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Abstract

Acute exercise increases energy demand in skeletal muscle and releases metabolic
intermediates into circulation, yet the serum kinetics of exercise-mobilized
metabolites remain poorly characterized. By applying high-frequency serial blood
sampling and targeted metabolomics in a longitudinal exercise trial with 12 young,
healthy adults (6 female, 6 male), we assessed temporal alterations in energy-related
metabolites during acute aerobic exercise and after 1 hour of recovery. We provide
evidence for 42 exercise-responsive metabolites, including end products of
glycolysis, tricarboxylic acid cycle intermediates, ketone bodies and amino acids.
Overall, the observed metabolic alterations closely resembled skeletal muscle energy
metabolism, thereby refining fundamental principles of exercise biochemistry through
detailed serum kinetics, including novel, so far uncharacterized responses in
systemic energy homeostasis and inter-organ crosstalk.

New and noteworthy

In our study we provide detailed serum kinetics of energy-related metabolites during
acute aerobic exercise and after 1 hour of recovery. Semantic interpretation of our
results against the backdrop of fundamental principles of exercise biochemistry
indicated that serum metabolites mirror skeletal muscle energy metabolism, thus
providing new insights into systemic energy homeostasis and inter-organ crosstalk.

Keywords: exercise, energy metabolism, metabolomics, inter-organ crosstalk,
systemic communication
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INTRODUCTION

Acute physical exercise is marked by a transient increase in energy demand, which is
supported by various metabolic pathways including glycolysis and the tricarboxylic
acid (TCA) cycle. Previous studies demonstrated that metabolic intermediates of
energy production are not only increased in skeletal muscle (1,2) but also in systemic
circulation (3). Once systemically available, these metabolites can serve distinct
purposes. On the one hand, they can act as metabolic precursors for energy
production in distant organs, thus supporting the exchange of energetic intermediates
between metabolically active and inactive tissues in the context of systemic energy
homeostasis (4). On the other hand, they can act as signaling molecules, also known
as exerkines, for inter-organ crosstalk and tissue adaptation (5,6). A prime example
of this is lactate which acts as a metabolic intermediate that is shunted from
contracting skeletal muscle to other tissues such as the liver via systemic circulation
where it can be converted back to glucose via the Cori cycle (7). Besides
gluconeogenesis, lactate can also fuel energy production directly via oxidation to
pyruvate or act as a signaling molecule across a wide range of peripheral tissues
(7,8). Against this multi-facetted role of lactate, research on exercise metabolism is
rapidly discovering similar exercise-secreted metabolites such as succinate and L-3-
aminoisobutyric acid (L-BAIBA), both of which are mobilized by exercise and were
demonstrated to induce peripheral tissue adaptation (9-11).

Our knowledge on the exercise-induced release of energetic intermediates into
systemic circulation is primarily based on studies comparing resting baseline to post-
exercise samples, often with a focus on individual or a few metabolites (3). While
these studies offer a valuable starting point in our understanding of metabolic
communication, follow-up investigations are at least of equal importance to establish
physiological details such as the tissues of origin, potential target tissues, or the time-
course of systemic release (6). Although acute exercise is known to trigger complex
systemic alterations in metabolic homeostasis (12), the temporal kinetics and
dynamic mobilization patterns of various intermediates of energy metabolism remain
largely unexplored to date.

To address this gap, we performed high-frequency serial blood sampling and
employed state-of-the-art targeted metabolomics to comprehensively detect temporal
alterations of metabolic intermediates in blood serum during acute aerobic exercise
and after 1h of recovery (Fig. 1a). We conducted a longitudinal exercise trial with 12
healthy adults (6 female, 6 male) and drew blood at baseline, immediately after the
warm-up, after 5, 10, 15, 30, and 40 minutes of exercise (end of exercise session),
and after 1h of recovery. Our targeted metabolomics panel comprised a total of 42
metabolites involved in energy metabolism (for details see Supplemental material).
Based on current knowledge, we subdivided these metabolites into six groups: end
products of glycolysis, TCA cycle intermediates, metabolites replenishing pyruvate
and acetyl-CoA, metabolites replenishing TCA cycle intermediates, ketone bodies,
and additional/other related metabolites (Fig. 1b). We hypothesized that the temporal
kinetics of serum metabolites would reflect skeletal muscle energy metabolism during
exercise and recovery.

Downloaded from journals.physiology.org/journal/gjpcell (083.061.247.227) on November 21, 2025.



102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150

MATERIALS AND METHODS

Study design

Twelve healthy participants (6 women, 6 men) attended two separate laboratory
sessions in an overnight-fasted state without any dietary control the day prior.
Participants were asked to refrain from exercise, alcohol consumption and caffeine
intake in the 48h prior to each visit. Inclusion criteria comprised age between 20 and
35, an BMI below 30, and fluent knowledge of German (due to questionnaires used).
Exclusion criteria comprised any type of acute or chronic disease as well as ongoing
or past medication in the last six months, pregnancy or breast-feeding, use of oral
contraceptives or nutritional supplements, current smoking, or more than 3 resistance
exercise sessions or 300 minutes of endurance exercise per week in the last 6
months. All tests were performed in an exercise physiology laboratory under
standardized environmental conditions (25.3 + 2.4 °C, 60.9 £ 6 % humidity, controlled
interior ventilation) between 08:00 and 10:00 AM to account for potential
environmental and circadian effects on physiological and biological outcomes. The
study was approved by the institutional ethics committee of the Leibniz Research
Centre for Working Environment and Human Factors (Dortmund, Germany). Details
on the study procedures were previously published (13). In brief, all participants
signed written informed consent before inclusion into the study. During the first visit,
anthropometric measurements including bioimpedance analysis (SECA mBCA 525)
were taken. In addition, a cardiopulmonary exercise test on a cycle ergometer was
performed to determine \'/ngeak (METAMAX® 3B, Cortex, Germany). At least 72
hours later, participants performed a 40-minute aerobic exercise session on the same
cycle ergometer at an intensity corresponding to 60 % of the individual VOzpeak. TO
ensure that participants cycled at a constant exercise intensity during the 40-minute
exercise session, internal load was assessed by spirometry and power output was
dynamically adjusted. Blood draws were performed on an intravenous cannula that
was placed on the anterior portion of the forearm. The blood samples were
processed immediately after collection. Serum was isolated by centrifugation and
stored at -80°C until further analysis.

Targeted metabolomics

The analyses of metabolites and amino acids (platform B) were carried out by
BEVITAL AS (www.bevital.no), wusing gas chromatography-tandem mass
chromatography (GC-MS/MS) after derivatization with methylchloroformate, using a
slight modification of a method published previously (14). Metabolites (e.g. amino
acid catabolites and TCA metabolites) not initially included in the original validated
method were added individually along with their isotope labelled internal standard
and the same validation procedures were performed (including linearity testing,
accuracy, precision, and recovery), followed by cross-validation of the original assay
ensuring quantitation and chromatographic performance were unaffected. The
sample volume requirement was 50 pL. Highest analytical accuracy and
reproducibility was ensured by calibrated measurement procedures and participation
in external quality control programs. Within- and between-day coefficients of variation
for the measured metabolites ranged from 1-6% and 1-7%, respectively.

Statistical analysis

All statistical analyses were performed using R (version 4.4.1). The final data set
consisted of 12 individuals (IDs), 8 time points and 42 quantified metabolites.
Metabolite values were expressed as absolute concentrations and CVs were
calculated according to the following formula: CV = (standard deviation / mean) x
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100. The median CV of each measurement time point was used to calculate an
overall mean.

Metabolite values were log,-transformed, and z-score normalized. A t-SNE analysis
was performed using the Rtsne package with parameters dims = 2, perplexity = 8,
max_iter = 1000, and theta = 0.05, chosen based on the moderate sample size and
to ensure stable convergence of the algorithm. PCA was performed using the
packages FactoMineR and factoextra. After checking normality of the residuals
via Shapiko-Wilk test and Q-Q plots, linear mixed-effects models (LMMs) were fitted
with the nlme package to identify time effects. Each metabolite was modelled
individually using time and sex as fixed effects and ID as a random intercept. We also
examined VOapeak as a fixed effect to account for interindividual differences in fitness.
However, after correcting for multiple tests, VOapeak Was not found to be significantly
associated with any metabolite and was therefore not included in the final models.
Each model included 77 degrees of freedom and 96 observations (see Supplemental
material for full results), and the residuals were approximately normally distributed
based on Shapiro-Wilk tests and Q-Q plots. P-values for time effects were adjusted
for multiple testing using the Benjamini-Hochberg (BH) procedure. Metabolites were
considered significantly different from baseline if at least one time point had a BH-
adjusted p value < 0.05.

The log, fold changes relative to baseline were calculated and visualized using a
heatmap. Hierarchical clustering was applied to the rows of the heatmap
(metabolites) to highlight patterns of co-regulation. For each time point, the mean and
standard error of the mean (SEM) of the log, fold changes across participants were
calculated. The SEM was calculated as the standard deviation divided by the square
root of the sample size (SD/vn). Additionally, the area under the curve (AUC) of the
absolute metabolite levels during exercise was calculated using the trapezoidal rule.
All figures were created using the R packages ggplot2 or ggpubr. Schematic
figures were created using www.biorender.com.

RESULTS

Participant characteristics

Participants exhibited a mean age of 25.5 + 2.71 (standard deviation), a body mass
index of 22.81 + 3.14, and a relative fat mass of 20.7 + 5.65. Peak oxygen uptake
(VOapeak) and peak power output (PPO) during a cardiopulmonary exercise test on a
cycle ergometer was 45.55 £ 9.72 mL/min/kg and 3.81 + 0.88 W/kg, respectively.
During the acute aerobic exercise session, participants cycled at an intensity of 65.37
+ 6.57 % VOgpeak OF 50.92 + 2.23 % PPO (Fig. 1c). Detailed participant characteristics
are provided in Table 1.

*** Insert Table 1 here ***

Analytic quality of the dataset and descriptive results

Before conducting formal statistical analysis, we evaluated the analytic quality of our
dataset. Inter-individual variability, assessed as coefficients of variation (CV),
displayed a mean CV of 21.84 £ 1.13 % across the employed measurement time
points (Fig. 1d). This suggests considerable variability between study participants but
low variance in CVs across time points. To further dissect the variability in our data
introduced by study participants, we applied t-distributed stochastic neighbour
embedding (t-SNE) and observed high metabolic individuality, as indicated by
separate clusters for each participant and an overall separation of our samples by
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sex (Fig. 1e). Principal component analysis (PCA) additionally revealed a clear
separation of the post-exercise and post-recovery samples from baseline samples,
confirming as expected, metabolic alterations induced by exercise and recovery (Fig.
1f). Principal component (PC) 1 explained 34.2 % of the variance in our data while
PC 2 accounted for 15.4 %. Further dissection of the PCA results suggested that
metabolites involved in glycolysis and the TCA cycle were correlated with PC1 and 2
in a similar manner as post-exercise samples, while ketone bodies were better
resembled by post-recovery samples (Fig. 1f, g). This suggests that acute exercise
alters metabolites involved in glycolysis and the TCA cycle, while the response of
ketone bodies is more confined to the recovery phase. Confirming these results, we
observed a similar pattern in the ranked contributions of metabolites to PC1 and 2
(Fig. 1h). Overall, this suggests that acute exercise and recovery are marked by
distinct metabolic responses in blood serum.

k%

*** Insert Figure 1 here

Acute aerobic exercise triggers alterations in serum metabolites

We next performed formal statistical analysis by applying linear mixed models to our
metabolomics dataset and found significant fluctuations from baseline for all 42
metabolites as well as sex differences for sarcosine, leucine, tyrosine, phenylalanine,
methionine, and B-alanine. Considering the small sample size of six participants per
sex, we did not address sex differences in more detail (see Supplemental material for
full results including effect sizes and 95% confidence intervals). Interestingly, the
acute exercise bout elicited a significant increase in 33 metabolites while none of the
metabolites decreased below baseline levels. In contrast, after 1h of recovery more
metabolites were decreased compared to baseline (Fig. 1i). Proportional changes
from time point to time point revealed similar results and additionally suggested
complex temporal kinetics during and after exercise (Fig. 1j). In summary, this
confirms that acute exercise and recovery are marked by distinct metabolic
responses in blood serum and that these responses depend on different metabolic
pathways involved in energy supply.

Serum metabolite kinetics mirror skeletal muscle energy metabolism

We next performed hierarchical clustering to identify similar exercise kinetics across
all metabolites. Hierarchical clustering yielded two main clusters, which mirrored the
literature-based categorization of our metabolomics panel (Fig. 2a). Cluster 1
contained canonical end products of glycolysis and TCA cycle intermediates,
including pyruvate, lactate, succinate, fumarate, and malate, all of which
demonstrated a pronounced increase in response to exercise. While serum levels of
pyruvate and lactate increased rapidly after 15 min of exercise, respectively, a more
pronounced elevation until the end of the exercise session was found for succinate,
fumarate, and malate (Fig. 2b, c).

These kinetics align with the release of metabolic intermediates from contracting
skeletal muscle via monocarboxylate transporters (MCTs), which are ubiquitously
expressed across different tissues and enable transport across plasma membranes
dependent upon the local proton motive force and the concentration gradient of the
substrate monocarboxylate (8). In accordance with fundamental principles of exercise
biochemistry, the rapid increase in serum levels of lactate and pyruvate (Fig. 2b)
might be attributed to the physiological decrease in skeletal muscle pH during
exercise (i.e., an increase in proton motive force) as well as a cytosolic accumulation
of pyruvate and lactate due to increased glycolytic flux. Both effects would create a
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driving force for transport of these metabolites across skeletal muscle plasma
membranes via MCTs, thus resulting in elevated serum levels.

While these principles explain the early mobilization of lactate and pyruvate into
systemic circulation, they fall short in explaining the more pronounced increase in
central TCA metabolites like succinate, fumarate, or malate, which are present as
dicarboxylates and thus unavailable for MCT-mediated transport. In a landmark
paper (11), Reddy and colleagues demonstrated that the physiological acidification of
skeletal muscle during exercise protonates succinate, thus rendering the
monocarboxylic form a transport substrate for MCT1. In detail, it was shown that the
higher monocarboxylic pKa of succinate (pKa = 5.69) compared to malate (pKa =
5.13) and fumarate (pKa = 4.22) explains its preferential protonation and subsequent
release from contracting skeletal muscle (11). This is mirrored by our obtained
kinetics, which demonstrate an earlier and steeper increase of serum succinate
levels compared to malate and fumarate (Fig. 2c). However, although malate and
fumarate do not follow a pH-gated release via MCT1 — a result attributable to their
different physicochemical properties (11) — we also observed a pronounced increase
in serum levels of these metabolites. The fact that previous studies have
demonstrated an initial increase in intracellular malate, fumarate, and other TCA
cycle intermediates, followed by a decrease towards baseline levels during acute
exercise (15,16), suggests rising concentration gradients across skeletal muscle
plasma membranes and a potential release into circulation by so far unknown
transporters. Of note, we observed a similar but less pronounced kinetic for a-
ketoglutarate, another dicarboxylate, and slightly different kinetics for the
tricarboxylates citrate and isocitrate (Fig. 2c). Taken together, our data suggest that
acute exercise-induced increases in skeletal muscle energy metabolism are mirrored
by systemic metabolite levels during aerobic exercise.

Further evaluation of our hierarchical clustering suggested that cluster 2 was
subdivided into two subclusters. Cluster 2a contained many metabolites that were
barely altered by exercise but exhibited a decline below baseline levels after 1h of
recovery (Fig. 2a). Semantic interpretation of these metabolites revealed that such
kinetics were mainly displayed by amino acids that replenish pyruvate and acetyl-
CoA (Fig. 2d) or by amino acids that replenish TCA cycle intermediates (Fig. 2e). This
is in line with the notion that acute exercise, which depicts a transient state of high
metabolic turnover in skeletal muscle, is followed by a post-exercise recovery period
that is marked by uptake of metabolic precursors for regeneration and tissue repair
(17). In contrast, cluster 2b was more heterogeneous since it contained metabolites
that increased during exercise (albeit less pronounced than in cluster 1) and then
either returned to baseline or remained elevated until 1h after (Fig. 2a). These
kinetics are in line with three further fundamental principles of exercise biochemistry.

First, the increase in a-ketoglutarate (Fig. 2c) and a-hydroxyglutaric acid (Fig. 2e)
suggests that the accumulation of TCA cycle intermediates in skeletal muscle (i.e., a-
ketoglutarate) can have immediate effects on other metabolites that are in close
metabolic proximity (i.e., a-hydroxyglutaric acid). Although o-hydroxyglutaric acid is
not directly involved in energy metabolism itself, it can be formed from a-
ketoglutarate under conditions of hypoxia and acidic/decreasing pH via lactate
dehydrogenase A (18). High glycolytic flux and elevated NADH levels in skeletal
muscle during acute exercise, would render the reaction from a-ketoglutarate to a-
hydroxyglutaric acid a reductive mechanism that regenerates NAD", thus ensuring
undisrupted glycolytic flux and maintenance of cellular redox balance. As for a-

7

Downloaded from journals.physiology.org/journal/gjpcell (083.061.247.227) on November 21, 2025.



295
296
297

298
299
300
301
302
303
304
305
306
307
308

309
310
311
312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331
332
333

334

335
336
337
338
339
340
341

ketoglutarate, the elevated serum levels of a-hydroxyglutaric acid are thus likely
attributable to accumulation in skeletal muscle and a subsequent release into
circulation.

Second, the increase in serum alanine levels (Fig. 2d) depicts a prime example of
alanine’s function as a shuttle system for amino groups between skeletal muscle and
the liver. This process, which is known as glucose-alanine cycle (19), binds nitrogen
groups arising from increased branched-chain amino acid (BCAA) catabolism during
acute exercise, to pyruvate, thus forming alanine. Alanine is then shuttled to the liver
where it can serve as metabolic precursor for glucose production after transamination
(20). The increased alanine levels observed in our data might thus be interpreted as
a systemic resemblance of the elevated clearance of amino groups from skeletal
muscle via the glucose-alanine cycle. This mechanism maintains systemic glucose
homeostasis and protects skeletal muscle from accumulation of toxic ammonia
derived from increased BCAA catabolism during exercise (20).

Third, cluster 2b also contained the ketone bodies B-hydroxybutyrate and
acetoacetate, which displayed a progressive increase in response to acute exercise
until 1h after exercise cessation (Fig. 2f). Since ketone bodies are produced by the
liver as alternative fuel source during fasting, exercise of longer duration, and in the
post-exercise recovery period (21), our obtained kinetics suggest that this is also true
for shorter exercise bouts, especially following overnight-fasted conditions as
employed by us. Alternatively, the elevated serum levels could reflect reduced tissue
uptake during acute exercise, or a combination of both. Regarding the metabolic fate
of systemically available ketone bodies, quantification of nutrient fluxes in mice has
revealed that B-hydroxybutyrate is taken up by a wide range of peripheral tissues in
response to acute exercise (4). However, the sustained increase of ketone bodies
into the post-exercise recovery phase observed in our data suggests that ketone
body production exceeds tissue uptake.

To validate our findings of increased mobilization of metabolic intermediates during
acute exercise and an increased uptake of replenishing amino acids from blood
serum in the subsequent recovery period, we calculated areas under the curve (AUC)
for all metabolites, ranked these according to magnitude, and compared them to
ranked fold changes from baseline after 1h of recovery. Interestingly, we observed
that end products of glycolysis, TCA cycle intermediates, and ketone bodies
displayed the highest AUC, thus suggesting that these metabolites are preferentially
mobilized into systemic circulation during acute exercise (Fig. 2g). Conversely, amino
acids demonstrated the highest negative fold changes 1h after exercise, indicating
uptake from circulation, most likely into skeletal muscle, for regeneration and tissue
repair (Fig. 2h).
*** Insert Figure 2 here ***

DISCUSSION

Our data confirms the increased systemic availability of metabolic intermediates
which fulfill a dual function in response to acute exercise. On one side, they foster
energy transfer between metabolically active and inactive tissues in the context of
systemic energy homeostasis (4), as suggested by our kinetics for lactate and
pyruvate as well as TCA cycle intermediates and amino acids. Regarding this, we
observed a fine-tuned release of energetic intermediates into systemic circulation
during exercise, followed by a decrease of serum amino acid levels in the
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subsequent recovery phase (Fig. 2i). On the other side, some of the metabolites are
also known to have endocrine function as signaling molecules which communicate
metabolic state between organs and help regulate physiological processes to
maintain homeostasis and coordinate the response to different (internal and external)
stimuli (22). Succinate, a prime example, has been shown to act on brown adipose
tissue in the context of cold exposure-induced shivering (23) and skeletal muscle in
the context of exercise (11,24). However, the physiological relevance of other
increased metabolites like fumarate, malate, a-ketoglutarate, or a-hydroxyglutaric
acid are less well investigated in an exercise context and remain topics for future
research.

Although the high temporal resolution during acute exercise applied by us offers
profound insights into the systemic response of metabolic intermediates to acute
exercise, there are several limitations that should be addressed in future research to
generate more conclusive evidence. First, without a passive control group, it is hard
to distinguish between exercise-induced alterations and potential other triggers such
as prolonged fasting or circadian fluctuations. Additionally, different macronutrient
composition due to the lack of standardized nutrition the day prior, might depict a
confounding factor in the changes observed in this study. Addressing these
limitations in a randomized cross-over study, preferably with a larger sample size,
would not only pave the way to more conclusive insights into metabolic regulation
during exercise, but also reduce inter-individual variability and allow for an
adequately powered analysis of sex-specific differences.

Second, from our study setup, it remains unclear whether elevated serum
metabolites are attributable to an increased release or a decreased uptake by
peripheral tissues (or a combination of both). Additionally, whether these metabolites
originate from skeletal muscle or other tissues, remains topic of future research.
While we generally believe that contracting skeletal muscle — which is subject to high
energetic demand during an acute exercise session as applied by us — is likely
responsible for most of the metabolic alterations observed in blood serum,
quantitative flux analyses in study setups employing arteriovenous blood sampling
are needed to answer these questions conclusively (25). In this context, technological
advances in exercise metabolism research now allow for systems-level integration of
metabolomics data, which offers profound insights into the complex interactions of
different systems during exercise and improves our understanding of the molecular
underpinnings of exercise-mediated health benefits (12,26).

In summary, we provide detailed serum kinetics for 42 exercise-responsive
metabolites during acute aerobic exercise and after 1h of recovery. Our data
suggests a fine-tuned orchestration of release and uptake of energetic intermediates
during and after exercise. Building upon fundamental principles of exercise
biochemistry, we expand existing knowledge by detailed serum kinetics and uncover
novel, so far undescribed systemic responses. With our analysis, we aim to inform
ongoing research efforts investigating the metabolic foundation of exercise and its
beneficial impact in health and disease.

SUPPLEMENTAL MATERIAL

Supplemental file: 10.6084/m9.figshare.30533117
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FIGURE LEGENDS

Figure 1. Study design, overview of investigated metabolites, and descriptive
results. a, Study design. b, Overview of the metabolite panel. ¢, Exercise intensity
(mean + SD, 60-point moving average). d, Inter-individual variability expressed as
coefficients of variation (CV) separated by time point. e, Metabolic individuality
identified by t-distributed stochastic neighbour embedding (t-SNE). f, Principal
component analysis (PCA) of the samples obtained at baseline, post-exercise, and
post-recovery (means and 95 % confidence intervals for principal component (PC) 1
and 2). g, PCA of metabolites separated by metabolic process. Arrows indicate the
mean correlation with PC1 and 2 of each metabolic process. h, Ranked metabolite
contributions to PC1 and 2. Dashed lines indicate the hypothetical average
contribution if all 42 metabolites were equally weighted (2.38 %). i, Number of
significantly altered metabolites relative to baseline (red=increase, blue=decrease). j,
Kinetics of all metabolites relative to baseline. 2AAA, 2-Aminoadipic acid; aHB, 2-
Hydroxybutyrate; bHB, 3-Hydroxybutyrate; 3HIB, 3-Hydroxyisobutyrate; AcAc,
Acetoacetate; aHG, a-Hydroxyglutaric acid; Ala, Alanine; Asn, Asparagine; Asp,
Aspartic acid; bAla, pB-Alanine; BAIBA, L-B-aminoisobutyric acid; CEL,
Carboxyethyllysine; CML, Carboxymethyllysine; Glu, Glutamic acid; GIn, Glutamine;
Gly, Glycine; His, Histidine; lle, Isoleucine; Leu, Leucine; Lys, Lysine; Met,
Methionine; MMA, Methylmalonic acid; Orn, Ornithine; PAGIn,
Phenylacetylglutamine; Phe, Phenylalanine; Pro, Proline; Sarc, Sarcosine; Ser,
Serine; Thr, Threonine; tCys, Total cysteine; tHcy, Total homocysteine; HcCyR,
homocysteine to cysteine ratio; Tyr, Tyrosine; Val, Valine

Figure 2. Temporal regulation of metabolic intermediates during acute exercise.
a, Exercise-induced fold changes in metabolite levels relative to baseline. Main
clusters identified by hierarchical clustering are shown. b — f, Kinetics of individual
metabolites categorized by metabolic process. g, Area under the curve (AUC) during
exercise color-coded according to metabolic process. h, Fold change 1h after
exercise color-coded according to metabolic process. i, Schematic of the proposed
mode of action regarding the systemic regulation of metabolic intermediates. Data
are expressed as mean = standard error. 2AAA, 2-Aminoadipic acid; aHB, 2-
Hydroxybutyrate; bHB, 3-Hydroxybutyrate; 3HIB, 3-Hydroxyisobutyrate; AcAc,
Acetoacetate; aHG, a-Hydroxyglutaric acid; aKG, a-Ketoglutarate; Ala, Alanine; Asn,
Asparagine; Asp, Aspartic acid; bAla, B-Alanine; BAIBA, L-B-aminoisobutyric acid;
CEL, Carboxyethyllysine; CML, Carboxymethyllysine; Cit, Citrate; Fum, Fumarate;
Glu, Glutamic acid; GIn, Glutamine; Gly, Glycine; His, Histidine; iCit, Isocitrate; lle,
Isoleucine; Lac, Lactate; Leu, Leucine; Lys, Lysine; Mal, Malate; Met, Methionine;
MMA, Methylmalonic acid; Orn, Ornithine; PAGIn, Phenylacetylglutamine; Phe,
Phenylalanine; Pro, Proline; Pyr, Pyruvate; Sarc, Sarcosine; Ser, Serine; Suc,
Succinate; Thr, Threonine; tCys, Total cysteine; tHcy, Total homocysteine; HcCyR,
homocysteine to cysteine ratio; Tyr, Tyrosine; Val, Valine
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Table 1 Participant characteristics.

Mean * standard deviation [min; max]

Demographic and anthropometric characteristics

Sex, m/f
Age, yr
Height, cm
Weight, kg
BMI, kg/m?
Relative fat mass, %
Fat-free mass, %
Skeletal muscle mass, %
Cardiopulmonary exercise test
VOszpeak, ML/min/kg
Maximal heart rate, bpm
Absolute PPO, W
Relative PPO, W/kg
RER at voZpeaka AU
TTE, min:s
Exercise session
Percent VOypeak, %
Percent PPO, %
Mean VO,, mL/min/kg
Mean power output, W
Mean heart rate, bpm
Mean RER, AU

6/6

25.50 + 2.71 [21; 30]

173.81 + 9.43 [161.0; 189.2]
69.59 + 14.85 [45.1; 96.3]
22.81 £ 3.14 [17.10; 27.06]
20.70 + 5.65 [12.73; 31.02]
79.30 + 5.65 [68.98; 87.27]
38.00 + 3.80 [32.23; 43.45]

45.55 + 9.72 [31.08; 56.96]

185.67 + 6.06 [173; 192]

271.67 + 96.19 [106; 406]

3.81 +0.88 [2.35; 4.97]

1.14 £ 0.07 [0.95; 1.21]

10:04.3 + 02:04.6 [05:45.2; 12:36.4]

65.37 + 6.57 [56.62; 82.78]
50.92 + 2.23 [47.86; 55.26]
29.49 + 5.84 [19.84; 36.26]
136.49 + 49.78 [51.41; 222.13]
159.85 + 8.98 [145.78; 169.40]
0.93 +0.03 [0.88; 0.97]

AU, arbitrary unit; BMI, body mass index; PPO, peak power output; RER, respiratory exchange ratio;
TTE, time to exhaustion; VOzpeak, Peak oxygen uptake. Due to technical reasons heart rate data was

only recorded from 9 participants.

Downloaded from journals.physiology.org/journal/gjpcell (083.061.247.227) on November 21, 2025.



Detailed serum kinetics of metabolic
intermediates during acute exercise
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Acute exercise triggers alterations in systemic metabolites involved in
energy homeostasis and inter-organ crosstalk
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