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Abstract

Obesity is increasing rapidly worldwide and is projected to affect approximately half the US population by the year 2035. Obesity is a complex 
condition, and individuals who have obesity are at greater risk for developing associated metabolic diseases such as type 2 diabetes (T2D), 
metabolic dysfunction–associated steatohepatitis (MASH), and cardiovascular diseases (CVD). Understanding the underlying factors which 
contribute to obesity and that impact key molecular mechanisms of metabolic organs such as adipose tissue, liver, and muscle is crucial for 
combating the disease. Exercise is a well-established measure to prevent or mitigate the adverse consequences of obesity, with several 
beneficial effects to whole-body metabolism and adaptations to metabolic tissues. This review explores the impact of obesity on the 
development of metabolic diseases. Specifically, we will discuss: how obesity alters metabolic function and the potential benefits of 
exercise; the specific effects of obesity and exercise on muscle, adipose tissue, and liver; and potential effects of pharmacotherapeutics or 
bariatric surgery in combination with exercise.
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Abbreviations: 12,13-diHOME, 12,13-dihydroxy-9Z-octadecenoic acid; AdEVs, adipose-derived extracellular vesicles; AMPK, AMP-activated protein kinase; 
BAT, brown adipose tissue; BFP, body fat percentage; BMI, body mass index; BW, body weight; CPT1, carnitine palmitoyl transferase I; CVD, 
cardiovascular disease; DIO, diet-induced obesity; EVs, extracellular vesicles; FDG-PET CT, 18F-fluorodeoxyglucose positron emission tomography– 
computed tomography; FGF21, fibroblast growth factor 21; FTO, fat mass and obesity-associated (gene); GLP-1, glucagon-like peptide 1; GLP-1 RA, 
glucagon-like peptide 1 receptor agonist; HFD, high-fat diet; HIIT, high-intensity interval training; IL-, interleukin; KYN, kynurenine; KYNA, kynurenic acid; 
LepR, leptin receptor; MAFLD, metabolic dysfunction–associated fatty liver disease; MASH, metabolic dysfunction–associated steatohepatitis; MICT, 
moderate intensity continuous training; miRNA, microRNA; MIT, moderate intensity exercise; NRF1, nuclear respiratory factor 1; OXPHOS, oxidative 
phosphorylation; Pgc1a, peroxisome proliferator-activated receptor-γ coactivator; Prdm16, PR domain containing 16; ROS, reactive oxygen species; RYGB, 
Roux-en-Y gastric bypass; scWAT, subcutaneous white adipose tissue; SG, sleeve gastrectomy; SREBP1, sterol regulatory element-binding transcription 
factor 1; T2D, type 2 diabetes; Tfam, mitochondrial transcription factor A; TGF-β2, transforming growth factor beta receptor 2; TNF-α, tumor necrosis factor 
alpha; Ucp1, uncoupling protein 1; vWAT, visceral white adipose tissue; WAT, white adipose tissue; WC, waist circumference. 

Essential Points Covered in the Review

• Obesity affects multiple metabolic pathways in metabolic 
organs, speci�cally white adipose tissue, brown adipose 
tissue, liver, and skeletal muscle

• Exercise studies provide compelling evidence to in�uence 
obesity-induced alterations in metabolic organs

• The potential of exercise, in combination with bariatric 
surgery and incretin therapy, presents a promising area 
for future research targeted at advancing therapeutic strat-
egies to combat obesity
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Obesity is drastically increasing, with the World Health 
Organization (WHO) indicating a 2-fold increase in the 
prevalence of obesity from 1990 to 2022, and an estimation 
of approximately half the US population having obesity by 
2030 (1). The increasing presence of obesity correlates with 
the increased risk of cardiovascular disease (CVD), metabolic 
dysfunction–associated steatohepatitis (MASH), and type 2 
diabetes mellitus (T2D), among others, highlighting the 

critical importance of understanding mechanisms and strat-
egies to combat obesity (2-4).

Exercise is a compelling therapeutic tool to combat obesity 
and metabolic disease (5-9). Among the various forms of exer-
cises, aerobic and resistance training are often investigated in 
terms of their role to induce molecular adaptations to key 
metabolic organs such as adipose tissue, liver, and skeletal 
muscle (5, 7, 8, 10-16). Recent strategies to combat obesity, 
including bariatric surgery and weight loss drugs, have gained 
increasing popularity in promoting weight loss with improve-
ments in overall health including cardiovascular outcomes 
and glucose homeostasis (17-19). The latest emerging research 
studies have investigated the potentially synergistic combin-
ation of exercise and weight loss drugs or bariatric surgery 
(20, 21).

In this review, we will discuss the effects of obesity on vari-
ous metabolic organs including adipose tissue, liver, and skel-
etal muscle, in both animal models and human studies. We 
will explore how obesity impacts various metabolic processes, 
including mitochondrial function, thermogenic capacity, 
endocrine regulation, and glucose and lipid metabolism, as 
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well as how exercise in�uences these outcomes in the context 
of obesity. Finally, we discuss weight loss interventions, such 
as incretin therapies and bariatric surgery, and their potential 
effectiveness in combination with exercise and the consider-
ation of multiple factors, such as potential compensatory life-
style changes and ensuring inclusive courses of treatment 
when addressing obesity and its possible therapeutic strategies 
(Fig. 1).

Obesity and the Potential Benefits of Exercise

Obesity is increasing at epidemic proportions across the 
United States and worldwide, and the rise in obesity is con-
comitant with an increase in several obesity-related diseases. 
The most common obesity-associated diseases include T2D, 
CVD, and MASH (22, 23). T2D is a chronic metabolic disease 
characterized by high blood glucose levels and impaired insu-
lin homeostasis (24, 25). CVD includes diseases that affect the 
circulatory system of the body, such as the heart and vascula-
ture (26). Increased fat accumulation in the liver in conjunc-
tion with in�ammation and �brosis results in MASH (27). 
The risk of other diseases, including cancer and Alzheimer’s 

Disease, are also increased in people with obesity (28, 29), 
highlighting the signi�cance of obesity as a comorbidity.

Exercise is an important therapeutic tool to combat 
obesity and obesity-related disorders (30-32). Exercise is a 
well-established tool to improve aerobic capacity, resting heart 
rate, blood pressure, and overall metabolic health (33-35). 
Additionally, exercise can mediate indices such as body mass in-
dex (BMI), waist circumference (WC), hip circumference, body 
fat percentage (BFP), insulin resistance, and waist to height ratio, 
which have been shown to be signi�cant risk factors in determin-
ing metabolic health and associated diseases (10, 36-42). Among 
multiple different forms of exercise, aerobic exercise and resist-
ance training are the most well-studied with regard to impacting 
and potentially improving anthropometric measures in individu-
als with obesity (5, 7-9). Exercise is also known to affect key mo-
lecular pathways adversely impacted by obesity, including 
mitochondrial activity and glucose and lipid metabolism in adi-
pose tissue, liver, and skeletal muscle (43-46).

While exercise improves metabolic health and upregulates 
multiple metabolic pathways, individuals with obesity- 
associated metabolic diseases such as T2D have reduced expres-
sion of genes involved in mitochondrial biogenesis and oxidative 

Figure 1. Exercise modulates potent beneficial effects to various metabolic organs impacted by obesity such as increasing (upward arrow) lipid and 

glucose metabolism and reducing (downward arrow) inflammation for white and brown adipose tissue, the liver, and skeletal muscle in humans and 

animals. Alternative therapies, including bariatric surgery and incretin therapy, provide a unique perspective of possible combinatorial interventions to 

attenuate the undesirable effects of obesity. Figure made in Biorender.
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phosphorylation in muscle (47, 48). Mitochondrial DNA 
(mtDNA) and oxidative phosphorylation are also diminished 
in white adipose tissue (WAT), correlating with increased adi-
pose tissue in�ammation and insulin resistance (49). Studies 
have demonstrated that in people with T2D, aerobic exercise in-
creases whole-body insulin sensitivity by ∼20% and reduces 
HbA1C levels by 0.8% (45, 50, 51), while high-intensity interval 
training (HIIT) and moderate intensity continuous training 
(MICT) elevates expression of genes involved in muscle mito-
chondrial activity and lipid utilization (45). In patients with 
MASH, moderate exercise decreases hepatic triglyceride content 
and circulating free fatty acids, enhances glucose and insulin sen-
sitivity, and reduces pro-in�ammatory cytokines such as IL-6 
and TNF-α (31, 52). Similarly, physical activity of any level or in-
tensity reduces the risk factors for CVD including BMI, fasting 
glucose, and systolic blood pressure (32, 53 , 54). The reduction 
in CVD risk factors regardless of intensity of physical activity is 
important because measurements used to assess physical activity 
and the effects of exercise can vary in people with obesity. For ex-
ample, maximal oxygen consumption (VO₂max), which is a key 
indicator of aerobic �tness, can be interpreted as absolute 
VO₂max, re�ecting intrinsic aerobic capacity, or can be adjusted 
for fat-free mass or lean body mass, offering a more accurate 
measure of muscle endurance in obese individuals (55).

Effects of Obesity and Exercise on Metabolic Tissues

Exercise attenuates the effects of obesity by inducing molecu-
lar adaptations to distinct organs. Crucial metabolic organs 
impacted by obesity include adipose tissue, liver, and skeletal 
muscle. Speci�c exercise-induced adaptations to these meta-
bolic tissues that can combat obesity are discussed below.

Exercise and white adipose tissue in obesity

Adipose tissue is a highly dynamic tissue that adapts to 
changes in energy demand. White adipose tissue (WAT) is pri-
marily responsible for insulation and energy storage. It con-
sists of white adipocytes alongside various other cell types 
(56, 57). WAT is divided into 2 main types: subcutaneous adi-
pose tissue (scWAT) and visceral adipose tissue (vWAT). Both 
store lipids as triglycerides, which can then be mobilized and 
used for energy (58). Subcutaneous WAT is found beneath 
the skin and is linked to better insulin sensitivity and glucose 
regulation (59, 60). In contrast, visceral WAT surrounds ab-
dominal organs and is associated with insulin resistance 
(61). These 2 depots differ in their adaptations to exercise 
and associations with insulin sensitivity, suggesting distinct 
physiological functions of these 2 subclasses of WAT.

Exercise-induced adaptations to WAT include an increase 
in mitochondrial activity and endocrine function in humans 
(62-65) and enhanced thermogenic gene expression alongside 
mitochondrial activity in rodents (13, 66-71). Exercise also in-
duces sex-speci�c adaptations in humans (63, 72) and rodents 
(70, 71, 73), demonstrating the importance of investigating 
both sexes to completely understand the exercise-induced effects 
on WAT. In this section, we will discuss obesity-associated alter-
ations to WAT, speci�cally in�ammation, mitochondrial activ-
ity, endocrine activity and thermogenic remodeling, and how 
exercise affects these modulations (Fig. 2A, Table 1).

In�ammation in WAT. Obesity induces various adaptations to 
WAT (94-96). Adipocytes undergo both an increase in size 
(hypertrophy) and number (hyperplasia) to accommodate 

increased fat storage in obesity (97). The increase in fat storage 
disrupts multiple cellular mechanisms, including mitochondrial 
biogenesis and glucose and lipid metabolism, all of which have 
detrimental effects on the normal function of adipocytes (43, 49, 
98, 99). Obesity is associated with low-grade in�ammation of 
WAT and in�ltration of pro-in�ammatory M1 macrophages 
and increased tumor necrosis factor alpha (TNF-α) and interleu-
kin 6 (IL-6) expression (100, 101). Additionally, WAT releases 
pro-in�ammatory adipokines such as TNF-α, IL-6, leptin, and 
resistin, which promotes in�ammation of WAT (102). The 
obesity-associated in�ammation and increased free fatty acids 
contribute to adipose tissue insulin resistance (94).

In contrast, exercise decreases obesity-associated in�amma-
tion and reduces �brosis in WAT and improves glucose and in-
sulin homeostasis (12, 103, 104). Six weeks of wheel cage 
exercise in mice with diet-induced obesity (DIO) reduces ex-
pression of in�ammatory markers such as TNF-α in the 
vWAT, while 12 weeks of aerobic and resistance training re-
duces circulating levels of TNF-α in mice with high-fat diet 
(HFD)-induced glucose intolerance (69, 79). An important 
pathway that mediates in�ammation in WAT in response to 
exercise is the kynurenine pathway (105, 106). The kynurenine 
pathway is a catabolic pathway that breaks down tryptophan 
to generate an intermediate metabolite kynurenine (KYN) 
which can be further processed into kynurenic acid (KYNA) 
with the oxidized form of nicotinamide adenine dinucleotide 
(NAD+) as the �nal product (107). In mice, increased circulat-
ing KYN impairs insulin sensitivity and lipid homeostasis in 
adipocytes through the aryl hydrocarbon receptor (AhR)/signal 
transducer and activator of transcription 3 (stat3)/IL-6 signal-
ing pathway, suggesting the impact of excess KYN accumula-
tion adversely affecting metabolic health (108). Recent 
studies have shown that circulating KYNA, the metabolically 
bene�cial byproduct of KYN metabolism, is signi�cantly in-
creased with exercise in mice (109). The increase in KYNA re-
duced palmitate-induced in�ammation and insulin resistance 
in adipose tissue and skeletal muscle of HFD mice via the G 
protein–coupled receptor 35 (Gpr35)/AMP-activated protein 
kinase (AMPK) and elevated sirtuin 6 (SIRT6) pathways 
(110). Treatment with KYNA increased AMPK phosphoryl-
ation, elevated SIRT6 expression, promoted fatty acid oxida-
tion in muscle, and inhibited fat storage in adipose tissue, 
while inhibition of AMPK and SIRT6 via siRNA results in 
the reversal of KYNA-mediated lipogenesis in 3T3-L1 adipo-
cytes and fatty acid oxidation gene expression in C2C12 myo-
cytes. In addition, 2 weeks of KYNA treatment improved 
glucose tolerance and reduced weight gain in mice fed HFD 
(111). Mechanistically, KYNA activates GPR35, leading to 
the upregulation of thermogenic genes such as peroxisome 
proliferator-activated receptor-γ coactivator 1-α (Pgc1α), PR 
domain containing 16 (Prdm16), and cell death inducing 
DFFA like effector A (CIDEA), and expression of oxidative 
phosphorylation (OXPHOS) in WAT (111). These �ndings 
highlight KYNA’s potential role in maintaining systemic meta-
bolic balance (111).

Studies in humans have shown that exercise training is asso-
ciated with a reduction of adiposity, BMI, BFP, and circulating 
in�ammatory cytokines such as IL-6 and TNF-α (112, 113). A 
recent study has shown that 3 weeks of aerobic training resulted 
in adaptations to the scWAT of overweight women, with a sig-
ni�cant decrease in levels of transcripts and proteins related to 
in�ammation and extracellular matrix without an impact on 
body and fat mass, suggesting molecular adaptations to 
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mechanisms of WAT rather than a direct reduction of WAT 
mass (114). Aerobic and resistance training programs up to 4 
months resulted in a decrease in scWAT in�ammatory gene ex-
pression such as IL-6, IL-8, and TNF-α and CD36 macrophage 
marker in patients with obesity or those over 71 years of age 
(115, 116). Similar to animal models, elevated levels of KYN 
are associated with a higher BMI in humans (117), while plasma 
KYNA levels are increased up to 63% in active males participat-
ing in endurance training 1 hour post exercise (118).

In summary, in mice, exercise reduces obesity-associated in-
�ammation and �brosis in WAT, improves glucose and insu-
lin homeostasis, and increases KYNA levels, which enhance 
fatty acid oxidation, reduce fat storage, and improve glucose 
tolerance. Similarly, in humans, exercise reduces adiposity, 
BMI, % body fat, and in�ammatory cytokines such as IL-6 
and TNF-α and increases KYNA levels.

Exercise-induced regulation of mitochondrial activity in WAT. In 
adipocytes, as in other cells, mitochondria govern crucial 
mechanisms such as regulating glucose and lipid homeostasis 
and ATP production through OXPHOS (119-122). Obesity is 
associated with mitochondrial dysfunction in adipocytes; this 
can be attributed to the fact that under obese conditions there 
is a substrate overload due to increased lipid and glucose avail-
ability, resulting in ampli�ed OXPHOS and consequently an 
increase in reactive oxygen species (ROS) as a byproduct of 
the OXPHOS cycle (123-126).

In rodent models fed HFD, the mitochondrial function of adi-
pocytes is severely impaired (123-126); mitochondrial proteins 
such as PGC1α are decreased, and there is an increase in ROS 
and mitochondrial fragmentation via �ssion, ultimately result-
ing in mitophagy (123-126) Additionally, mice with an adipose 
tissue–speci�c PGC1α deletion, when challenged with a HFD, 
develop insulin resistance and a reduction in OXPHOS proteins 
in the WAT, further emphasizing the pivotal role of mitochon-
dria in adipocytes to maintain metabolic homeostasis (127).

In other rodent studies, a 12-week HFD resulted in a signi�-
cant reduction in genes and metabolites associated with mito-
chondrial glucose oxidation, including 1,5-anhydroglycol 
(1,5-AG), a plasma marker of short-term glycemic regulation. 
Additionally, glucose-6-phosphate, a key glycolytic intermedi-
ate, was reduced, alongside decreased pyruvate dehydrogenase 
lipoamide kinase isozyme 4 (Pdk4) expression, which plays a 
role in suppressing mitochondrial pyruvate dehydrogenase activ-
ity (98). With regard to lipid oxidation, studies in rats with DIO 
have shown reduced fat oxidation and lower carnitine palmitoyl 
transferase I (CPT1) mRNA expression in vWAT, suggesting im-
paired mitochondrial fatty acid oxidation (99). Similar to in vivo 
studies, in vitro studies in 3T3-L1 cells have shown that exposure 
to high glucose and free fatty acid induces morphological 
changes to the mitochondria, an increase in the mito�ssion pro-
tein DRP1, and a decrease in mitochondrial biogenesis proteins 
PGC1α and nuclear respiratory factor 1 (NRF1) (128).

Exercise, however, signi�cantly enhances mitochondrial func-
tion in rodents (13, 66, 67, 74, 75). Four weeks of swimming 

Figure 2. a) Molecular alterations to white adipose tissue (WAT) in conditions of obesity and the effect of exercise on altered mechanisms in animals and 

humans. Obese conditions lead to a pro-inflammatory state of WAT with an increase in M1 macrophages, pro-inflammatory adipokine release, enhanced 

triglyceride (TG) accumulation and reactive oxygen species (ROS) generation. Lipid and glucose metabolic pathways are downregulated and 

mitochondrial activity is reduced such as fatty acid oxidation. Exercise potentially mitigates these adverse effects through various modulations, 

specifically an increase in transcription of mitochondrial activity genes such as Nrf1 and Tfam, a decrease in ROS generation, increase in beiging marker 

Prdm16 (specific to animals), increased glucose uptake via glucose transporter translocation to the membrane and release of anti-inflammatory 

adipokines and AdEVs. Arrows indicate alterations reported in animals (dark brown; arrows on left) and humans (light brown; arrows or ´x´on right). b) 

Molecular alterations to brown adipose tissue (BAT) in conditions of obesity and the effect of exercise on altered mechanisms in animals and humans. 

Obese conditions lead to a pro-inflammatory state of BAT, accumulation of ROS generation and downregulation of lipid and glucose metabolic pathways. 

Exercise has profound effects on the various obesity-induced modulations, specifically an increase in transcription of mitochondrial activity genes such as 

Nrf1 and Tfam, a decrease in ROS generation, increase in beiging marker Prdm16 (specific to animals), increased glucose uptake via glucose transporter 

translocation to the membrane and release of batokines. Arrows indicate alterations reported in animals (black) and humans (red). Figure made in 

Biorender. 

Abbreviations: AdEVs; adipose-derived extracellular vesicles; AMPK; AMP-activated protein kinase; BIP, binding immunoglobulin protein; CHOP, C/EBP homologous protein; 
CPT1B; carnitine palmitoyltransferase 1B; KYNA; kynurenic acid; NF-κB, Nuclear factor kappa B; Nrf1; nuclear respiratory factor 1; OXPHOS; oxidative phosphorylation; 
PGC1α, peroxisome proliferator-activated receptor γ coactivator 1 α; PPARγ, peroxisome proliferator-activated receptor γ; PRDM16, PR domain containing 16; Tfam; mitochondrial 
transcription factor A; UCP1, uncoupling protein 1.
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Table 1. Key findings on the effects of exercise on WAT and BAT in potentially mitigating obesity-induced changes to adipose tissue in animal 

and human studies

WAT Intervention Outcomes

Animal 
Studies

11 days of voluntary wheel cage training in mice (13) • Increased expression of beige adipocyte markers such as UCP1 and 
Prdm16 and presence of multilocular cells in scWAT of trained 
mice

• Increased basal OCR of scWAT from trained mice
• Increased vascularization markers such as Vegfa, pdgf in scWAT 

of trained mice

2 hours of daily swimming for 4 weeks in rats (74) • Increased pgc1α expression in vWAT and scWAT of mice

11 days of voluntary wheel cage training in mice (67) • Increased expression of mitochondrial function markers such as 
pgc1α, nrf1, tfam, and UCP1 in scWAT of trained mice

• Increased basal OCR and maximal respiratory capacity of scWAT 
from trained mice

• Increased basal OCR of vWAT from trained mice

6 weeks of training with either voluntary wheel cage training or treadmill 
training in HFD mice (66)

• Both training modalities increased Cd137 expression (beiging 
marker) increased citate synthase activity in scWAT of trained 
mice

• No changes in scWAT mitochondrial respiratory capacity with 
either of the training modalities was observed in trained mice

8 weeks of training, 5 days/week, 45 minutes/day of aerobic (treadmill 
training) or resistance training (ladder climbing with weights) or HIIT 
(treadmill training at varying speeds) in obese mice (75)

• Increased expression of pg1α and UCP1 in vWAT of aerobic 
exercise-trained mice

1 month of a swimming protocol for 90 minutes daily, 5 days/week in 
mice (76)

• Increased expression of pgc1α, nrf1, tfam, UCP1, and COX IV 
was observed in scWAT of wild type trained mice.

15 weeks of HIIT or moderate intensity exercise via treadmill training for 
5 days/week in mice in addition to 12.5% calorie restriction in obese 
mice (77)

• No changes in thermogenic markers such as UCP1, Prdm16, 
Dio2, and Fgf21 in scWAT and vWAT of both training groups

• Decrease in UCP1 expression in vWAT of HIIT-trained mice

8 weeks of treadmill training, 45 minutes/day, 5 days/week in HFD mice 
(78)

• Decreased expression of mitochondrial protein in scWAT of 
trained mice

6 weeks of voluntary wheel cage training exercise in obese mice (79) • Decreased expression of TNF-α, MCP-1, PAI-1 and IKKβ in 
vWAT of obese trained mice

• Decreased plasma leptin levels of obese trained mice

12 weeks of resistance training (ladder climbing with weights) 3 days/ 
week and aerobic training for up to 60 minutes/day, 5 days/week via 
treadmill in diabetic rats. The rats de-trained for 4 weeks post exercise 
intervention (69)

• Decreased circulating TG, LDL-C, leptin, TNF-α, and fasting 
blood glucose levels in resistance and aerobic trained diabetic rats

• Increased circulating insulin levels in resistance and aerobic trained 
diabetic rats

• De-training resulted in an increase in body weight and circulating 
TG, leptin and TNF-α levels in both exercise-trained diabetic rats

8 weeks of treadmill training, 5 days/week up to 60 minutes in HF/HS 
mice (80)

• Improved glucose tolerance in HF/HS trained mice
• No changes in circulating adiponectin levels in HF/HS trained 

mice

11 days of voluntary wheel cage training in HFD mice (68) • Increased circulating levels of Tgfβ2 in trained chow diet and HFD 
mice

• Increased mRNA expression of Tgfβ2 in scWAT and vWAT and 
increased protein expression of Tgfβ2 in scWAT of trained chow 
fed mice.

11 days of voluntary wheel cage in mice (81) • Increased expression of Rilpl2 and Myo5a in scWAT of trained 
mice

4 weeks of voluntary wheel cage running in HFD mice (82) • Increased expression of circadian rhythm genes including Dbp, 
Tef, Nr1d2, and Per3 in scWAT and vWAT of trained mice

• Decreased expression of ECM remodeling genes thbs1 and sparc 
in scWAT and vWAT of trained mice

Human 
Studies

3 weeks of exercise training consisting of 30-60 minutes of interval 
training and 50 minutes of aerobic training. Training sessions were 
alternated between the 2 protocols each day. The study groups 
included previously active and sedentary individuals (62)

• Pg1α and cpt1β expression and mtDNA content were significantly 
higher in scWAT of active individuals before training.

• Training did not affect the expression of UCP1, Prdm16, pgc1α, 
and cpt1β mRNA levels in scWAT of both groups.

(continued)
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exercise increased expression of Pgc1a in vWAT and scWAT 
(74). In fact, our lab has shown that as little as 11 days of volun-
tary wheel cage running upregulates expression of several genes 
involved in mitochondrial activity such as PGC1α, Nrf1, mito-
chondrial transcription factor A (Tfam) and uncoupling protein 
1 (UCP1) in scWAT (67). These increases in gene expression 

were correlated to improved functional outcomes, as adipocytes 
differentiated from the stromal vascular fraction from vWAT 
and scWAT of exercised mice had increased basal oxygen con-
sumption rates and maximal respiratory capacity when com-
pared to cells isolated from sedentary mice (67). Exercise has 
been reported to affect mitochondrial function in WAT under 

Table 1. Continued

WAT Intervention Outcomes

• No effect on expressions of beige-specific genes such as CD137 
and TBX1 of both groups.

2 weeks consisting of 6 sessions of sprint interval and MICT up to 60 
minutes in IR and healthy participants (83)

• Exercise training increased glucose uptake and decreased fatty acid 
uptake in scWAT and vWAT in both IR and healthy groups.

• Enhanced adipose tissue vasculature and decreased CD36 and 
ANGPTL4 expression in scWAT of IR exercised individuals.

8 weeks of strength and aerobic exercises, 3 times/week in women with 
obesity (63)

• Increased citrate synthase activity in scWAT of exercised cohort
• Decreased mitochondrial uncoupled respiration and UCP1 

expression in exercised cohort.

6 weeks of aerobic training, 4 sessions/week of up to 40 minutes in 
overweight men (84)

• Exercise did not affect mRNA expression of brown and beiging 
markers such as UCP1 and CD137 in scWAT of trained 
individuals.

12 weeks of plyometric exercise combined with HIIT, 3 days/week in 
females with obesity (64)

• Reduced plasma leptin concentration and leptin/adiponectin ratio 
in HIIT + plyometric group

• Reduced plasma HOMA-IR in HIIT + plyometric group

6 weeks of jump rope exercise training, 5 days/week for 40 minutes/day in 
males with obesity (65)

• Increased adiponectin levels in exercised group

7 months of endurance training, 4-5 days/week, 30-60 minutes/day in 
females with obesity (85)

• Decreased circulating leptin and TNFα levels and increased 
adiponectin levels in exercised group

Acute bout of exercise for 30 minutes in individuals with T2D (86) • Increased expression of oncostatin-M in scWAT post exercise

BAT Intervention Outcomes

Animal 
Studies

Exercise training via treadmill, 1 hour/day, 6 times each week for 4 
weeks (87)

• Upregulation of the insulin/AMPK signaling pathway and PPAR/ 
VEGF signaling pathway in BAT of exercised mice

• Downregulation of the Jak-STAT/ErbB/TGF-beta signaling 
pathway in BAT from exercised mice

• Upregulated VEGF and COX2 pathway in BAT from exercised 
mice

Exercise via treadmill training for 40 minutes/day, 5 days/week for 8 
weeks in HFD mice (88)

• Increased brown adipocyte progenitor cells from exercised mice
• Increased differentiation of brown pre-adipocytes into brown 

adipocytes and UCP1 expression in vitro from exercised mice

Exercise via treadmill training for up to 20 minutes and up to 5days/ 
week for 12 months in obese female mice (89)

• Increased expression of pgc1a, prdm16 and UCP1 in BAT from 
exercised mice

Exercise via swimming for 1 hour/day, 5 days/week for 6 weeks in 
HFD-induced metabolic syndrome rats (90)

• Increased expression of UCP1 and PPARϒ-2 in BAT of exercised 
mice

Acute bout of exercise via treadmill for 40 minutes and chronic exercise 
via voluntary wheel cage running for 3 weeks (91)

• Increased circulating levels of batokine 12,13-diHOME

Human 
Studies

6 sessions of MICT or HITT in 2 weeks, up to 60 minutes of each 
session in healthy men (92)

• Exercise training decreased insulin-stimulated glucose uptake in 
BAT of individuals with high BAT activity

• Exercise training had no effect on insulin-stimulated glucose 
uptake in BAT of individuals with low BAT activity

24 weeks of endurance and resistance training, 3-4 times/week 
(150 minutes/week of endurance training and 80 minutes/week of 
endurance training) in healthy adults (93)

• No changes in glucose uptake level in BAT in the exercise trained 
participants

Abbreviations: 12,13-diHOME, 12,13-dihydroxy-9Z-octadecenoic acid; AMPK, AMP-activated protein kinase; BAT, brown adipose tissue; BFP, body fat percentage; 
ECM, extracellular matrix; HFD, high-fat diet; HF/HS, high-fat/high-sugar; HIIT, high-intensity interval training; IL-, interleukin; IR, insulin resistant; LDL-C, 
low-density lipoprotein cholesterol; MICT, moderate intensity continuous training; OCR, oxygen consumption rate; scWAT, subcutaneous white adipose tissue; T2D, 
type 2 diabetes; TG, triglyceride; TNF-α, tumor necrosis factor alpha; Ucp1, uncoupling protein 1; vWAT, visceral white adipose tissue; WAT, white adipose tissue.

6                                                                                                                                                             Endocrine Reviews, 2025, Vol. 00, No. 0

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

2
1
0
/e

n
d
re

v
/b

n
a
f0

1
7
/8

1
6
3
8
6
8
 b

y
 g

u
e
s
t o

n
 1

5
 N

o
v
e
m

b
e
r 2

0
2
5



conditions of obesity. Eight weeks of treadmill training increased 
Pgc1α and UCP1 expression in vWAT (75), while 6 weeks of 
treadmill exercise increased citrate synthase activity in scWAT 
of HFD-trained mice (66).

In humans with obesity, multiple transcription factors of 
mitochondrial biogenesis in WAT, including PGC1α, NRF1, 
TFAM, and OXPHOS proteins, are signi�cantly reduced 
(43, 44, 129). In fact, individuals with obesity have an increase 
in circulating oxidative stress markers, including plasma thio-
barbituric acid reactive substance (TBARS) and urinary 
8-epi-prostaglandin-F2α (8-epi-PGF2α), both of which correl-
ate with high BMI and increased WC (123). Mitochondrial 
oxygen consumption rates and citrate synthase speci�c activ-
ity are also signi�cantly decreased in WAT of individuals with 
obesity, and this negatively correlates with BMI and body 
weight (BW) (130, 131). Interestingly, studies examining 
WAT of monozygotic twin pairs who are lean or obese have 
revealed a decrease in mitochondrial DNA and PGC1α and 
OXPHOS protein, correlating an increase in genes associated 
with in�ammatory pathways and thus suggesting a decrease in 
mitochondrial function as a response to obesity (43 , 49, 132).

In humans, moderate to vigorous aerobic exercise for 3 
weeks increased mitochondrial DNA content and expression 
of adipose regulatory genes peroxisome proliferator-activated 
receptor gamma (PPARγ) and Cpt1β in scWAT, in healthy 
subjects (62), but these increases were not seen in healthy 
male or female subjects after 6 weeks of HIIT (133).

In contrast to rodent studies, the exercise-induced mito-
chondrial adaptations in individuals with obesity is complex. 
Twelve weeks of combined aerobic and resistance training in-
creases mitochondrial respiration of scWAT via enhanced ex-
pression of complex I and II of the electron transport chain in 
women with moderate obesity and a BMI of 30 to 40 kg/m2 

(134). Moreover, 8 weeks of combined aerobic and strength 
training increased mitochondrial energy production in 
scWAT, and elevated citrate synthase activity in women 
with obesity (63). Interestingly, 12 weeks of combined aerobic 
and resistance exercise did not affect OXPHOS and mito-
chondrial biogenesis markers in the scWAT of men with obes-
ity (72). A further understanding of how various exercise 
modalities, exercise duration, and sex in�uence modi�cations 
to WAT depots, speci�cally the mitochondria, in the context 
of obesity warrants further investigation.

Thermogenic remodeling of WAT. An important exercise- 
induced adaptation to rodent adipose tissue is a “beiging” 
of scWAT (67, 135). Adipose tissue is a highly plastic tissue, 
and the plasticity of white adipocytes is bi-directional; cold 
stress and exercise induce a “beige” phenotype to increase 
thermogenic capacity, while obesity does the opposite and in-
creases a “whitening” of the adipose tissue in animal models 
(136-138).

In rodents, exercise induces a beige phenotype in scWAT 
which is sustained up to 3 weeks post-exercise training (13, 
67, 76, 135). This phenotype is observed more prominently 
in male rodents, as well as an increase in genes and pathways 
related to lipid utilization, aerobic metabolic pathways, tissue 
remodeling, and angiogenesis, while exercise in female ro-
dents enhances pathways involved in adipogenesis and insulin 
signaling (70, 73).

In rodent models of HFD, the role of exercise to induce beig-
ing has been inconsistent; studies have reported differing effects 
of exercise on the expression of Ucp1, a mitochondrial protein 

which facilities non-shivering thermogenesis, dissipating en-
ergy in the form of heat (139, 140). One study demonstrated 
that 8 weeks of aerobic exercise increased expression of 
UCP1 in scWAT of HFD mice but decreased mitochondrial 
content protein (74), while others showed that 15 weeks of 
HIIT or moderate intensity exercise had no effect on thermo-
genic markers including UCP1 and Prdm16 in scWAT of 
HFD mice (77, 78). These studies shed light on the fact that al-
terations to UCP1 gene expression are not a direct measure of 
its activity and subsequent metabolic outcomes, and the �nd-
ings indicate that to uncover the functional relevance of an in-
crease in UCP1, other direct measures of thermogenic capacity 
such as indirect calorimetry and infrared thermography are 
essential.

Interestingly, exercise does not induce a beiging of scWAT 
in humans. Multiple studies have reported no difference in 
the expression of beiging markers UCP1 and Prdm16 in lean 
and obese populations after exercise (72, 84, 141). In contrast, 
studies have shown that the tissue does have the capability to 
beige, but exercise is not an effective stimulus (142, 143). 
Several hypotheses have been brought forward to address 
the phenomenon of the exercise-induced beiging observed in 
rodents. Firstly, in contrast to cold and pharmacological stim-
uli, which trigger an increase in thermogenesis to compensate 
for heat loss, exercise itself is a heat-generating activity (144- 
146). Another interesting perspective is that exercise decreases 
the size of lipid droplets and overall adipocyte size in scWAT, 
leading to reduced insulation and a potential cold stress, war-
ranting the need for increased thermogenesis in rodents (147- 
149). In line with this idea is the fact that at room temperature, 
which for humans is ∼20-22 °C, mice are under a minor cold 
stress (150). The optimal comparable temperature for mice to 
study metabolic responses is thermoneutral conditions, which 
is 30 °C (150). Importantly, when mice are exercised at ther-
moneutral temperatures, the beiging effect of WAT is blunted, 
supporting the idea that cold stress contributes to the beiging 
of scWAT in rodents (151, 152).

Collectively, these �ndings suggest that exercise triggers the 
thermogenic remodeling of WAT in rodents and does not in-
duce beiging in human scWAT. Future studies focused on ad-
dressing these differences, with a focus on obesity, could 
potentially provide greater insight and translational relevance 
to the exercise-induced adaptations of WAT.

Endocrine function of WAT. WAT secretes a myriad of adipo-
kines which play a crucial role in regulating energy storage 
and expenditure, glucose and lipid metabolism, in�ammatory 
responses, and insulin sensitivity (68, 153-157). Adipokines 
can act in an autocrine, paracrine, or endocrine manner. 
Here we will discuss the endocrine function of WAT, speci�c-
ally leptin, adiponectin, and transforming growth factor beta 
receptor 2 (TGF-β2), oncostatin-M and adipose-derived 
extracellular vesicles (AdEVs).

Leptin. Leptin is produced by adipose tissue and plays an es-
sential role in maintaining the balance between energy intake 
and energy expenditure by binding to leptin receptors (LepR) 
(153). LepR is expressed on several organs throughout the 
body, including the hypothalamus of the brain (158-160). 
Leptin binding to LepR results in the activation of down-
stream pathways and subsequently increased energy expend-
iture and reduced food intake (153).
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In animals, circulating leptin levels are proportional to body 
fat mass, with increasing obesity leading to increased leptin 
concentrations (154). In mice, treatment with leptin reduces 
hyperglycemia and improves insulin resistance (161-164). 
Leptin activates AMPK in other metabolic tissues, which pro-
motes fatty acid oxidation, reduces fat accumulation, and en-
hances insulin sensitivity (165). Chronic exercise lowers BW, 
which coincides with reduced leptin levels in both obese and 
nonobese conditions (166, 167).

In humans, individuals with obesity have higher leptin lev-
els compared to lean individuals (155). Elevated leptin is also 
associated with an increased incidence of metabolic syndrome 
(168, 169). While short-term and moderate intensity exercise 
do not signi�cantly impact leptin levels, chronic training (up 
to 12 months) reduces circulating leptin, and this is associated 
with a decrease in % body fat and fat mass (170-173). An add-
itional study found that 12 weeks of HIIT combined with 
plyometric training reduced leptin levels, which coincided 
with reduced fat mass and with improvements in lean body 
mass in obese subjects (64).

Adiponectin. Adiponectin is one of the most abundant adipo-
kines, predominantly expressed in WAT, and known for its anti- 
in�ammatory, anti-obesity, and antidiabetic properties (156, 
157). In animal models of obesity and diabetes, administration 
of adiponectin improves hyperglycemia, while its absence leads 
to reduced insulin sensitivity (174-176). Exercise elevates plasma 
adiponectin in rodents, alleviating metabolic disorders such as 
T2D and CVD (80, 177-179). Furthermore, 10- to 12-week 
exercise interventions have been associated with increased ex-
pression of adiponectin-related myocardial receptors in apolipo-
protein E protein knockout mice and improved endothelial 
function in the aorta of T2D mice (178, 179).

Similarly in humans, adiponectin levels are reduced in individ-
uals with obesity and diabetes across all age groups, whereas 
increased adiponectin is linked to improved insulin resistance 
(180-186). Genetic mutations in adiponectin-related genes are 
associated with a heightened susceptibility to metabolic disor-
ders (187-189). Human studies indicate that exercise training, 
ranging from 6 weeks to 24 months, results in increased adi-
ponectin levels, coinciding with improved triglyceride levels, 
insulin sensitivity, and cardiorespiratory �tness which corre-
lated with a decrease in body fat (65, 85, 190). Notably, just 
2 or 3 sessions of aerobic exercise can elevate adiponectin lev-
els by 260% independent of changes in BW. Additionally, 
physical training enhances the expression of adiponectin re-
ceptors in muscle, as well as AMPK, highlighting adiponec-
tin’s potential role in mediating insulin resistance in 
individuals with metabolic syndrome (191, 192).

Transforming growth factor beta receptor 2. To evaluate 
whether exercise-induced adaptations to WAT contribute to 
bene�cial effects on metabolic health, our lab investigated the ef-
fects of transplantation of scWAT from exercise-trained mice 
into sedentary mice (13). Interestingly, scWAT transplanted 
from exercise-trained mice resulted in improved glucose toler-
ance of recipient mice at 9 days post-transplantation even under 
HFD conditions (13, 68). The exercise-trained scWAT mediated 
metabolic improvements via the adipokine TGF-β2, which is in-
volved in fatty acid and glucose metabolism (68). Additionally, 
mice with an adipose tissue–speci�c deletion of TGF-β2 did not 
display exercise-induced systemic glucose uptake, emphasizing 
its crucial role in metabolic adaptations (68).

In humans, 12 weeks of endurance exercise increase expres-
sion of TGF-β2 in the scWAT of healthy male subjects (68) 
and a combination of MICT, HIIT and resistance training 
for 6 weeks and a 2-week high-intensity training protocol in-
creased circulating TGF-β2 levels in healthy male subjects 
(68). Together these data identi�ed a previously unknown 
role for exercise-induced adipokine TGF-β2 to regulate glu-
cose and lipid metabolic pathways that may affect metabolic 
health.

Adipose tissue extracellular vesicles. Extracellular vesicles (EVs) 
are a diverse group of lipid-enclosed nanoparticles that function 
as messengers between tissues when released into the extracellu-
lar space (193-195).The main categories of EVs include exo-
somes, microvesicles, and apoptotic bodies (196). Various cell 
types, including adipocytes, secrete EVs (AdEVs), which con-
tain bioactive molecules such as microRNAs (miRNAs), mes-
senger RNAs (mRNAs), DNA, proteins, lipids, and 
metabolites. These EVs are believed to play a signi�cant role 
in obesity and its associated comorbidities (197-200).

An important study highlighted the critical role of circulating 
AdEVs; in mice lacking the adipose-speci�c miRNA-processing 
enzyme Dicer, circulating miRNA levels were signi�cantly re-
duced. Transplantation of adipose tissue reversed this effect, 
underscoring the importance of adipose tissue as a source of cir-
culating miRNAs (201). Rodent studies have shown that AdEVs 
contribute to obesity through various cargoes. For example, a 
previous study demonstrated that treatment with vWAT-EVs 
from obese mice induced insulin resistance in recipient mice 
(202). This effect was mediated by retinol binding protein 4 
(RBP4) in vWAT-EVs, which activated macrophages and pro-
moted an in�ammatory state by increasing IL-6 and TNF-α pro-
duction. Similarly, other studies have shown that vWAT-EVs 
from obese mice have reduced levels of miR-141-3p, a 
miRNA involved in AKT phosphorylation in recipient hepato-
cytes, which enhances insulin signaling. A decrease in 
miR-141-3p levels impaired insulin signaling in vitro, leading 
to reduced insulin sensitivity (203).

Aerobic exercise in DIO mice alters circulating miRNA lev-
els, which correlate with miRNA expression in both the liver 
and WAT. Speci�cally, miR-22 levels were negatively corre-
lated with the expression of adipogenesis and insulin sensitivity 
markers in WAT, as well as the presence of liver steatosis (204).

In individuals with obesity, changes to the size, number, and 
cargo composition of AdEVs have been reported, with implica-
tions for insulin signaling and in�ammatory pathways (205- 
208). Importantly, several miRNAs, including miR-23b, 
miR-4429, miR-148b, and miR-4269, are differentially ex-
pressed in adipocytes from lean and obese individuals. 
Pathway analysis revealed alterations in TGF-β and Wnt/ 
β-catenin signaling, suggesting an impact on the development 
and progression of in�ammatory and �brotic activities (209).

Studies examining the effects of exercise on EVs in humans 
have shown that acute bouts of exercise rapidly increase EV 
release into circulation, with signatures linked to endothelial 
cells and leukocytes in healthy male subjects (210-212). 
Interestingly, when comparing normal-weight and male and 
female subjects with obesity, it was found that normal-weight 
individuals exhibited higher levels of microvesicles after exer-
cise than individuals with obesity. Additionally, exercise re-
duced circulating EVs more in male than female individuals 
(213). While these studies highlight the role of EVs in obesity 
and exercise, they primarily focus on circulating EVs. Further 
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research speci�cally targeting AdEVs in response to obesity 
and exercise is needed to better understand these changes 
and their potential for therapeutic exploitation in metabolic 
diseases. These data show that exercise has profound effects 
on WAT, including changes in endocrine activity, and identify 
a unique role for adipose tissue–mediated EV communication 
as a potential contributor to improved metabolic health.

Exercise induces adaptations to different cell types within WAT.

Adipose tissue is a heterogeneous tissue, including adipocytes 
and the stromal vascular fraction, which comprises pre- 
adipocytes, mesenchymal cells and immune cells among 
others (214, 215). Studies have found that exercise-induced 
modi�cations to adipose tissue also mediate distinct changes 
to the various cells residing within adipose tissue which con-
tribute to WAT’s endocrine function. One recent study using 
a mouse model highlighted a unique role of exercise modu-
lated molecular shifts to mesenchymal stem cells in obesity 
(82). Speci�cally, 6 weeks of HFD resulted in an increase in 
extracellular matrix (ECM) remodeling genes in mesenchymal 
stem cells of WAT with implications in �brogenesis and in-
�ammatory roles in both humans and rodents (82). Four 
weeks of exercise attenuated the increased expression of 
ECM-related genes (82). HFD-induced obesity also downre-
gulated circadian rhythm genes associated with insulin sensi-
tivity and adipogenesis in mesenchymal stem cells, but 
exercise reversed this effect and increased expression of these 
genes (82).

Another distinct �ning is the identi�cation of oncostatin-M, 
an exercise-induced adipokine. A recent study showed that 
the cytokine oncostatin-M was increased in the scWAT tran-
scriptome of patients who were normoglycemic or had T2D 
after an acute bout of exercise (86). Further investigations 
showed that oncostatin-M was predominantly produced by 
the immune cell fraction within scWAT and in vitro treatment 
of human adipocytes with oncostatin-M results in enhanced 
MAPK signaling and lipolysis (86). After a 3-hour recovery 
period, the oncostatin-M receptor gene was increased in skel-
etal muscle cells, hinting at the possible crosstalk of adipose 
tissue and muscle via immune cell mediated oncostatin-M re-
sponse to exercise (86, 216). These data emphasize the role of 
exercise to mediate potential bene�cial effects to speci�c cell 
types within WAT which positively contribute to the endo-
crine function of WAT.

Are exercise-induced adaptations to scWAT required for the bene-

%cial effects of exercise?. Given the importance of 
exercise-induced adaptations to WAT, another study investi-
gated the bene�cial effects of exercise in the absence of 
scWAT by having mice undergo an 11-day exercise protocol 
after removal of scWAT (135). Surprisingly, scWAT removal 
had minimal effects on improved glucose and insulin homeo-
stasis in exercised mice, with no compensatory changes ob-
served in other metabolic tissues such as skeletal muscle. This 
�nding provides a unique perspective, as most rodent studies 
indicate that exercise-induced adaptations to scWAT contrib-
ute to improved metabolic health, while these �ndings suggest 
that the various exercise-induced adaptations to scWAT and its 
regulation of glucose and insulin homeostasis are not linked 
but can occur independently of one another (135).

Together these data indicate that exercise mediates favorable 
outcomes on the various functions of WAT. Importantly, 
modulation of WAT’s mitochondrial and endocrine activity 

in both humans and rodents and rodent-speci�c thermogenic 
plasticity highlights the potential of WAT to improve meta-
bolic health as a response to exercise, which can be used to 
combat obesity and obesity-related diseases.

Exercise and brown adipose tissue adaptations in obesity

In rodents, brown adipose tissue (BAT) can be found in several 
regions, including the interscapular, mediastinal, perirenal, axil-
lary, and cervical areas (217). In humans, BAT is predominantly 
found in the cervical, supraclavicular, axillary, and paraverte-
bral regions (218, 219). BAT has emerged as a potential thera-
peutic target to combat obesity and cardiometabolic diseases, 
due to its inverse correlation with the occurrence of T2D and 
CVD in humans (220). However, the precise underlying mech-
anisms of how BAT is associated with combating obesity are un-
known (218, 221). Alterations to BAT’s mitochondrial and 
thermogenic functions and endocrine activity in obesity, and a 
potential role for exercise, will be discussed below (Fig. 2B, 
Table 1).

Mitochondrial and thermogenic function of BAT. BAT’s thermo-
genic capacity closely relies on its mitochondrial activity, mainly 
due to the presence of UCP1 in the mitochondria. Impaired BAT 
mitochondrial activity has been reported in animals with obesity 
(222-224). In rodents, HFD induces obesity and hyperglycemia 
and elevates mitochondrial ROS generation which coincides 
with increased in�ammation in BAT (223). A recent study 
with mice on HFD for 8 weeks revealed that a BAT-speci�c de-
�ciency of thioredoxin-2 (TRX2), a mitochondrial redox pro-
tein, disrupts mitochondrial function by speci�cally enhancing 
the generation of mitochondrial ROS and results in the cytosolic 
release of mtDNA (225). These mitochondrial aberrations result 
in the activation of an immune response triggering the cyclic 
GMP–AMP synthase (cGAS)–stimulator of interferon genes 
(STING) pathway and NOD-like receptor protein-3 (NLRP3) 
in�ammasome pathways.

Exercise in murine models has shown favorable outcomes 
in obesity by affecting mitochondrial activity and thermogen-
esis (67, 90). Studies have shown that 4 to 8 weeks of aerobic 
exercise (swimming or treadmill) in HFD-induced obese mice 
increased BAT mass, expression of thermogenic genes, and ex-
pression of markers associated with glucose and lipid metab-
olism (87, 88, 90), and 12 months of treadmill training 
preserved expression of thermogenic genes in BAT in obese 
aged mice (89). However, several other studies have shown 
that exercise training either did not affect BAT mass or 
UCP1 expression (136, 226, 227) or did not increase Ucp1 
protein expression and reduced basal oxygen consumption 
rates (67). These discrepant data are of interest, as it is not 
clear why exercise, which is a thermogenic activity, would re-
quire an increase in the thermogenic activity of BAT.

With regard to the role of BAT in humans, a recent retrospect-
ive analysis of 52 487 patients reported that individuals with the 
presence of BAT detected via 18F-�uorodeoxyglucose positron 
emission tomography–computed tomography scans (FDG- 
PET CT) scans had a lower odds of T2D and lesser association 
with cardiometabolic diseases (220). These results were ampli-
�ed in individuals with obesity, indicating a role for BAT to at-
tenuate obesity-associated diseases (220). In another human 
study, there was no difference in BAT volume or activity among 
lean subjects and subjects with obesity; however, there was a 
strong inverse correlation between BAT volume, cold-induced 
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thermogenesis, FDG uptake, and visceral adipose tissue (228). 
Other studies found that metabolically healthy overweight or in-
dividuals with obesity had a higher presence of BAT when com-
pared to their metabolically unhealthy counterparts, and 
individuals with obesity and active BAT had lower visceral fat 
mass than those without detectable BAT activity (229, 230), 
highlighting a potential role for BAT to attenuate 
obesity-associated outcomes.

Studies investigating the effects of exercise on BAT in hu-
mans have shown a minimal effect on the thermogenic role 
of BAT. A comparative study in male subjects showed that 2 
hours of cold exposure resulted in signi�cantly lower BAT ac-
tivity measured by FDG-PET CT scans in endurance athletes 
when compared to sedentary individuals (231), indicating 
that exercise training decreased BAT activity. Another study 
revealed that exercise training reduces insulin-stimulated glu-
cose uptake in BAT in individuals with detectable BAT activ-
ity (92). A recent human trial, ACTIBATE, reported that 
24-weeks of endurance and resistance training did not affect 
glucose uptake in BAT or BAT mass, implying that BAT’s abil-
ity to take up glucose is not affected by exercise (93). The ef-
fect of exercise in humans has mostly been investigated in 
healthy individuals and it is unclear if exercise would induce 
similar effects in BAT in people with obesity. It is also import-
ant to note that the standard measurement technique to meas-
ure BAT activity is FDG-PET CT, which solely relies on BAT’s 
ability to take up glucose, using an indirect substrate uptake 
mechanism to indicate activity. Alternative methods, includ-
ing infrared thermography and near-infrared time-resolved 
spectroscopy, have also reported reliable assessment of human 
BAT (232, 233); T2 mapping, which uses magnetic resonance 
imaging to measure fat T2 relaxation time, based on BAT hav-
ing higher water compared to WAT without requiring cold ex-
posure to detect BAT (234, 235) is another alternative 
method. However, the use of these alternative techniques 
has not been optimized to determine potential effects of exer-
cise on BAT.

Endocrine activity of BAT. Although these studies emphasize 
that exercise does not increase BAT mass or the ability of 
BAT to take up glucose, some studies have shown that exercise 
can possibly alter BAT’s endocrine activity (91, 236). In fact, 
in the previously described ACTIBATE study, endocrine fac-
tors from BAT were not measured. Recent studies have iden-
ti�ed several factors released from BAT in response to exercise 
(237); here we will discuss 2 of these batokines, including 
12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) 
and �broblast growth factor 21 (FGF21) in the context of ex-
ercise and obesity.

12,13-diHOME. 12,13-Dihydroxy-9Z-octadecenoic acid 
(12,13-diHOME), is a lipokine released from BAT in response 
to acute and chronic cold and exercise in humans and is nega-
tively correlated with BMI, adiposity, circulating triglycerides, 
and insulin sensitivity, and positively correlated with VO2 

peak (91, 238).

In rodents, 12,13-diHOME is increased in response to both 
acute and chronic exercise and cold exposure. When mice 
underwent surgical removal of the interscapular BAT and 
then were subjected to an acute exercise protocol, there was 
no elevation in 12,13-diHOME levels, con�rming that the 
exercise-induced increase in 12,13-diHOME was BAT speci�c 
(91). Acute treatment of 12,13-diHOME results in increased 

fatty acid uptake into skeletal muscle both in vivo (Luc 
ActaCre mice) and in myotubes in vitro (C2C12 cells) and 
brown adipose tissue, and the heart and increased cardiac 
function (91, 238, 239), and sustained overexpression of 
12,13-diHOME attenuated BW gain and preserved cardiac 
function in mice fed a high-fat diet (HFD) (239). These data 
highlight an important endocrine role for BAT in response 
to exercise.

FGF21. FGF21, a hormone primarily released by the liver, 
plays a crucial role in glucose and lipid metabolism (240, 
241). It is released from WAT and BAT in response to cold 
stimuli and β-adrenergic pathway stimulation in rodents 
(242-244). Studies have shown that BAT transplantation in 
mice leads to a 5-fold increase in serum FGF21 concentrations 
and 2-fold increase in FGF21 protein expression in endogen-
ous BAT which coincided with improved glucose tolerance 
and increased insulin sensitivity (245, 246).

In humans, studies have shown that neonates have a signi�-
cant expression of both FGF21 and UCP1 in BAT and mild 
cold exposure increases circulating FGF21 levels indicating 
the possible link between FGF21 and BAT related thermogen-
esis in humans (247, 248).

Acute and chronic exercise increases circulating FGF21 levels 
in humans (236, 249) and rodents (249), but the direct effects of 
exercise on FGF21 expression in and release from BAT in re-
sponse to exercise have not been established. Investigating the 
effect of BAT to mediate FGF21 in response to exercise in the 
presence of obesity could potentially reveal new roles for BAT 
to mediate FGF21. Collectively, these �ndings suggest that exer-
cise plays a distinctive role in enhancing the endocrine function 
of BAT while minimally affecting glucose uptake into BAT in 
human subjects.

Obesity driven alterations to the liver

The liver is an essential regulator of whole-body metabolic 
homeostasis via its role in lipid and glucose metabolism (250- 
252). Under nonobese conditions, fatty acid storage in the 
form of triglycerides and fatty acid oxidation form a tightly regu-
lated balance which results in less than 5% of triglyceride levels in 
the liver (250). Under obese conditions, mechanisms underlying 
adipose tissue and liver crosstalk are altered. For example, circu-
lating fatty acid levels are increased due to adipose tissue dysfunc-
tion, resulting in ectopic storage in the liver. This improper 
storage contributes to the downregulation of hepatic mitochon-
drial and cellular functionality, yielding an increase in oxidative 
stress (253-256). This increase in circulating fatty acid is often 
coupled with low-grade systemic in�ammation which promotes 
the activation and in�ltration of hepatic immune cells and conse-
quently in�ammation and �brogenesis (253-256). These cellular 
and molecular abnormalities have prompted the generation of a 
large body of studies which have shown that obesity can contrib-
ute to the development and progression of metabolic dysfunc-
tion–associated fatty liver disease (MAFLD) and MASH (257- 
261).

Exercise has emerged as one of the key lifestyle modi�ca-
tions recommended to patients with obesity concurrently di-
agnosed with MAFLD/MASH (31, 46, 52, 262-265). The 
effects of exercise to potentially ameliorate obesity-related 
MAFLD and MASH will be discussed below.
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Exercise-induced modulations to the liver in obesity. Numerous 
studies have reported altered glucose and lipid metabolism 
in MASH with signi�cant effects on pathways involved in gly-
colysis, gluconeogenesis, and fatty acid oxidation. Animal 
models of diet-induced obesity have shown an upregulation 
of enzymes involved in glycolysis, like hexokinase 2, phospho-
fructokinase muscle isoform, and pyruvate kinase muscle iso-
form (266) and enhanced hepatic gluconeogenesis (267-269). 
Modi�cations in lipid metabolism also contribute to MASH 
progression, including increased de novo lipogenesis, lipid up-
take, and fatty acid oxidation. Fatty acid oxidation–related 
genes such as PPARα, PGC1α, and CPT1α and fatty acid 
translocase receptors CD36 and FAT binding protein 1 
(FABP1) are signi�cantly upregulated in animal fatty liver 
models indicating the increased uptake and oxidation of fatty 
acids which consequently promote the disruption of hepatic 
insulin sensitivity (270-274).

Exercise is highly effective in mitigating MASH and MAFLD. 
Studies show that various forms of exercise enhance insulin sig-
naling, improve glucose tolerance, and reduce liver steatosis in 
animal models (264, 275-279). For instance, HIIT improves glu-
cose tolerance and decreases markers of hepatic lipogenesis such 
as PPARγ, diacylglycerol O-acyltransferase 1 (Dgat1), 
acetyl-CoA carboxylase alpha (Acaca), and acetyl-coenzyme A 
carboxylase beta (Acacb) (264). Four weeks of exercise also de-
creased gluconeogenesis enzymes such as fructose-1,6- 
bisphosphatase 1, alongside increased Ser473-phosphorylation, 
suggesting the activation of the PKB/Akt insulin signaling path-
way (278). Twelve weeks of strength training in DIO rats also 
correlated with reduced hepatic fatty acid storage and fatty 
acid uptake receptor CD36 expression, alongside lipogenesis 
marker sterol regulatory element-binding transcription factor 1 
(SREBP1) expression and a 12-week swimming protocol in 
HFD-fed mice decreased of FABP1 (276, 279). Exercise also in-
creased activation of AMPK, an important factor in fatty acid 
oxidation in the liver (262). This potentially integral role of fatty 
acid oxidation re-establishment was corroborated in a separate 
study in which mice were exposed to either MIT or HIIT for 8 
weeks (14). Both training regimens resulted in increased circulat-
ing levels of adiponectin, and an increase in hepatic adiponectin- 
mediated fatty acid oxidation markers such as sirtuin 1 (SIRT1), 
PPARα, CPT1a, cytochrome P450 Family 2 Subfamily E 
Member 1 (Cyp2e1), and insulin receptor substrate 2 (Irs2) in 
conjunction with signi�cantly lower hepatic glycogen and lower 
hepatic mRNA levels of SREBP1c, Fas Cell Surface Death 
Receptor (FAS), CD36, and lipin1 (14). Additionally, exercised 
mice had increased levels of hepatic pAMPK/AMPK ratio and re-
duced glycogen content (14).These preclinical studies demon-
strate the potential of exercise in reestablishing proper hepatic 
fatty acid oxidation functionality through crosstalk between 
AT and the liver which can play a mitigating role in the progres-
sion of liver disease.

In human studies, patients with steatohepatitis have in-
creased hepatic glucose phosphorylation and those with ele-
vated intrahepatic triglycerides have higher endogenous 
glucose production and very low-density lipoprotein triglycer-
ides from hepatic de novo lipogenesis (280-283). MAFLD pa-
tients also have increased lipogenesis and liver X receptor 
(LXRa) levels, which promote lipogenesis via SREBP1C acti-
vation (284-286). A study that metabolically pro�led 
tissue-speci�c insulin resistance in individuals who were over-
weight or have obesity revealed high levels of circulating 
branched chain amino acids such as valine and isoleucine, 

triglycerides, lactate and reduced glycine levels which corre-
lated with liver speci�c insulin resistance (287).

Exercise bene�ts individuals with MASH by reducing intra-
hepatic lipid content, improving insulin sensitivity, and main-
taining glucose homeostasis (288-291). Two weeks of 
resistance training, high-intensity interval aerobic training, 
and moderate intensity continuous aerobic training decreased 
hepatic fat content, liver stiffness, and in�ammatory markers 
like leptin and ferritin (288). Additionally, 12 weeks of a com-
bined aerobic and resistance training program resulted in de-
creased intrahepatic lipid content and improved peripheral 
insulin sensitivity by 23% for individuals with MAFLD 
(292). Human studies have also yielded consistent results 
demonstrating the importance of aerobic exercise training in 
reducing expression of in�ammatory markers. Speci�cally, 
both circulating TNF-α and IL-6 were decreased, alongside a 
reduced expression of oxidative stress markers (31, 293, 
294). Additionally, a post hoc analysis of liver biopsies from 
the NASHFit trial reported that a 20-week moderate intensity 
exercise routine correlated with reduced liver fat, as well as re-
duced levels of FGF21 levels (295). FGF21 has been impli-
cated in MASH progression, due to disrupted lipid 
oxidation pathways (295). MASH and MAFLD has been as-
sociated with a FGF21-resistant state rendering FGF21 and 
its analogues as effective therapeutic options for liver disease 
(296-299). Interestingly, a simple resistance training protocol 
consisting of pushups and squats for 12 weeks or walking for 
200 minutes per week for a year corresponded with a decrease 
in hepatic steatosis, regression of hepatic �brosis, and lower 
FGF21 levels (15, 265).

Taken together, both animal and human data point toward 
the metabolic remodeling capacity that exercise can induce in 
obese conditions, as well as demonstrate a potential hepato- 
protective effect against the development of further liver 
disease.

Obesity-induced modi%cations to the skeletal muscle

Skeletal muscle is one of the most metabolically active organs 
in the body, responsible for up to 80% of insulin-stimulated 
glucose uptake and disposal under nonobese conditions 
(300, 301). However, in cases of obesity, numerous muscular 
metabolic pathways can be adversely altered, reducing insulin 
sensitivity and impairing function of insulin signaling recep-
tors and key glucose transporters (16, 301-303). Obesity dis-
rupts lipid metabolism pathways in muscle, resulting in 
increased lipid accumulation and mitochondrial dysfunction 
preceding incomplete oxidation of fatty acids (16, 304).

Similar to other metabolically relevant organs, exercise 
training improves skeletal muscle glucose and lipid metabol-
ism and mitochondrial function, thus attenuating the negative 
impacts of obesity (16, 305). Exercise-induced adaptations to 
skeletal muscle as a potential method to improve metabolic 
regulation in obesity will be discussed below.

Exercise-mediated skeletal muscle adaptations in obesity. Skeletal 
muscle is a vital organ for maintaining metabolic balance 
through its signi�cant contribution to energy expenditure, in-
sulin response, and ability to adapt to the body’s metabolic de-
mand, via its mitochondrial content and oxidative capacity 
(306-308). However, under obese conditions, skeletal muscle 
exhibits reduced insulin-mediated glucose uptake, impaired 
oxidative metabolism, and increased lactate production, 
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which is often associated with impaired insulin signaling and 
glucose metabolism pathways, such as reducing glucose trans-
port, glycogen synthesis, and glucose oxidation (302, 303, 
309-312). Additionally, lipid metabolic pathways are also 
negatively affected, including an enhanced fatty acid transport 
system, leading to increased fatty acid esteri�cation and high-
er intramuscular triacylglycerol levels (313, 314).

HFD in animal models results in muscular lipid accumula-
tion, insulin resistance, and a reduction of mitochondrial bio-
genesis markers such as AMPK and PGC1a, contributing to 
metabolic dysfunction (315-318). Murine studies have shown 
that aerobic/endurance exercise enhances insulin signaling via 
upregulation of AKT, as well as translocation of the glucose 
transporter GLUT4 in obese mice (319, 320). AMPK also plays 
a critical role in insulin-stimulated glucose uptake by skeletal 
muscle after exercise via the inhibition of the Rab-GTPase–ac-
tivating protein TBC1D4, which consequently results in the 
translocation of GLUT4 to the membrane and enhanced glu-
cose uptake (321). A whole-body TBC1D4 knock-in mouse 
model showed that after an acute bout of treadmill exercise, 
improvement in whole-body and muscle insulin sensitivity 
was dampened after exercise (321). These �ndings are corrobo-
rated in a notable human study where skeletal muscle from in-
dividuals with TBC1D4 p.Arg684Ter variant displayed a 
reduced post-exercise insulin sensitization effect (322). 
Speci�cally, individuals with the TBC1D4 p.Arg684Ter vari-
ant had up to 50% of reduced glucose uptake in the skeletal 
muscle after 1 hour of exercise. Exercise in rodent studies has 
also shown that moderate intensity endurance training in rats 
increases oxidative phosphorylation, lipid oxidation, and mito-
chondrial biogenesis and decreases mitochondrial stress in skel-
etal muscle (323).

In humans, obesity is associated with metabolic impairments 
in skeletal muscle, including diminished insulin-induced glucose 
uptake, reduced oxidative metabolism, and increased lactate 
production (303, 310). Individuals with obesity have reduced 
insulin-stimulated phosphorylation of IRS1 and Akt and lipid 
oxidative capacity and higher levels of intramuscular triacylgly-
cerol (304, 312, 324, 325). Like in rodents, human studies have 
shown that endurance exercise increases fatty acid oxidation, re-
duces intramuscular triglyceride accumulation, and in�amma-
tion in skeletal muscle (326-328). One study investigating 
women with obesity revealed that 12 weeks of combined aerob-
ic and resistance training from moderate to vigorous intensity 
resulted in changes to the skeletal muscle lipid intermediate lev-
els, such as cardiolipin and phosphatidylcholine, which was ac-
companied by an increase in mitochondrial respiration (329). 
Other studies using endurance exercises have shown a decrease 
in intermuscular adipose tissue for older individuals with 
obesity, and body fat reduction alongside improvements in 
muscle mitochondrial content for diet-resistant women with 
obesity (330, 331). Additionally, in the context of obesity, 
exercise-induced myokines, which include cytokines, small pro-
teins, and peptides released from the skeletal muscle, also under-
go alterations (332). Some myokines affected by obesity and 
exercise include IL-6 which plays an anti-in�ammatory role 
alongside improving insulin-stimulated glucose uptake and glu-
cose transporter GLUT 4 translocation in skeletal muscle (333, 
334), metrnl which has been linked to worsening glucose toler-
ance and plays a role in thermogenic and energy expenditure 
pathways (335, 336) and irisin which is associated with insulin 
resistance and has been implicated in the browning of white fat 
among its musculoskeletal roles (337-339). Detailed 

mechanisms of additional myokines including IL-6, metrnl, 
and irisin and their role in mediating metabolic diseases are 
thoroughly reviewed elsewhere (332, 340).

Overall, these studies provide compelling evidence that ex-
ercise is an effective and powerful tool to alleviate the detri-
mental effects of obesity and improve overall health. 
However, escalating levels of obesity and associated diseases 
pose a signi�cant global health challenge and necessitate the 
advancement of additional mechanisms that could be used 
as a combinatorial approach with exercise.

Pharmacotherapeutics, Bariatric Surgery, and 
Exercise: Potential for Combined Therapies?

Alternative methods, including incretin therapies and bariat-
ric surgery, have presented promising results in weight reduc-
tion with improved cardiovascular outcomes (17, 18, 341- 
343). These promising outcomes may aid in progressing 
health bene�ts for individuals that have less impactful effects 
from conventional methods to reduce fat mass and improve 
metabolic health. Moreover, with the advantageous effect of 
exercise on obesity, combinations of these methods and exer-
cise could likely exploit effectual mechanisms that would aid 
in enhanced treatment of larger groups of individuals with 
obesity.

Reviewing current �ndings on the impacts of incretin 
therapy and bariatric surgery in combination with exercise 
in humans provides a holistic outlook on the potential of syn-
ergistic approaches to combat obesity (Table 2).

Incretin therapy and exercise

Incretins are a group of hormones that are released by the gastro-
intestinal tract in response to nutrient uptake and have physio-
logical actions on multiple organs. Speci�cally, incretins 
endogenously function to stimulate glucose-stimulated insulin 
secretion by pancreatic β-cells and simultaneous reduction in 
the secretion of glucagon and slowing of gastric emptying, which 
promotes satiety and reduces appetite (341, 342). Multiple stud-
ies have linked the secretion of glucagon-like peptide 1 (GLP-1) 
to obesity (361-365). For instance, individuals with obesity 
have lower plasma GLP-1 levels compared to lean controls fol-
lowing a solid meal test, which coincides with higher gastric 
emptying in the obese subjects (361, 365). Furthermore, the large 
ADDITION-PRO study, which included 1462 participants, 
found that individuals classi�ed as obese or overweight showed 
a reduction of up to 20% in plasma GLP-1 levels following an 
oral glucose test (363). Notably, BMI and WC were negatively 
correlated with GLP-1 levels (363).

Several incretin therapies have been studied as therapeutics 
for obesity. Among incretins, GLP-1 (and speci�cally GLP-1 
receptor agonists [GLP-1 RAs]) have gained the most popular-
ity in treating T2D and obesity, with additional cardiovascu-
lar bene�ts (18, 341, 342). GLP-1 RAs are altered versions of 
GLP-1 which mimic its biological activity, conferring the ben-
e�ts of lowering blood glucose levels with an extended half- 
life and avoiding severe hypoglycemic states (366, 367). 
Currently the FDA has approved 3 GLP-1 RA s for the treat-
ment of obesity: liraglutide, semaglutide, and tirzepatide (the 
latter is a GLP-1/glucose-dependent insulinotropic polypep-
tide [GIP] dual agonist). Studies on liraglutide have demon-
strated that daily treatment when combined with lifestyle 
interventions, including dietary de�cits and physical activity, 
for 56 weeks can result in signi�cant weight loss with a 
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Table 2. Recent findings on outcomes of combination of incretin therapy, bariatric surgery, and exercise in humans

Combinatorial 
therapies in human 
studies

Weight loss 
procedure

Interventions Outcomes

Incretin therapy and 
exercise

Liraglutide 1 year of liraglutide at 3.0 mg/day and moderate to vigorous 
intensity exercise 4 times a week (344)

• Abdominal fat percentage reduced by 6.1%
• Metabolic syndrome severity z-score decreased 

by 0.48

1 year of liraglutide at 3.0 mg/day and moderate to vigorous 
exercise 4 times a week (21)

• Weight loss of 9.5 kg
• Body fat reduction by 3.9%
• Improvements in insulin sensitivity and glycated 

hemoglobin

1 year of liraglutide at 3.0 mg/day and moderate to vigorous 
intensity exercise 4 times a week (345)

• 6.88 kg of weight loss change
• Unchanged bone mineral density at hip and 

lumbar spine

1 year follow up after termination of intervention from same 
cohort that previously received 1 year of liraglutide at 
3.0 mg/day and moderate to vigorous intensity exercise 
4 times a week (346)

• Reduced body weight of approximately 5.1 kg
• Reduced body fat percentage of 2.3%
• Weight regain of 2.5 kg

Semaglutide 20 weeks of 0.5 mg or 1.0 mg of semaglutide weekly then 
combined with aerobic exercise (average heart rate reserve 
of 75% of maximum) 3 times per week for 12 weeks in 
patients with T2D (347)

• Improved body fat percentage
• Improved glycemic control
• Improved pancreatic beta cell insulin secretion

Tirzepatide 6 weeks of 2.5 mg or 5.0 mg of tirzepatide weekly and 3 
sessions per week of resistance and aerobic exercises (348)

• Reduced body weight, waist circumference, fat 
mass, and waist to hip ratio

• Exercise did not have an additive effect on 
fasting blood glucose and triglyceride levels

Bariatric surgery and 
exercise

Presurgery Aerobic dance-based exercise for 60 minutes, 2 days a week 
for 8 weeks. Analysis after 8 weeks of intervention and 
5 months post SG (349)

• Improved functional capacity
• Improved muscle strength and endurance
• Improved physical activity
• Improved fatigue scores
• These results were seen both at 8 weeks post 

intervention and 5 months postsurgery

12 weeks of endurance and strength training. 3 sessions per 
week for 80 minutes and monthly aqua gym (350)

• Improved 6-minute walking test
• Increased half-squats
• Increased arm curl repetitions
• Improved social interaction score

1 year postsurgery RYBG or SG evaluation of presurgery 
exercise intervention mentioned previously (350, 351)

• Increased physical activity
• Increased 6-minute walking test
• Increased half-squat test
• Decreased BMI

Aerobic and stretching exercises, 25 minutes each, 2 
sessions weekly in addition to cognitive-behavioral 
therapy (CBT), once a week for 4 months (352)

• Reduced body weight for the exercise and 
exercise + CBT groups

• Reduced BMI for the exercise group and 
exercise + CBT group

• Improved functional capacity and 
cardiometabolic parameters such as blood 
pressure for both exercise and exercise + CBT 
groups

Aerobic (including HIIT) and resistance training, 2 sessions 
per week for 6 months (353)

• Reduced BMI
• Reduced fat mass
• Improved blood pressure

Postsurgery Resistance training for 1 hour, 3 times a week for 18 weeks 
post RYGB in addition to supplemental whey protein 
dose of 48 grams/day (354)

• Increased lower-limb muscle strength

5-year postsurgery follow up of previously mentioned 
intervention (20, 354)

• Increased physical activity
• Lower weight regain

60-min group exercise classes with functional strength, 
flexibility, and aerobic activities, 2 times per week for 6 
months and at least 3 days per week of self-directed 
exercise post RYG, SG, and GB (355)

• Increased aerobic fitness after 6 months of 
intervention that lasted an additional 6 months 
with maintenance

(continued)
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reduction of up to 25.2% (368-370). Forty weeks of com-
bined liraglutide treatment and physical activity also affects 
the visceral adiposity of individuals, leading to a reduction 
of vWAT by 12.49% (371). Similarly, semaglutide treatment 
for 68 weeks, alongside lifestyle modi�cations, led to signi�-
cant reductions in BW, BMI, vWAT, and cardiometabolic 
risk factors such as lipid levels and blood pressure (18, 372, 
373). Tirzepatide studies showed signi�cant weight loss as 
well, with reductions up to 25.3% and notable improvements 
in cardiometabolic parameters like WC, fasting insulin, and 
lipid levels across various doses (374-377).

Although GLP-1 RAs mediate favorable effects in the set-
ting of obesity, the bene�ts of GLP1-RAs are accompanied 
by con�icting results about bone health, particularly the risk 
of bone fractures and reduced bone mass density (378-380). 
Weight regain after the termination of GLP-1 RAs treatments 
is also a concern for current therapeutic strategies (381, 382). 
Less is known about the combined effects of exercise and sem-
aglutide or tirzepatide. One study showed that a combination 
of semaglutide and aerobic exercise for 12 weeks in T2D indi-
viduals with prior semgalutide use for 20 weeks directly en-
hances insulin secretion, body composition parameters such 
as body fat, and glycemic control (347). A 68-week study 
demonstrated that weekly semaglutide administration in com-
bination with 150 minutes of weekly physical activity resulted 
in 14.9% of BW reduction when compared to the control 
groups (18). However, once treatment was terminated, partic-
ipants regained approximately two-thirds of BW lost in a year 
and the bene�ts to cardiometabolic risks were reversed (18, 
382). In the case of tirzepatide treatment, a 6-week study com-
bining tirzepatide and aerobic and resistance training showed 
no additive effects of exercise to fasting blood glucose and tri-
glyceride levels (348).

Studies investigating the combined effects of liraglutide and 
moderate to vigorous intensity exercise reported improve-
ments in multiple metabolic health parameters, such as insulin 
sensitivity, hemoglobin glycation levels, and reduced abdom-
inal obesity and BFP (21, 344), while a year-long regimen 

helped preserve bone mass density in the hip and lumbar spine 
(345). This suggests that the combination of liraglutide and 
exercise not only provides metabolic and in�ammation related 
bene�ts but also supports bone health. Interestingly, Jensen 
et al studied the long-term bene�ts of daily liraglutide in com-
bination with vigorous exercise 1 year after the termination of 
interventions (346) and found that participants who had re-
ceived a combination of liraglutide and exercise had main-
tained weight loss up to 10% of initial BW and the same 
group had a weight regain of only 2.5 kg 1 year after termin-
ation of treatment, and increased physical activity when com-
pared to the control groups, suggesting that vigorous exercise 
could potentially prolong bene�cial effects of GLP1-RAs dir-
ectly or indirectly through encouraging healthy physical activ-
ity habits (346).

These recent �ndings imply that any form of physical activ-
ity strengthens the effects of GLP1-RAs. Moderate to vigorous 
exercise amplify the impacts of GLP1-RAs on weight loss and 
overall metabolic health. Extensive studies would be required 
to identify the exact synergistic mechanisms of exercise and 
GLP1-RAs in curbing the adverse effects reported with 
GLP-1 RAs therapy alone.

Bariatric surgery and exercise

Bariatric surgeries are a set of stomach or intestinal proce-
dures aiming to achieve long-term weight loss in cases of se-
vere obesity, with results of weight loss up to 25% at 10 
years after intervention (17, 343, 383, 384). Some of the 
most common procedures include Roux-en-Y gastric bypass 
(RYGB) and the sleeve gastrectomy (SG) (17). Bariatric sur-
gery enhances transcriptional signatures for mitochondrial 
oxidative phosphorylation in scWAT (385, 386) and can alter 
circulating factors such as IL-27 (387). With the drastic 
weight loss after bariatric surgery comes the long-term adverse 
effects of decreased muscle strength, weight regain, and pro-
tein and micronutrient de�ciencies (20, 381, 388, 389). 
Notably, studies have demonstrated that exercise training, 

Table 2. Continued

Combinatorial 
therapies in human 
studies

Weight loss 
procedure

Interventions Outcomes

12 weeks of aerobic and strength training, 3 times per week 
post RYGB and SG (356)

• Reduced weight
• Reduced percent body fat
• Reduced fat mass
• Increased change in 12-minute walk test

Resistance training for 12 weeks, 60-80 minutes, 3 times a 
week post RYGB (357)

• Improved muscle strength and quality including 
less press strength, leg extension strength, and 
leg press quality

Aerobic and resistance training for 60 minutes, 3 times a 
week for 12 weeks post RYGB, SG, and GB (358)

• Decreased fat mass
• Improved physical function

Aerobic and resistance exercise up to 74 minutes, for 5 
months separated into 5 blocks for every 4 weeks post SG 
(359)

• Reduced fat mass
• Reduced blood glycemic levels
• Reduced cholesterol levels

Aerobic exercise for 120 minutes, 3 to 5 times per week for 6 
months post RYGB (360)

• Reduced fat mass
• Reduced abdominal adipose tissue
• Maintenance of skeletal muscle mass

Abbreviations: BMI, body mass index; GB, gastric banding; HIIT, high-intensity interval training; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; T2D, type 
2 diabetes.
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speci�cally aerobic and resistance training, improve clinical 
outcomes such as greater fat loss, longer 6-minute walking 
distance, lower systolic blood pressure, and increased muscle 
strength up to 1 year after bariatric surgery (Table 2) (20, 354- 
360). A study conducted with 76 female participants after 
RYGB analyzed a combination of resistance training and pro-
tein supplementation following bariatric surgery (354). The 
results showed that 6 months postsurgery, participants who 
received additional whey protein intake of 48 grams per day 
in addition to 3 weekly resistance training sessions had in-
creased lower-limb muscle strength when compared to control 
groups (354). A 5-year follow up of this study showed that 
even though muscle strength decreased over time in patients 
with protein supplementation and exercise, there was an in-
crease in physical activity levels, which positively correlated 
with lower weight regain postsurgery (20).

Preoperative exercise interventions are bene�cial for pa-
tients prior to bariatric surgery (Table 2) (349-353). A recent 
study reported that a presurgery aerobic dance-based exercise 
program for 60 minutes, twice a week for 8 weeks results in 
increased muscle strength and endurance, physical activity 
levels, functional capacity, and quality of life when compared 
to the group that only received physical activity counseling 
and these effects were sustained up to 5 months after surgery 
(349). Additionally, longer durations of presurgery exercise 
including 6 months of aerobic and resistance training showed 
improvements in BMI, BFP, and blood pressure (353).

These studies collectively highlight the importance of exer-
cise in achieving long-term bene�cial outcomes of bariatric 
surgery, emphasizing exercise as a critical component in obes-
ity management. Furthermore, it is crucial to recognize that 
many �ndings, as shown in Table 2, demonstrate that the posi-
tive effects of exercise—such as enhanced insulin sensitivity, 
increased muscle strength, and reduced fatigue—are inde-
pendent of weight loss. This underscores the fact that the ad-
vantageous adaptations of exercise in obese individuals are 
not solely driven by changes in BW.

Can Exercise Override the Genetic Causes 
of Obesity?

The causes of obesity are multifaceted and various genetic and 
environmental factors contribute to disease development (390- 
393). Several environmental factors are modi�able, including 
things like diet and sedentary lifestyle, and there are multiple 
studies that discuss how exercise can combat these 
environmental factors (394-396).While lifestyle factors are im-
portant contributors to the pathogenesis of obesity, genetic fac-
tors also play a signi�cant role. Monogenic or polygenic 
disorders to critical genes or regulatory processes can result in 
the development of nonsyndromic obesity, which causes 
early-onset obesity (397, 398). Nonsyndromic obesity is primar-
ily associated with genetic mutations to factors involved in the 
leptin-melanocortin pathway and presents as a disruption to en-
ergy homeostasis and its monogenic form affects approximately 
5% of the population with early-onset obesity (398-401). 
Aberrations at the gene, chromatin, and RNA-associated post- 
transcriptional modi�cation levels can contribute to the devel-
opment of nonsyndromic obesity, highlighting the genomic 
complexity of the disease. While the genomic impacts on disease 
are most likely irreversible, exercise may be a powerful tool to 
mitigate the extent to which these factors can contribute to dis-
ease onset and progression.

Nonsyndromic obesity–associated genes and exercise

Multiple genes have been identi�ed by emerging research as 
being potential contributors to the development of nonsyn-
dromic obesity. Genetic mutations resulting in variants of 
LepR, such as K109R, Q223R, and K656N, have an increased 
association with obesity (402-406). Chavez et al followed a 
family over 3 generations and found that early-onset obesity 
and delayed puberty observed within individuals of the family 
were associated with mutations to LepR (407). While the role 
of exercise in mediating the effects of this type of genetic 
aberration are unknown, physical activity has been shown 
to have bene�cial effects on individuals with a greater likeli-
hood for higher BMIs by attenuating genetic effects on obesity 
including leptin and LepR single nucleotide polymorphisms 
(SNPs) (408, 409). Thus, it is possible that exercise could 
be bene�cial to ameliorate some of the consequences of 
genetic obesity.

Another nonsyndromic obesity–related gene is the fat mass 
and obesity associated gene (FTO), which encodes the FTO 
protein that demethylates N6-methyladenosine (m6A) and is 
essential for adipogenesis (410-412). Genome-wide associ-
ation studies found that single nucleotide polymorphisms in 
the FTO gene were associated with obesity parameters such 
as BMI; however, the proportion of population affected by al-
terations to the FTO genes greatly vary on the population 
being studied as population frequencies have been reported 
up to 46% in Western and Central Europeans and up to 
29% in Asians (413-418). The well-investigated rs9939609 
polymorphism was associated with increased BW and BMI 
and was shown to in�uence appetite and fat oxidation during 
exercise (419-421). Interestingly, physical activity reduces the 
association between FTO rs9939609 and the odds of obesity 
(422). The bene�cial effects of exercise were additionally ob-
served in individuals with the FTO rs1421085 variant as 
when individuals with this risk variant regularly exercised, a 
lesser weight gain and an increase in BMI was observed 
(423). Together, these studies demonstrate that diverse genes 
and their associated mutations can increase the risk of obesity 
predisposition. However, this risk can partially be mitigated 
by exercise, demonstrating its importance as a tool for destra-
ti�cation of altered gene activity and disease onset.

Nonsyndromic obesity–associated regulatory mechanisms 
and exercise

Regulation of gene activity via chromatin accessibility is an 
extensively established �eld of research often associated 
with various diseases. DNA methylation is one of the broadly 
studied epigenetic mechanisms that has been associated with 
nonsyndromic obesity regulation (424-426). Notably, numer-
ous cytosine-phosphate-guanine (CpG) sites within 
obesity-associated genes have enriched DNA methylation 
(424, 427-429). Speci�cally, studies have found that DNA 
methylation is associated with alterations to BMI and WC 
(427-430). Interestingly, a study analyzing blood samples 
from subjects that conducted an 18-month low-fat or low- 
carbohydrate diet with and without exercise showed that 
CpG sites for genes associated with obesity were negatively 
correlated with changes to BW after the diet and exercise 
intervention (431).

In addition to chromatin modulations dictating gene acces-
sibility, gene product modi�cations also play a noteworthy 
role in nonsyndromic obesity onset. MiRNAs are noncoding 
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RNAs which regulate post-transcriptional modi�cations to the 
genome and have been reported to have effects on adipogenesis 
and adipose tissue in�ammation response (432, 433). Various 
miRNAs have been associated with obesity (BMI levels) and 
body fat distribution in children and adults (434, 435).

Exercise alters miRNA pro�le in individuals with obesity 
(436). Speci�cally, a 3-month long physical activity intervention 
resulted in a decrease in circulating miR-146a-5p with a strong 
correlation with WC and in�ammatory cytokine IL-8 (437). 
Together, these studies demonstrate the crucial role of regula-
tory elements at both the DNA and RNA levels in predisposing 
individuals to obesity, as well as the role of exercise in mitigating 
these epigenetic and post-transcriptional modi�cation factors.

Emerging data demonstrates that exercise can potentially 
affect genetic obesity, but there are signi�cant limitations. 
For instance, it is unlikely that exercise could completely 
change gene expression. It is more likely that exercise can 
modify epigenetic alterations that impact gene expression re-
lated to whole-body metabolic function which can attenuate 
or circumvent the negative effects conferred by genetic altera-
tions. This emphasizes the concept that obesity is a complex 
disease induced by numerous genomic and environmental fac-
tors, and that no single treatment option may be powerful 
enough to truly overcome the disease alone.

Future Directions

Exercise induces bene�cial metabolic changes to WAT, BAT, 
liver, and skeletal muscle in both humans and rodents, miti-
gating the adverse effects of obesity. While distinct mecha-
nisms within the two species exist, such as exercise 
triggering a beiging response in WAT of rodents, it is import-
ant to acknowledge that other functions, such as enhanced 
endocrine activity and mitochondrial activity, play an import-
ant role in exercise-induced adaptations in obesity. Multiple 
factors determine the effectiveness of exercise-induced adap-
tations, including sex, genetic aberrations, duration, modal-
ity, temperature, and metabolic health status. When 
discussing exercise and its notable bene�ts, an important con-
sideration is Pontzer’s constrained energy expenditure hy-
pothesis, which suggests that physical activity minimally 
affects daily caloric burn, with nonexercised activity thermo-
genesis (NEAT) and dietary patterns playing key roles (438). 
NEAT decreases with excessive exercise unless dietary com-
pensation occurs (439) and greater ef�ciency in physical activ-
ity may further reduce total energy expenditure (440-442). 
These insights highlight the need for comprehensive strategies 
that address behavioral and metabolic complexities. Current 
ongoing studies investigating a possible combinatorial thera-
peutic strategy with pharmacotherapeutics, bariatric surgery, 
and exercise to curb the adverse effect of obesity report prom-
ising results in minimizing drawbacks of extreme weight loss 
strategies, reinforcing exercise’s potential as a compelling 
therapeutic tool.

Conclusion

Obesity is a complex, multifactorial disease that encompasses 
metabolic changes to associated organs such as adipose tissue, 
liver, and skeletal muscle. A combination of genetic and environ-
mental factors has been shown to play a crucial role in the patho-
genesis of obesity, with a lifestyle change including exercise 
emerging as �rst-line therapy to treat the disease. With the rapid 

growth in obesity levels worldwide, the urgency to explore new 
therapeutic strategies has led to numerous intensive treatment 
options such as bariatric surgery and incretin therapy. While 
these studies are promising, factors such as sex differences, 
age, �tness measurement techniques, accuracy of anthropo-
metric measurements, and their potential contribution to 
exercise-induced adaptations to combat obesity should be con-
sidered to fully elucidate the bene�cial effects of exercise to in-
crease ef�cacy. A continued understanding of how multiple 
contributing factors in obesity modulate exercise-induced bene-
�ts to key organs and metabolic health will potentially provide 
therapeutically relevant targets to combat obesity.
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