1 Effects of RT on body composition**

588 One of the core findings of this systematic review and meta-analysis is that RT
589 serves as an effective intervention to significantly improve body composition in
590 older adults living with sarcopenia. Our findings indicate that RT not only
591 effectively reduces FM but also improves BMI and total BW to some extent. This
592 result re-affirms the critical role of RT in combating the pathophysiological
593 processes of sarcopenia, specifically by optimizing body composition to slow or
594 even reverse the vicious cycle of muscle loss and functional decline.

595

596 Our findings are in strong agreement with the meta-analysis by Peterson et al.
597 (2011) [16], which reported significant lean body mass gains in older adults after
598 structured RT programs, and with Strasser & Schobersberger (2011) [72], who
599 documented **statistically significant but small reductions in FM** following
600 resistance-based interventions in the elderly. Similar results were observed in
601 the Cochrane review by Liu & Latham (2009) [73], though those authors did not
602 identify optimal training volumes nor systematically account for moderator
603 effects. In contrast, our study extends the literature by integrating the FITT-VP
604 framework into a meta-regression model, **thereby quantifying a nonlinear dose-**
605 **response relationship and identifying optimal total training exposure (~1,043**
606 **minutes) for maximizing MS outcomes.** While RT was associated with improved
607 LM and FM indices, the analysis did not establish specific volume thresholds for
608 these body composition metrics due to heterogeneous reporting across studies.
609 This level of protocol specificity is largely absent in earlier research,

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

610 representing a methodological and practical advance.

611

612 Theoretically, our findings refine current exercise prescription models by linking
613 precise RT parameters with body composition outcomes in sarcopenic
614 populations, moving beyond generalized recommendations. Practically, they
615 provide clinicians with evidence-based, quantifiable guidelines for tailoring
616 exercise interventions to maximize muscle gain and fat loss in older adults,
617 ultimately enhancing functional independence and reducing healthcare burden.

618 **4.2 Effects of RT on Muscle Quantity Index**

619 A primary and crucial finding of this systematic review and meta-analysis is the
620 significant improvement in muscle mass index among older adults living with
621 sarcopenia following RT interventions. Our analysis confirms that RT serves as
622 a potent stimulus for muscle hypertrophy, directly counteracting the defining
623 pathological feature of sarcopenia, the age-related loss of MM.

624

625 Our results are consistent with the meta-analysis by Peterson et al. (2011) ^[74],
626 which demonstrated significant gains in LM and appendicular SMM in older
627 adults following RT, and with Liao et al. (2017) ^[25], who found that protein
628 supplementation combined with RT further augments muscle mass indices in
629 aging populations. Similarly, Shen et al. (2023) ^[75] reported RT as one of the
630 most effective exercise modalities for increasing MQ in sarcopenia. However,
631 unlike these studies, our analysis integrated the FITT-VP framework and meta-
632 regression modeling to identify an optimal training volume threshold for Muscle
633 Quantity Index improvements, highlighting a non-linear dose-response pattern
634 that was not addressed in previous research.

635

636 Theoretically, these findings refine interventional models for sarcopenia by

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

637 linking quantifiable training parameters to measurable hypertrophic outcomes.
638 Practically, they offer clinicians and exercise professionals precise, evidence-
639 based RT prescriptions to maximize MQ and mitigate disability risks in the
640 elderly population.

641 **4.3 Effects of RT on Muscle Function**

642 Beyond the foundational improvements in MM, this meta-analysis provides
643 robust evidence that RT leads to substantial enhancements in muscle function,
644 specifically in MS and WA, in older adults living with sarcopenia.

645

646 In sarcopenic older adults, RT enhances muscle function by inducing
647 multifaceted adaptations at neural, muscular, and tendinous levels.
648 Neurologically, RT increases motor unit recruitment, discharge rates, and
649 intermuscular coordination, thereby improving the efficiency of voluntary force
650 production^[76]. At the muscular level, hypertrophy of fast-twitch fibers improves
651 peak force and power output, while enhanced excitation contraction coupling
652 boosts rate of force development^[77]. RT also increases tendon stiffness and
653 musculotendinous unit compliance, facilitating more effective force
654 transmission to the skeleton, which is crucial for functional movements such as
655 gait and chair-rise in elderly individuals^[78]. Moreover, improved neuromuscular
656 junction integrity and mitochondrial efficiency, as reported in aging muscle,
657 further contribute to sustained contractile performance^[79].

658

659 Our results align with the findings of Straight et al. (2016)^[80], who observed
660 significant gains in GS and chair-rise performance in older adults after 12 weeks
661 of progressive RT, and the meta-analysis by Liu & Latham (2009)^[73], which
662 showed robust improvements in strength-related functional outcomes across
663 various elderly cohorts. Similarly, Tieland et al. (2012)^[81] confirmed that

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

664 combined RT and adequate protein intake amplify muscle functionality by
665 synergistically improving muscle power and coordination. However, our study
666 expands these findings by identifying dose-dependent, nonlinear improvements
667 in functional measures, such as WA, and by determining optimal training
668 volumes (e.g., ~2,716 min, equivalent to approximately 45 hours in total, which
669 could be operationalized as three 60-minute sessions per week over 15 weeks)
670 for WA using the FITT-VP framework, an element largely absent from prior work.

671

672 Theoretically, these results integrate neural and muscular adaptation
673 mechanisms with quantitative exercise prescription, bridging a key gap between
674 mechanistic understanding and clinical application. Practically, they offer
675 practitioners a precise blueprint for designing RT interventions that maximize
676 functional recovery, preserve independence, and reduce fall risk in sarcopenic
677 elderly populations.

678 **4.4 Effects of RT on Physical Performance**

679 In sarcopenic older adults, RT enhances physical performance through
680 synergistic improvements in MS, neuromotor coordination, and metabolic
681 capacity. Increased muscle cross-sectional area and contractile protein content
682 improve absolute force production, enabling more efficient execution of daily
683 tasks [74]. Neural adaptations, including improved motor unit recruitment
684 patterns, reduced antagonist co-activation, and enhanced synchronization,
685 contribute to faster and more controlled movements [82]. At the metabolic level,
686 RT promotes mitochondrial biogenesis and capillary density in active muscle
687 fibers, delaying fatigue and improving endurance-related functional tasks such
688 as walking and stair climbing [83]. These effects directly translate into better
689 scores in standardized functional tests, including GS, chair-rise time, and the
690 short physical performance battery (SPPB).

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

691

692 Our findings are in line with the network meta-analysis by Shen et al. (2023) [75],
693 which ranked RT among the most effective exercise modalities for enhancing
694 physical performance in sarcopenic elderly, particularly in improving GS and
695 SPPB scores. Similarly, Liu & Latham (2009) [84] confirmed that progressive RT
696 significantly improves performance-based measures across older adult
697 populations. Beaudart et al. (2017) [85] observed that gains in physical
698 performance were mediated not only by MQ but also by improved MQ and
699 neuromuscular efficiency, supporting our mechanistic model. However, unlike
700 most previous studies, our analysis incorporated a dose-response perspective
701 using the FITT-VP framework, revealing non-linear optimal thresholds of total
702 RT time for maximal functional gains adding a practical prescription nuance
703 largely missing from earlier literature.

704

705 Mechanistically, the beneficial effects of RT on sarcopenia-related outcomes can
706 be explained by several complementary biological and physiological pathways.
707 RT activates the mechanistic target of rapamycin (mTOR) signaling cascade,
708 which promotes muscle protein synthesis and hypertrophy, especially in type II
709 fibers that are highly susceptible to age-related atrophy [86,87]. In parallel, RT
710 suppresses myostatin, a key negative regulator of muscle growth [88] while
711 increasing IGF-1 expression and stimulating satellite cell proliferation, all of
712 which enhance regenerative capacity and tissue repair [89,90]. Moreover,
713 repetitive RT elicits neuromuscular adaptations that improve motor unit
714 recruitment, synchronization, and junctional integrity, ultimately enhancing
715 strength and functional performance [91]. This integration of anabolic and neural
716 mechanisms may provide the biological basis for the dose-response thresholds
717 observed in our meta-analysis, linking exercise volume and intensity to
718 meaningful functional improvements [92].

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

719

720 Theoretically, these results integrate morphological, neural, and metabolic
721 adaptations to explain physical performance enhancement in sarcopenic older
722 adults. Practically, they provide precise and evidence-based RT protocols that
723 can be implemented by clinicians and physical therapists to improve mobility,
724 reduce fall risk, and promote independence in aging populations.

725 **4.5 RT dose-response effects**

726 In sarcopenic older adults, the dose-response relationship between RT and
727 improvements in MS, MQ, and physical performance appears to follow a
728 non-linear, inverted-U pattern. This reflects the interplay between
729 training-induced anabolic signaling such as mTORC1 activation, satellite-cell
730 proliferation, and enhanced motor-unit recruitment, and individual recovery
731 capacity [93,94]. Moderate total training volumes (e.g., frequency \times sets \times
732 repetitions \times load) promote hypertrophy and neuromuscular adaptation,
733 whereas volumes exceeding the adaptive threshold may impair recovery, elevate
734 inflammation and cortisol, and attenuate anabolic pathways [34].

735

736 Exploratory aggregate-level meta-regression identified apparent inflection
737 points, with cumulative RT volumes of approximately 1,043 minutes for
738 MS and 2,716 minutes for WA being associated with the greatest observed
739 improvements across included trials. These estimates should be regarded
740 as descriptive indicators rather than strict clinical cut-offs, as they are
741 influenced by heterogeneity in program intensity, volume, progression, and
742 participant characteristics. Large-scale, standardized RCTs are needed to
743 confirm these ranges and refine clinically applicable thresholds [60].

744

745 Consistent with the hormesis model, training benefits rise with dose until an

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

746 optimal threshold is reached, then plateau or decline as fatigue accumulates [95].
 747 Progressive overload implemented by gradual increases (about 2–10 %) in load
 748 or volume when prescribed repetitions are comfortably achieved is essential for
 749 sustaining adaptation within the FITT-VP paradigm [32]. Individualizing
 750 progression models (linear, undulating, or autoregulatory) to match functional
 751 goals and recovery capacity can maximize adaptation, minimize fatigue and
 752 injury risk, and enhance long-term compliance in sarcopenic older adults [96].

753 **4.6 Publication bias and interpretation**

754 Egger's test revealed evidence of potential publication bias for some primary outcomes (GS, MS, and WA). Although trim-and-fill corrections indicated that the
 755 overall effect sizes remained in the same direction, the magnitude of
 756 improvement may have been slightly overestimated due to small-study effects
 757 and selective reporting of positive results. Although publication bias was
 758 detected for a subset of outcomes (GS, MS, WA), the direction of effects
 759 remained consistent after trim-and-fill correction. This suggests that the overall
 760 pattern of benefits is robust, yet the absolute effect sizes should be interpreted
 761 with caution. Therefore, these findings should be interpreted with appropriate
 762 caution when translating to clinical practice, and future large, pre-registered,
 763 multi-center trials are warranted to confirm these dose-response relationships
 764 with reduced risk of publication bias. Given the exploratory nature of
 765 spline-based meta-regression, the observed intensity-response pattern should
 766 be considered hypothesis-generating rather than confirmatory.

768 **4.7 Limitations and perspectives**

769 Although this meta-analysis provides robust evidence that RT improves MS and
 770 WA in sarcopenic older adults, several methodological limitations warrant

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

771 caution. The dose-response estimates (~1,043 min for MS; ~2,716 min for WA)
772 were derived from aggregated study-level training durations, which may
773 oversimplify the complex interplay among intensity, volume, frequency, and
774 progression; thus, these values should be regarded as preliminary quantitative
775 references rather than definitive clinical prescriptions. Substantial
776 heterogeneity in RT protocols, participant characteristics, intervention lengths,
777 and assessment methods may have influenced pooled estimates, while variability
778 in exercise modalities and divergent diagnostic criteria for sarcopenia further
779 limited subgroup analyses and introduced residual heterogeneity.

780

781 Reporting on adherence and adverse event monitoring was inconsistent across
782 trials, preventing formal meta-analysis of these outcomes and restricting
783 comprehensive evaluation of RT safety. Incomplete allocation concealment and
784 limited blinding in several studies may have introduced bias, and inclusion of
785 trials involving sarcopenic obesity, potentially characterized by distinct
786 metabolic and inflammatory responses, adds to this complexity. Nevertheless,
787 subgroup analyses indicated that the moderating effect of sarcopenic obesity
788 was not significant across any outcome, although this population may differ from
789 individuals with non-obese sarcopenia in important ways and therefore warrants
790 greater attention in future research. Egger's tests identified potential
791 publication bias for GS ($p = 0.0406$), MS ($p < 0.01$), and WA ($p = 0.011$). Visual
792 inspection of funnel plots (Supplementary Material S27) revealed slight
793 asymmetry, suggesting possible small-study effects or selective reporting of
794 positive outcomes. Trim-and-fill procedures indicated that corrected effect sizes
795 remained in the same direction but were slightly reduced in magnitude, implying
796 modest overestimation of benefits. Although statistical tests suggested limited
797 overall publication bias for other outcomes, the small number of available RCTs
798 may obscure asymmetry patterns, meaning publication bias cannot be

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

799 completely ruled out. Although the three-level meta-analytic model captures
 800 complex data structures, the limited number of studies within each intensity
 801 category may restrict the precision of spline estimates. Therefore, our
 802 conclusions on dose-response trends should be viewed as preliminary. These
 803 considerations were factored into our GRADE appraisal, with specific outcomes
 804 downgraded for “risk of publication bias.”

805

806 Despite generally moderate-to-high methodological quality (TESTEX, RoB 2.0),
 807 these limitations underscore the need for adequately powered, standardized
 808 RCTs adopting uniform diagnostic criteria, transparent reporting of FITT-VP
 809 parameters, and systematic documentation of adherence, dropout reasons, and
 810 adverse events.

811

812 Future trials should prioritize pre-registered protocols, incorporate unpublished
 813 or ongoing studies where possible, and ensure consistent bias assessment to
 814 enhance robustness of pooled estimates, confirm dose-response relationships,
 815 and establish individualized, evidence-based RT prescriptions for sarcopenia
 816 management.

817 **4.8 Practical application**

818 Based on pooled evidence and established guidelines [32,97], optimal RT
 819 prescriptions for MS and WA in sarcopenic older adults can be defined as
 820 **moderate to high intensity (60–80% 1RM)**, performed 2–3 times per week,
 821 with 2–3 sets of 8–12 repetitions for each major muscle group over 8–12 weeks.
 822 These parameters yield approximately 1,000–1,043 total minutes for MS
 823 improvement and ~2,716 minutes for WA enhancement. Expressing cumulative
 824 RT volume in minutes standardizes diverse protocols, enabling integration
 825 across trials.

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

826

827 High adherence rates and the absence of serious adverse events support the
 828 feasibility and safety of such programs, particularly under supervised conditions
 829 and within the prescribed intensity range. However, incomplete reporting of
 830 adverse events, compliance monitoring, and dropout causes in several studies
 831 limits comprehensive risk-benefit assessment. Future research should adopt
 832 standardized reporting of load, sets, frequency, progression, adherence, reasons
 833 for withdrawal, and safety outcomes to refine clinical precision and strengthen
 834 the evidence base.

835

836 This evidence provides a practical, FITT-VP-based blueprint for tailoring RT
 837 programs to individual functional goals, thereby improving adherence,
 838 maximizing effectiveness, and enhancing long-term quality of life among aging
 839 populations.

840 5 Conclusions

841 This systematic review and meta-analysis confirms that RT is an effective
 842 intervention for older adults with sarcopenia. More importantly, it advances the
 843 field by moving beyond this general consensus to address the critical question
 844 of how to optimize RT for specific outcomes. **While previous consensus**
 845 **statements and clinical guidelines have outlined broad exercise**
 846 **recommendations, they seldom define quantitative thresholds for dose-**
 847 **response optimization. Our meta-regression fills this gap by establishing**
 848 **empirical dose criteria around 1,043 min for MS and 2,716 min for WA,**
 849 **derived through nonlinear modeling within the FITT-VP framework. This**
 850 **quantification extends existing conceptual guidelines such as Bae et al.**
 851 **[36] into a measurable, implementable prescription model.**

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

852

853 **Declarations**

854 **Funding:** Not applicable.

855 **Ethics approval:** Not applicable.

856 **Consent to participate:** Not applicable.

857

858

859

860

861

862

863

864 **References**

865

- 866 1. Pison G, Couppié E, Caporali A. The population of the world, 2022. *Population & Societies*. 2022;603(8):1-8.
- 867 2. Dupont J. Revised sarcopenia consensus: are we missing the preclinical stage? Online comment on. *Age And Ageing*. 2018;48(1):1-1.
- 868 3. Yeung SS, Reijntjes EM, Pham VK, et al. Sarcopenia and its association with falls and fractures in older adults: a systematic review and meta-analysis. *Journal of cachexia, sarcopenia and muscle*. 2019;10(3):485-500.
- 869 4. Benz E, Trajanoska K, Lahousse L, et al. Sarcopenia in COPD: a systematic review and meta-analysis. *European respiratory review*. 2019;28(154).
- 870 5. Fhon JRS, Silva ARF, Lima EFC, et al. Association between sarcopenia, falls, and cognitive impairment in older people: a systematic review with meta-analysis. *International journal of environmental research and public health*. 2023;20(5):4156.
- 871 6. Xu J, Wan CS, Ktoris K, Reijntjes EM, Maier AB. Sarcopenia is associated with mortality in adults: a systematic review and meta-analysis. *Gerontology*. 2022;68(4):361-376.
- 872 7. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. *Age and ageing*. 2019;48(1):16-31.
- 873 8. Yuan S, Larsson SC. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. *Metabolism*. 2023;144:155533.

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

886 9. von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and
887 numbers on prevalence and clinical impact. *Journal of cachexia, sarcopenia*
888 and *muscle*. 2010;1(2):129-133.

889 10. Rolland Y, Dray C, Vellas B, Barreto PDS. Current and investigational
890 medications for the treatment of sarcopenia. *Metabolism*. 2023;149:155597.

891 11. Kwak JY, Kwon K-S. Pharmacological interventions for treatment of sarcopenia:
892 current status of drug development for sarcopenia. *Annals of geriatric*
893 *medicine and research*. 2019;23(3):98.

894 12. Chodzko-Zajko WJ, Proctor DN, Singh MAF, et al. Exercise and physical activity
895 for older adults. *Medicine & science in sports & exercise*. 2009;41(7):1510-
896 1530.

897 13. Izquierdo M, Merchant RA, Morley JE, et al. International exercise
898 recommendations in older adults (ICFSR): expert consensus guidelines. *The*
899 *journal of nutrition, health & aging*. 2021;25(7):824-853.

900 14. Fragala MS, Cadore EL, Dorgo S, et al. Resistance training for older adults:
901 position statement from the national strength and conditioning association.
902 *The Journal of Strength & Conditioning Research*. 2019;33(8).

903 15. Kraemer WJ, Ratamess NA, French DN. Resistance training for health and
904 performance. *Current sports medicine reports*. 2002;1(3):165-171.

905 16. Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body
906 mass in aging adults: a meta-analysis. *Medicine and science in sports and*
907 *exercise*. 2011;43(2):249.

908 17. Jiang G, Wu X. Effects of resistance training combined with balance training
909 on physical function among older adults: A protocol for a randomised
910 controlled trial. *BMJ open*. 2022;12(10):e062486.

911 18. Lu L, Mao L, Feng Y, Ainsworth BE, Liu Y, Chen N. Effects of different exercise
912 training modes on muscle strength and physical performance in older people
913 with sarcopenia: a systematic review and meta-analysis. *BMC geriatrics*.
914 2021;21(1):708.

915 19. Shen Y, Shi Q, Nong K, et al. Exercise for sarcopenia in older people: a
916 systematic review and network meta-analysis. *Journal of cachexia, sarcopenia*
917 and *muscle*. 2023;14(3):1199-1211.

918 20. Valenzuela PL, Saco-Ledo G, Morales JS, et al. Effects of physical exercise on
919 physical function in older adults in residential care: a systematic review and
920 network meta-analysis of randomised controlled trials. *The lancet Healthy*
921 *longevity*. 2023;4(6):e247-e256.

922 21. Talar K, Hernández-Belmonte A, Vetrovsky T, Steffl M, Kałamacka E, Courel-
923 Ibáñez J. Benefits of resistance training in early and late stages of frailty and
924 sarcopenia: a systematic review and meta-analysis of randomized controlled
925 studies. *Journal of clinical medicine*. 2021;10(8):1630.

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

926 22. Pavasini R, Serenelli M, Celis-Morales CA, et al. Grip strength predicts cardiac
927 adverse events in patients with cardiac disorders: an individual patient pooled
928 meta-analysis. *Heart*. 2019;105(11):834-841.

929 23. Celis-Morales CA, Welsh P, Lyall DM, et al. Associations of grip strength with
930 cardiovascular, respiratory, and cancer outcomes and all cause mortality:
931 prospective cohort study of half a million UK Biobank participants. *bmj*.
932 2018;361.

933 24. Beckwée D, Delaere A, Aelbrecht S, et al. Exercise interventions for the
934 prevention and treatment of sarcopenia. A systematic umbrella review. *The
935 Journal of nutrition, health and aging*. 2019;23(6):494-502.

936 25. Liao C-D, Tsauo J-Y, Wu Y-T, et al. Effects of protein supplementation combined
937 with resistance exercise on body composition and physical function in older
938 adults: a systematic review and meta-analysis. *The American journal of clinical
939 nutrition*. 2017;106(4):1078-1091.

940 26. Reginster J-Y, Beaudart C, Al-Daghri N, et al. Update on the ESCEO
941 recommendation for the conduct of clinical trials for drugs aiming at the
942 treatment of sarcopenia in older adults. *Aging clinical and experimental
943 research*. 2021;33(1):3-17.

944 27. Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjær M. Role of the nervous
945 system in sarcopenia and muscle atrophy with aging: strength training as a
946 countermeasure. *Scandinavian journal of medicine & science in sports*.
947 2010;20(1):49-64.

948 28. Sherrington C, Fairhall NJ, Wallbank GK, et al. Exercise for preventing falls in
949 older people living in the community. *Cochrane database of systematic
950 reviews*. 2019(1).

951 29. Steib S, Schoene D, Pfeifer K. Dose-response relationship of resistance training
952 in older adults: a meta-analysis. *Medicine & Science in Sports & Exercise*.
953 2010;42(5):902-914.

954 30. Raymond MJ, Bramley-Tzerefos RE, Jeffs KJ, Winter A, Holland AE. Systematic
955 review of high-intensity progressive resistance strength training of the lower
956 limb compared with other intensities of strength training in older adults.
957 *Archives of physical medicine and rehabilitation*. 2013;94(8):1458-1472.

958 31. Tsekoura M, Billis E, Tsepis E, et al. The effects of group and home-based
959 exercise programs in elderly with sarcopenia: a randomized controlled trial.
960 *Journal of clinical medicine*. 2018;7(12):480.

961 32. Riebe D, Ehrman JK, Liguori G, Magal M. *ACSM's guidelines for exercise testing
962 and prescription*. American College of Sports Medicine; 2018.

963 33. Hartman ME, Hernandez J. The assessment of affective responses within
964 exercise prescription: a narrative review. *International Journal of Sports
965 Medicine*. 2023;44(08):558-567.

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

966 34. Lopez P, Radaelli R, Taaffe DR, et al. Resistance training load effects on muscle
967 hypertrophy and strength gain: systematic review and network meta-analysis.
968 *Medicine and science in sports and exercise*. 2020;53(6):1206.

969 35. Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between
970 weekly resistance training volume and increases in muscle mass: A systematic
971 review and meta-analysis. *Journal of sports sciences*. 2017;35(11):1073-1082.

972 36. Bae S, Kong S, Kim C-H, et al. Position statement: Evidence-Based Exercise
973 Guidelines for Sarcopenia in Older Adults: Insights from the Korean Working
974 Group on Sarcopenia. *Annals of Geriatric Medicine and Research*.
975 2025;29(3):278.

976 37. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an
977 updated guideline for reporting systematic reviews. *Bmj*. 2021;372:n71.

978 38. Quan Y, Tytko T, Hui B. Utilizing ASReview in screening primary studies for
979 meta-research in SLA: A step-by-step tutorial. *Research Methods in Applied
980 Linguistics*. 2024;3(1):100101.

981 39. Van De Schoot R, De Bruin J, Schram R, et al. An open source machine learning
982 framework for efficient and transparent systematic reviews. *Nature machine
983 intelligence*. 2021;3(2):125-133.

984 40. Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic
985 reviews: a new edition of the Cochrane Handbook for Systematic Reviews of
986 Interventions. *The Cochrane database of systematic reviews*.
987 2019;2019(10):ED000142.

988 41. Chen L-K, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia:
989 2019 consensus update on sarcopenia diagnosis and treatment. *Journal of the
990 American Medical Directors Association*. 2020;21(3):300-307. e302.

991 42. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale,
992 study description, conference recommendations, and final estimates. *Journals
993 of Gerontology Series A: Biomedical Sciences and Medical Sciences*.
994 2014;69(5):547-558.

995 43. Donini LM, Busetto L, Bischoff SC, et al. Definition and diagnostic criteria for
996 sarcopenic obesity: ESPEN and EASO consensus statement. *Obesity facts*.
997 2022;15(3):321-335.

998 44. Veronese N, Ragusa FS, Pegoretti F, et al. Sarcopenic obesity and health
999 outcomes: An umbrella review of systematic reviews with meta-analysis.
1000 *Journal of Cachexia, Sarcopenia and Muscle*. 2024;15(4):1264-1274.

1001 45. Aydin O, Yassikaya MY. Validity and reliability analysis of the PlotDigitizer
1002 software program for data extraction from single-case graphs. *Perspectives
1003 on Behavior Science*. 2022;45(1):239-257.

1004 46. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an
1005 updated guideline for reporting systematic reviews. *bmj*. 2021;372.

1006 47. Hedges LV, Olkin I. *Statistical methods for meta-analysis*. Academic press;
1007 2014.

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

1008 48. Cohen J. *Statistical power analysis for the behavioral sciences*. routledge; 2013.

1009 49. Smart NA, Waldron M, Ismail H, et al. Validation of a new tool for the
1010 assessment of study quality and reporting in exercise training studies: TESTEX.
1011 *JBI Evidence Implementation*. 2015;13(1):9-18.

1012 50. Sterne JA, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of
1013 bias in randomised trials. *bmj*. 2019;366.

1014 51. Tan Z, Castagna C, Krustrup P, et al. Exploring the Use of 5 Different Yo-Yo
1015 Tests in Evaluating V O 2 max' V O _2\max and Fitness Profile in Team Sports:
1016 A Systematic Review and Meta-Analysis. *Scandinavian Journal of Medicine &*
1017 *Science in Sports*. 2025;35(5):e70054.

1018 52. Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schünemann HJ. What
1019 is “quality of evidence” and why is it important to clinicians? *Bmj*.
1020 2008;336(7651):995-998.

1021 53. Higgins JP, Green S. Cochrane handbook for systematic reviews of
1022 interventions. 2008.

1023 54. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Controlled clinical trials*.
1024 1986;7(3):177-188.

1025 55. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
1026 meta-analyses. *bmj*. 2003;327(7414):557-560.

1027 56. Grgic J, Schoenfeld BJ, Orazem J, Sabol F. Effects of resistance training
1028 performed to repetition failure or non-failure on muscular strength and
1029 hypertrophy: A systematic review and meta-analysis. *Journal of sport and*
1030 *health science*. 2022;11(2):202-211.

1031 57. McElroy T, Sutcliffe A. An iterated parametric approach to nonstationary signal
1032 extraction. *Computational statistics & data analysis*. 2006;50(9):2206-2231.

1033 58. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by
1034 a simple, graphical test. *bmj*. 1997;315(7109):629-634.

1035 59. Martí-Carvajal A. Cochrane's contribution to global health: three decades of
1036 progress in sickle cell disease research. *Frontiers in Hematology*.
1037 2025;4:1535100.

1038 60. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. *Introduction to meta-*
1039 *analysis*. John wiley & sons; 2021.

1040 61. Carpinelli RN, Otto RM, Winnett RA. A critical analysis of the ACSM position
1041 stand on resistance training: insufficient evidence to support recommended
1042 training protocols. *Journal of Exercise Physiology Online*. 2004;7(3).

1043 62. Desquillet L, Mariotti F. Dose-response analyses using restricted cubic spline
1044 functions in public health research. *Statistics in medicine*. 2010;29(9):1037-
1045 1057.

1046 63. Muggeo VM. Segmented: an R package to fit regression models with broken-
1047 line relationships. *R news*. 2008;8(1):20-25.

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

1048 64. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing
 1049 and adjusting for publication bias in meta-analysis. *Biometrics*.
 1050 2000;56(2):455-463.

1051 65. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-
 1052 analysis funnel plots help distinguish publication bias from other causes of
 1053 asymmetry. *Journal of clinical epidemiology*. 2008;61(10):991-996.

1054 66. Tipton E. Small sample adjustments for robust variance estimation with meta-
 1055 regression. *Psychological methods*. 2015;20(3):375.

1056 67. Lee Y-H, Lee P-H, Lin L-F, Liao C-D, Liou T-H, Huang S-W. Effects of progressive
 1057 elastic band resistance exercise for aged osteosarcopenic adiposity women.
 1058 *Experimental gerontology*. 2021;147:111272.

1059 68. Chiu S-C, Yang R-S, Yang R-J, Chang S-F. Effects of resistance training on body
 1060 composition and functional capacity among sarcopenic obese residents in
 1061 long-term care facilities: a preliminary study. *BMC geriatrics*. 2018;18(1):21.

1062 69. i Iranzo MÀC, Balasch-Bernat M, Tortosa-Chuliá MÁ, Balasch-Parisi S. Effects of
 1063 resistance training of peripheral muscles versus respiratory muscles in older
 1064 adults with sarcopenia who are institutionalized: a randomized controlled trial.
 1065 *Journal of aging and physical activity*. 2018;26(4):637-646.

1066 70. Kim KJ, Son S, Kim KJ, Kim SG, Kim NH. Weight-adjusted waist as an integrated
 1067 index for fat, muscle and bone health in adults. *Journal of cachexia, sarcopenia
 1068 and muscle*. 2023;14(5):2196-2203.

1069 71. Abraham MI, Aprahamian T, Won CW, Theou O. International Exercise
 1070 Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. 2022.

1071 72. Strasser B, Schobersberger W. Evidence for resistance training as a treatment
 1072 therapy in obesity. *Journal of obesity*. 2011;2011(1):482564.

1073 73. Liu Cj, Latham NK. Progressive resistance strength training for improving
 1074 physical function in older adults. *Cochrane database of systematic reviews*.
 1075 2009(3).

1076 74. Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body
 1077 mass in aging adults: a meta-analysis. *Med Sci Sports Exerc*. 2011;43(2):249-
 1078 258.

1079 75. Shen Y, Shi Q, Nong K, et al. Exercise for sarcopenia in older people: A
 1080 systematic review and network meta-analysis. *J Cachexia Sarcopenia Muscle*.
 1081 2023;14(3):1199-1211.

1082 76. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P.
 1083 Increased rate of force development and neural drive of human skeletal
 1084 muscle following resistance training. *Journal of applied physiology*.
 1085 2002;93(4):1318-1326.

1086 77. Delmonico MJ, Kostek MC, Doldo NA, et al. Effects of moderate-velocity
 1087 strength training on peak muscle power and movement velocity: do women
 1088 respond differently than men? *Journal of Applied Physiology*. 2005;99(5):1712-
 1089 1718.

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

1090 78. Reeves ND, Narici MV, Maganaris CN. Strength training alters the viscoelastic
1091 properties of tendons in elderly humans. *Muscle & nerve: Official Journal of*
1092 *the American Association of Electrodiagnostic Medicine*. 2003;28(1):74-81.

1093 79. Deschenes MR. Effects of aging on muscle fibre type and size. *Sports medicine*.
1094 2004;34(12):809-824.

1095 80. Straight CR, Lindheimer JB, Brady AO, Dishman RK, Evans EM. Effects of
1096 Resistance Training on Lower-Extremity Muscle Power in Middle-Aged and
1097 Older Adults: A Systematic Review and Meta-Analysis of Randomized
1098 Controlled Trials. *Sports Med*. 2016;46(3):353-364.

1099 81. Tieland M, Dirks ML, van der Zwaluw N, et al. Protein supplementation
1100 increases muscle mass gain during prolonged resistance-type exercise
1101 training in frail elderly people: a randomized, double-blind, placebo-controlled
1102 trial. *J Am Med Dir Assoc*. 2012;13(8):713-719.

1103 82. Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M. Role of the nervous
1104 system in sarcopenia and muscle atrophy with aging: strength training as a
1105 countermeasure. *Scand J Med Sci Sports*. 2010;20(1):49-64.

1106 83. Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise
1107 training. *Exerc Sport Sci Rev*. 2014;42(2):53-61.

1108 84. Liu CJ, Latham NK. Progressive resistance strength training for improving
1109 physical function in older adults. *Cochrane Database Syst Rev*.
1110 2009;2009(3):Cd002759.

1111 85. Beaudart C, Dawson A, Shaw SC, et al. Nutrition and physical activity in the
1112 prevention and treatment of sarcopenia: systematic review. *Osteoporos Int*.
1113 2017;28(6):1817-1833.

1114 86. Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator
1115 of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo.
1116 *Nature cell biology*. 2001;3(11):1014-1019.

1117 87. Fry CS, Glynn EL, Drummond MJ, et al. Blood flow restriction exercise
1118 stimulates mTORC1 signaling and muscle protein synthesis in older men.
1119 *Journal of applied physiology*. 2010;108(5):1199-1209.

1120 88. Hulmi JJ, Ahtiainen JP, Kaasalainen T, et al. Postexercise myostatin and activin
1121 IIb mRNA levels: effects of strength training. *Medicine & Science in Sports &*
1122 *Exercise*. 2007;39(2):289-297.

1123 89. Bamman MM, Shipp JR, Jiang J, et al. Mechanical load increases muscle IGF-I
1124 and androgen receptor mRNA concentrations in humans. *American journal of*
1125 *physiology-endocrinology and metabolism*. 2001;280(3):E383-E390.

1126 90. Snijders T, Nederveen JP, McKay BR, et al. Satellite cells in human skeletal
1127 muscle plasticity. *Frontiers in physiology*. 2015;6:283.

1128 91. Hakkinen K, Kallinen M, Izquierdo M, et al. Changes in agonist-antagonist EMG,
1129 muscle CSA, and force during strength training in middle-aged and older
1130 people. *Journal of applied physiology*. 1998;84(4):1341-1349.

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

1131 92. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application
1132 to resistance training. *The Journal of Strength & Conditioning Research*.
1133 2010;24(10):2857-2872.

1134 93. Schoenfeld BJ, Grgic J, Haun C, Itagaki T, Helms ER. Calculating set-volume for
1135 the limb muscles with the performance of multi-joint exercises: implications
1136 for resistance training prescription. *Sports*. 2019;7(7):177.

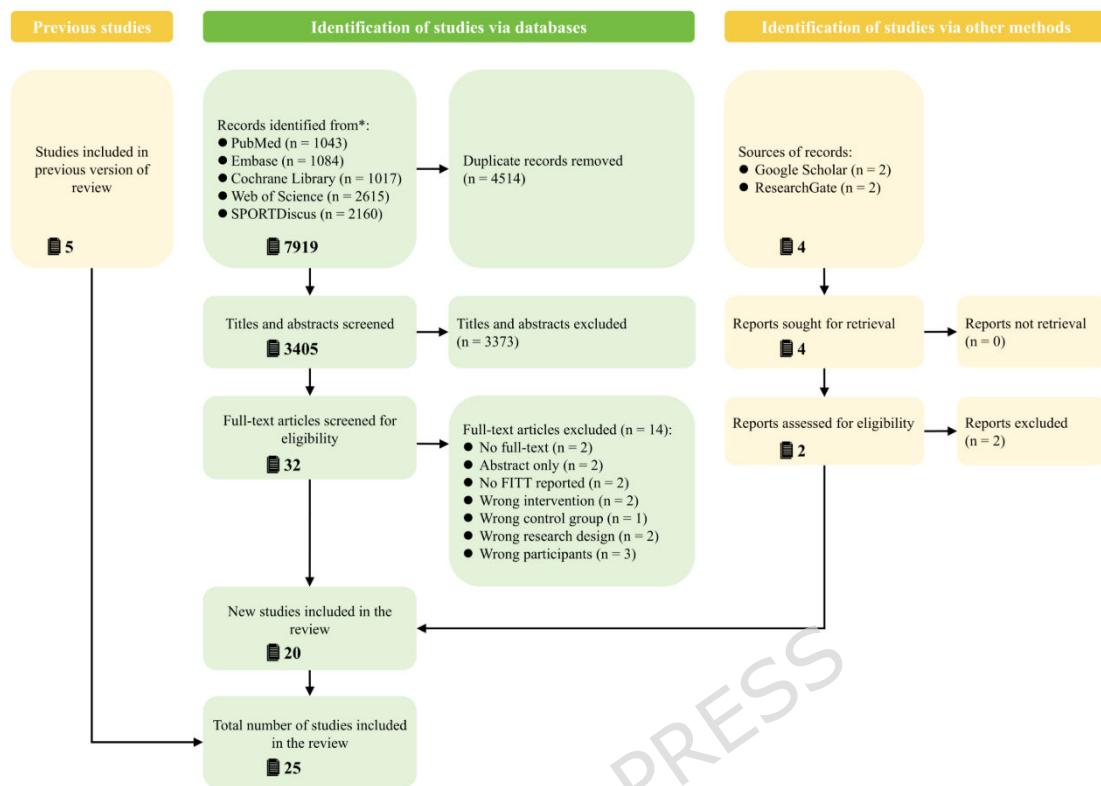
1137 94. Phillips S, Parise G, Roy B, Tipton K, Wolfe R, Tarnopolsky M. Resistance-
1138 training-induced adaptations in skeletal muscle protein turnover in the fed
1139 state. *Canadian journal of physiology and pharmacology*. 2002;80(11):1045-
1140 1053.

1141 95. Calabrese EJ, Mattson MP. How does hormesis impact biology, toxicology, and
1142 medicine? *NPJ aging and mechanisms of disease*. 2017;3(1):13.

1143 96. Schoenfeld BJ, Grgic J, Krieger J. How many times per week should a muscle
1144 be trained to maximize muscle hypertrophy? A systematic review and meta-
1145 analysis of studies examining the effects of resistance training frequency.
1146 *Journal of sports sciences*. 2019;37(11):1286-1295.

1147 97. Borde R, Hortobágyi T, Granacher U. Dose-response relationships of
1148 resistance training in healthy old adults: a systematic review and meta-
1149 analysis. *Sports medicine*. 2015;45(12):1693-1720.

1150


1151

1152

1153

1154 **Figures captions**

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

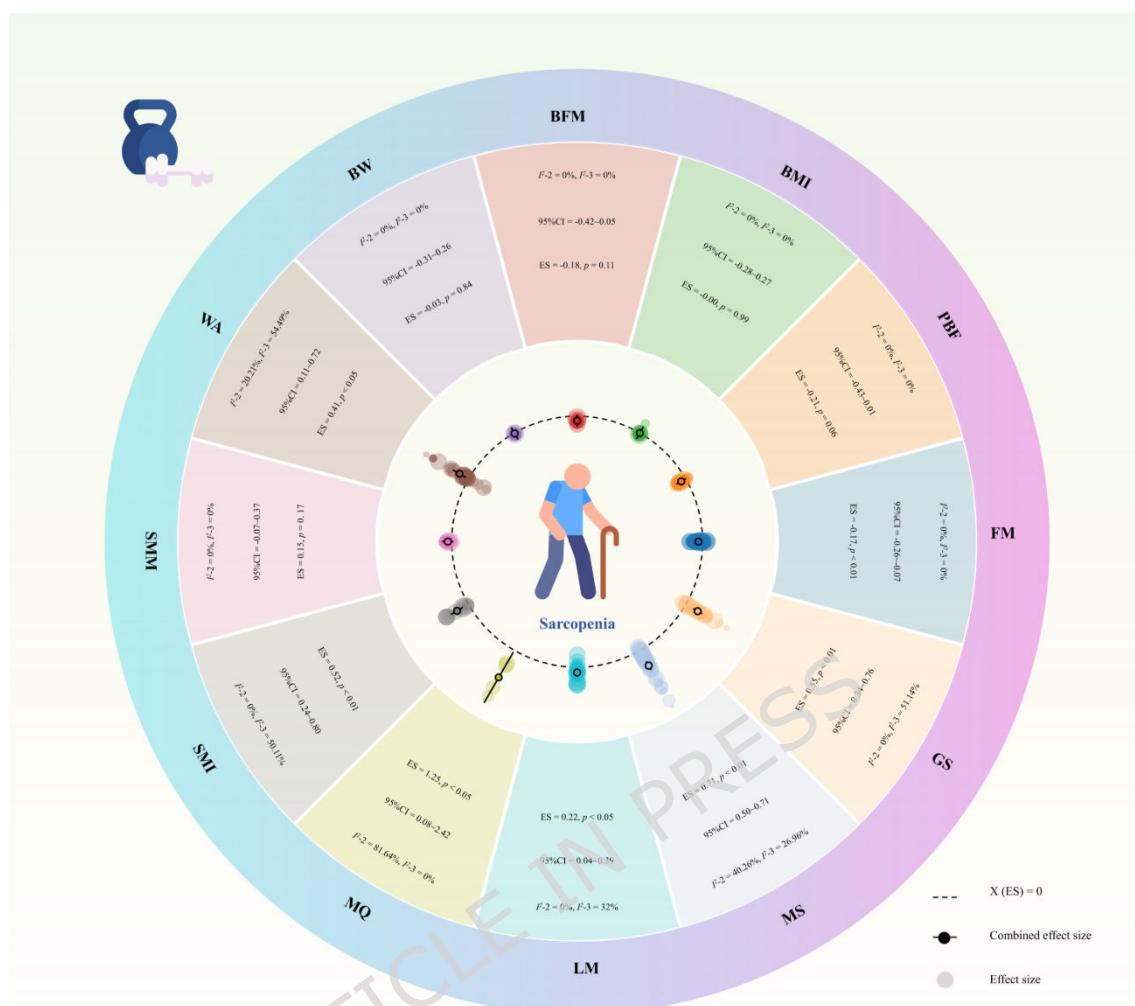
1155

1156 FIGURE.

1.

1157 PRISMA flow diagram illustrating study selection and screening process.

1158


1159

1160

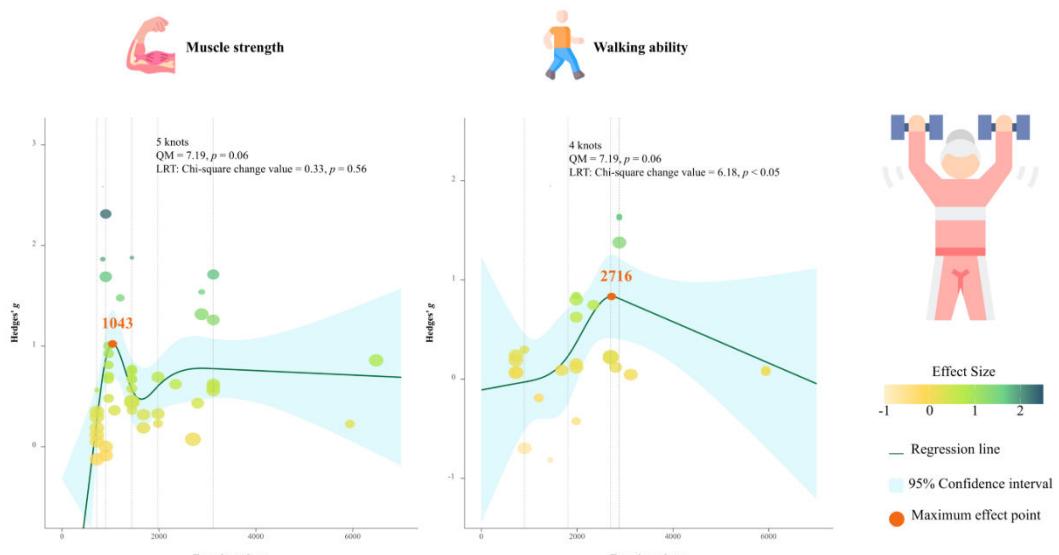
1161

1162

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

1163

1164 **FIGURE. 2.** Summarizes the pooled effect sizes for each primary outcome,
1165 including body composition and muscle function indices.


1166 Note: BMI: Body Mass Index, PBF: percent body fat, FM: fat mass, BFM: body
1167 fat mass, BW: body weight, SMM: skeletal muscle mass, LM: lean mass, SMI:
1168 skeletal muscle index, GS: grip strength, MS:muscle strength, MQ: muscle
1169 quality, WA: walk ability.

1170

1171

1172

Optimizing Prescription of Resistance Training for Body Composition, Muscle Strength, and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis

1173
 1174 FIGURE. 3. Presents the dose-response curves for muscle strength and walking
 1175 ability derived from the non-linear meta regression analysis.

1176

1177 Note: QM: Q statistic for Moderators , LRT: likelihood ratio test.

1178 Volume expressed as accumulated training time (minutes). For clinical
 1179 interpretation, thresholds correspond approximately to moderate-intensity RT
 1180 programs (60-80% 1RM, 2-3 sessions/week, 2-3 sets of 8-12 repetitions) over 8-
 1181 12 weeks.

1182

1183

1184