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Abstract

Obesity is increasing rapidly worldwide and is projected to affect approximately half the US population by the year 2035. Obesity is a complex
condition, and individuals who have obesity are at greater risk for developing associated metabolic diseases such as type 2 diabetes (T2D),
metabolic dysfunction-associated steatohepatitis (MASH), and cardiovascular diseases (CVD). Understanding the underlying factors which
contribute to obesity and that impact key molecular mechanisms of metabolic organs such as adipose tissue, liver, and muscle is crucial for
combating the disease. Exercise is a well-established measure to prevent or mitigate the adverse consequences of obesity, with several
beneficial effects to whole-body metabolism and adaptations to metabolic tissues. This review explores the impact of obesity on the
development of metabolic diseases. Specifically, we will discuss: how obesity alters metabolic function and the potential benefits of
exercise; the specific effects of obesity and exercise on muscle, adipose tissue, and liver; and potential effects of pharmacotherapeutics or
bariatric surgery in combination with exercise.
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critical importance of understanding mechanisms and strat-
egies to combat obesity (2-4).

Exercise is a compelling therapeutic tool to combat obesity
and metabolic disease (5-9). Among the various forms of exer-
cises, aerobic and resistance training are often investigated in
terms of their role to induce molecular adaptations to key
metabolic organs such as adipose tissue, liver, and skeletal
muscle (5, 7, 8, 10-16). Recent strategies to combat obesity,
including bariatric surgery and weight loss drugs, have gained
increasing popularity in promoting weight loss with improve-
ments in overall health including cardiovascular outcomes
and glucose homeostasis (17-19). The latest emerging research
studies have investigated the potentially synergistic combin-

Essential Points Covered in the Review

¢ Obesity affects multiple metabolic pathways in metabolic
organs, specifically white adipose tissue, brown adipose
tissue, liver, and skeletal muscle

¢ Exercise studies provide compelling evidence to influence
obesity-induced alterations in metabolic organs

¢ The potential of exercise, in combination with bariatric
surgery and incretin therapy, presents a promising area
for future research targeted at advancing therapeutic strat-
egies to combat obesity

Obesity is drastically increasing, with the World Health
Organization (WHO) indicating a 2-fold increase in the
prevalence of obesity from 1990 to 2022, and an estimation
of approximately half the US population having obesity by
2030 (1). The increasing presence of obesity correlates with
the increased risk of cardiovascular disease (CVD), metabolic
dysfunction—-associated steatohepatitis (MASH), and type 2
diabetes mellitus (T2D), among others, highlighting the

ation of exercise and weight loss drugs or bariatric surgery
(20, 21).

In this review, we will discuss the effects of obesity on vari-
ous metabolic organs including adipose tissue, liver, and skel-
etal muscle, in both animal models and human studies. We
will explore how obesity impacts various metabolic processes,
including mitochondrial function, thermogenic capacity,
endocrine regulation, and glucose and lipid metabolism, as
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Figure 1. Exercise modulates potent beneficial effects to various metabolic organs impacted by obesity such as increasing (upward arrow) lipid and
glucose metabolism and reducing (downward arrow) inflammation for white and brown adipose tissue, the liver, and skeletal muscle in humans and
animals. Alternative therapies, including bariatric surgery and incretin therapy, provide a unique perspective of possible combinatorial interventions to

attenuate the undesirable effects of obesity. Figure made in Biorender.

well as how exercise influences these outcomes in the context
of obesity. Finally, we discuss weight loss interventions, such
as incretin therapies and bariatric surgery, and their potential
effectiveness in combination with exercise and the consider-
ation of multiple factors, such as potential compensatory life-
style changes and ensuring inclusive courses of treatment
when addressing obesity and its possible therapeutic strategies
(Fig. 1).

Obesity and the Potential Benefits of Exercise

Obesity is increasing at epidemic proportions across the
United States and worldwide, and the rise in obesity is con-
comitant with an increase in several obesity-related diseases.
The most common obesity-associated diseases include T2D,
CVD, and MASH (22,23). T2D is a chronic metabolic disease
characterized by high blood glucose levels and impaired insu-
lin homeostasis (24, 25). CVD includes diseases that affect the
circulatory system of the body, such as the heart and vascula-
ture (26). Increased fat accumulation in the liver in conjunc-
tion with inflammation and fibrosis results in MASH (27).
The risk of other diseases, including cancer and Alzheimer’s

Disease, are also increased in people with obesity (28, 29),
highlighting the significance of obesity as a comorbidity.

Exercise is an important therapeutic tool to combat
obesity and obesity-related disorders (30-32). Exercise is a
well-established tool to improve aerobic capacity, resting heart
rate, blood pressure, and overall metabolic health (33-35).
Additionally, exercise can mediate indices such as body mass in-
dex (BMI), waist circumference (WC), hip circumference, body
fat percentage (BFP), insulin resistance, and waist to height ratio,
which have been shown to be significant risk factors in determin-
ing metabolic health and associated diseases (10, 36-42). Among
multiple different forms of exercise, aerobic exercise and resist-
ance training are the most well-studied with regard to impacting
and potentially improving anthropometric measures in individu-
als with obesity (5, 7-9). Exercise is also known to affect key mo-
lecular pathways adversely impacted by obesity, including
mitochondrial activity and glucose and lipid metabolism in adi-
pose tissue, liver, and skeletal muscle (43-46).

While exercise improves metabolic health and upregulates
multiple metabolic pathways, individuals with obesity-
associated metabolic diseases such as T2D have reduced expres-
sion of genes involved in mitochondrial biogenesis and oxidative
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phosphorylation in muscle (47, 48). Mitochondrial DNA
(mtDNA) and oxidative phosphorylation are also diminished
in white adipose tissue (WAT), correlating with increased adi-
pose tissue inflammation and insulin resistance (49). Studies
have demonstrated that in people with T2D, aerobic exercise in-
creases whole-body insulin sensitivity by ~20% and reduces
HbA1Clevels by 0.8% (45, 50, 51), while high-intensity interval
training (HIIT) and moderate intensity continuous training
(MICT) elevates expression of genes involved in muscle mito-
chondrial activity and lipid utilization (45). In patients with
MASH, moderate exercise decreases hepatic triglyceride content
and circulating free fatty acids, enhances glucose and insulin sen-
sitivity, and reduces pro-inflammatory cytokines such as 1L-6
and TNF-a (31, 52). Similarly, physical activity of any level or in-
tensity reduces the risk factors for CVD including BMI, fasting
glucose, and systolic blood pressure (32, 53, 54). The reduction
in CVD risk factors regardless of intensity of physical activity is
important because measurements used to assess physical activity
and the effects of exercise can vary in people with obesity. For ex-
ample, maximal oxygen consumption (VOzy,,x), which is a key
indicator of aerobic fitness, can be interpreted as absolute
VO2pmax reflecting intrinsic aerobic capacity, or can be adjusted
for fat-free mass or lean body mass, offering a more accurate
measure of muscle endurance in obese individuals (55).

Effects of Obesity and Exercise on Metabolic Tissues

Exercise attenuates the effects of obesity by inducing molecu-
lar adaptations to distinct organs. Crucial metabolic organs
impacted by obesity include adipose tissue, liver, and skeletal
muscle. Specific exercise-induced adaptations to these meta-
bolic tissues that can combat obesity are discussed below.

Exercise and white adipose tissue in obesity

Adipose tissue is a highly dynamic tissue that adapts to
changes in energy demand. White adipose tissue (WAT) is pri-
marily responsible for insulation and energy storage. It con-
sists of white adipocytes alongside various other cell types
(56, 57). WAT is divided into 2 main types: subcutaneous adi-
pose tissue (scWAT) and visceral adipose tissue (VWAT). Both
store lipids as triglycerides, which can then be mobilized and
used for energy (58). Subcutaneous WAT is found beneath
the skin and is linked to better insulin sensitivity and glucose
regulation (59, 60). In contrast, visceral WAT surrounds ab-
dominal organs and is associated with insulin resistance
(61). These 2 depots differ in their adaptations to exercise
and associations with insulin sensitivity, suggesting distinct
physiological functions of these 2 subclasses of WAT.

Exercise-induced adaptations to WAT include an increase
in mitochondrial activity and endocrine function in humans
(62-65) and enhanced thermogenic gene expression alongside
mitochondrial activity in rodents (13, 66-71). Exercise also in-
duces sex-specific adaptations in humans (63, 72) and rodents
(70, 71, 73), demonstrating the importance of investigating
both sexes to completely understand the exercise-induced effects
on WAT. In this section, we will discuss obesity-associated alter-
ations to WAT, specifically inflammation, mitochondrial activ-
ity, endocrine activity and thermogenic remodeling, and how
exercise affects these modulations (Fig. 2A, Table 1).

Inflammation in WAT. Obesity induces various adaptations to
WAT (94-96). Adipocytes undergo both an increase in size
(hypertrophy) and number (hyperplasia) to accommodate

increased fat storage in obesity (97). The increase in fat storage
disrupts multiple cellular mechanisms, including mitochondrial
biogenesis and glucose and lipid metabolism, all of which have
detrimental effects on the normal function of adipocytes (43, 49,
98, 99). Obesity is associated with low-grade inflammation of
WAT and infiltration of pro-inflammatory M1 macrophages
and increased tumor necrosis factor alpha (TNF-0) and interleu-
kin 6 (IL-6) expression (100, 101). Additionally, WAT releases
pro-inflammatory adipokines such as TNF-a, IL-6, leptin, and
resistin, which promotes inflammation of WAT (102). The
obesity-associated inflammation and increased free fatty acids
contribute to adipose tissue insulin resistance (94).

In contrast, exercise decreases obesity-associated inflamma-
tion and reduces fibrosis in WAT and improves glucose and in-
sulin homeostasis (12, 103, 104). Six weeks of wheel cage
exercise in mice with diet-induced obesity (DIO) reduces ex-
pression of inflammatory markers such as TNF-a in the
vWAT, while 12 weeks of aerobic and resistance training re-
duces circulating levels of TNF-a in mice with high-fat diet
(HFD)-induced glucose intolerance (69, 79). An important
pathway that mediates inflammation in WAT in response to
exercise is the kynurenine pathway (105, 106). The kynurenine
pathway is a catabolic pathway that breaks down tryptophan
to generate an intermediate metabolite kynurenine (KYN)
which can be further processed into kynurenic acid (KYNA)
with the oxidized form of nicotinamide adenine dinucleotide
(NAD+) as the final product (107). In mice, increased circulat-
ing KYN impairs insulin sensitivity and lipid homeostasis in
adipocytes through the aryl hydrocarbon receptor (AhR)/signal
transducer and activator of transcription 3 (stat3)/IL-6 signal-
ing pathway, suggesting the impact of excess KYN accumula-
tion adversely affecting metabolic health (108). Recent
studies have shown that circulating KYNA, the metabolically
beneficial byproduct of KYN metabolism, is significantly in-
creased with exercise in mice (109). The increase in KYNA re-
duced palmitate-induced inflammation and insulin resistance
in adipose tissue and skeletal muscle of HFD mice via the G
protein—coupled receptor 35 (Gpr35)/AMP-activated protein
kinase (AMPK) and elevated sirtuin 6 (SIRT6) pathways
(110). Treatment with KYNA increased AMPK phosphoryl-
ation, elevated SIRT6 expression, promoted fatty acid oxida-
tion in muscle, and inhibited fat storage in adipose tissue,
while inhibition of AMPK and SIRT6 via siRNA results in
the reversal of KYNA-mediated lipogenesis in 3T3-L1 adipo-
cytes and fatty acid oxidation gene expression in C2C12 myo-
cytes. In addition, 2 weeks of KYNA treatment improved
glucose tolerance and reduced weight gain in mice fed HFD
(111). Mechanistically, KYNA activates GPR335, leading to
the upregulation of thermogenic genes such as peroxisome
proliferator-activated receptor-y coactivator 1-o (Pgcla), PR
domain containing 16 (Prdm16), and cell death inducing
DFFA like effector A (CIDEA), and expression of oxidative
phosphorylation (OXPHOS) in WAT (111). These findings
highlight KYNA’s potential role in maintaining systemic meta-
bolic balance (111).

Studies in humans have shown that exercise training is asso-
ciated with a reduction of adiposity, BMI, BFP, and circulating
inflammatory cytokines such as IL-6 and TNF-a, (112, 113). A
recent study has shown that 3 weeks of aerobic training resulted
in adaptations to the scWAT of overweight women, with a sig-
nificant decrease in levels of transcripts and proteins related to
inflammation and extracellular matrix without an impact on
body and fat mass, suggesting molecular adaptations to
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Figure 2. a) Molecular alterations to white adipose tissue (WAT) in conditions of obesity and the effect of exercise on altered mechanisms in animals and
humans. Obese conditions lead to a pro-inflammatory state of WAT with an increase in M1 macrophages, pro-inflammatory adipokine release, enhanced
triglyceride (TG) accumulation and reactive oxygen species (ROS) generation. Lipid and glucose metabolic pathways are downregulated and
mitochondrial activity is reduced such as fatty acid oxidation. Exercise potentially mitigates these adverse effects through various modulations,
specifically an increase in transcription of mitochondrial activity genes such as Nrf1 and Tfam, a decrease in ROS generation, increase in beiging marker
Prdm16 (specific to animals), increased glucose uptake via glucose transporter translocation to the membrane and release of anti-inflammatory
adipokines and AdEVs. Arrows indicate alterations reported in animals (dark brown; arrows on left) and humans (light brown; arrows or x’on right). b)
Molecular alterations to brown adipose tissue (BAT) in conditions of obesity and the effect of exercise on altered mechanisms in animals and humans.
Obese conditions lead to a pro-inflammatory state of BAT, accumulation of ROS generation and downregulation of lipid and glucose metabolic pathways.
Exercise has profound effects on the various obesity-induced modulations, specifically an increase in transcription of mitochondrial activity genes such as
Nrf1 and Tfam, a decrease in ROS generation, increase in beiging marker Prdm16 (specific to animals), increased glucose uptake via glucose transporter
translocation to the membrane and release of batokines. Arrows indicate alterations reported in animals (black) and humans (red). Figure made in
Biorender.

Abbreviations: AdEVs; adipose-derived extracellular vesicles; AMPK; AMP-activated protein kinase; BIP, binding immunoglobulin protein; CHOP, C/EBP homologous protein;

CPT1B; carnitine palmitoyltransferase 1B; KYNA; kynurenic acid; NF-kB, Nuclear factor kappa B; Nrfl; nuclear respiratory factor 1; OXPHOS; oxidative phosphorylation;
PGCla, peroxisome proliferator-activated receptor y coactivator 1 a; PPARYy, peroxisome proliferator-activated receptor y; PRDM16, PR domain containing 16; Tfam; mitochondrial

transcription factor A; UCP1, uncoupling protein 1.

mechanisms of WAT rather than a direct reduction of WAT
mass (114). Aerobic and resistance training programs up to 4
months resulted in a decrease in scWAT inflammatory gene ex-
pression such as IL-6, IL-8, and TNF-a and CD36 macrophage
marker in patients with obesity or those over 71 years of age
(115, 116). Similar to animal models, elevated levels of KYN
are associated with a higher BMI in humans (117), while plasma
KYNA levels are increased up to 63 % in active males participat-
ing in endurance training 1 hour post exercise (118).

In summary, in mice, exercise reduces obesity-associated in-
flammation and fibrosis in WAT, improves glucose and insu-
lin homeostasis, and increases KYNA levels, which enhance
fatty acid oxidation, reduce fat storage, and improve glucose
tolerance. Similarly, in humans, exercise reduces adiposity,
BMI, % body fat, and inflammatory cytokines such as IL-6
and TNF-a and increases KYNA levels.

Exercise-induced regulation of mitochondrial activity in WAT. In
adipocytes, as in other cells, mitochondria govern crucial
mechanisms such as regulating glucose and lipid homeostasis
and ATP production through OXPHOS (119-122). Obesity is
associated with mitochondrial dysfunction in adipocytes; this
can be attributed to the fact that under obese conditions there
is a substrate overload due to increased lipid and glucose avail-
ability, resulting in amplified OXPHOS and consequently an
increase in reactive oxygen species (ROS) as a byproduct of
the OXPHOS cycle (123-126).

In rodent models fed HFD, the mitochondrial function of adi-
pocytes is severely impaired (123-126); mitochondrial proteins
such as PGCla are decreased, and there is an increase in ROS
and mitochondrial fragmentation via fission, ultimately result-
ing in mitophagy (123-126) Additionally, mice with an adipose
tissue—specific PGCla deletion, when challenged with a HFD,
develop insulin resistance and a reduction in OXPHOS proteins
in the WAT, further emphasizing the pivotal role of mitochon-
dria in adipocytes to maintain metabolic homeostasis (127).

In other rodent studies, a 12-week HFD resulted in a signifi-
cant reduction in genes and metabolites associated with mito-
chondrial glucose oxidation, including 1,5-anhydroglycol
(1,5-AG), a plasma marker of short-term glycemic regulation.
Additionally, glucose-6-phosphate, a key glycolytic intermedi-
ate, was reduced, alongside decreased pyruvate dehydrogenase
lipoamide kinase isozyme 4 (Pdk4) expression, which plays a
role in suppressing mitochondrial pyruvate dehydrogenase activ-
ity (98). With regard to lipid oxidation, studies in rats with DIO
have shown reduced fat oxidation and lower carnitine palmitoyl
transferase I (CPT1) mRNA expression in vWAT, suggesting im-
paired mitochondrial fatty acid oxidation (99). Similar to in vivo
studies, in vitro studies in 3T3-L1 cells have shown that exposure
to high glucose and free fatty acid induces morphological
changes to the mitochondria, an increase in the mitofission pro-
tein DRP1, and a decrease in mitochondrial biogenesis proteins
PGCla and nuclear respiratory factor 1 (NRF1) (128).

Exercise, however, significantly enhances mitochondrial func-
tion in rodents (13, 66, 67, 74, 75). Four weeks of swimming
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Table 1. Key findings on the effects of exercise on WAT and BAT in potentially mitigating obesity-induced changes to adipose tissue in animal
and human studies

WAT Intervention Outcomes
Animal 11 days of voluntary wheel cage training in mice (13) * Increased expression of beige adipocyte markers such as UCP1 and
Studies Prdm16 and presence of multilocular cells in scWAT of trained
mice
* Increased basal OCR of scWAT from trained mice
* Increased vascularization markers such as Vegfa, pdgf in scWAT
of trained mice
2 hours of daily swimming for 4 weeks in rats (74) * Increased pgcla expression in VWAT and scWAT of mice
11 days of voluntary wheel cage training in mice (67) * Increased expression of mitochondrial function markers such as
pgcla, nrfl, tfam, and UCP1 in scWAT of trained mice
* Increased basal OCR and maximal respiratory capacity of scWAT
from trained mice
* Increased basal OCR of vWAT from trained mice
6 weeks of training with either voluntary wheel cage training or treadmill + Both training modalities increased Cd137 expression (beiging
training in HFD mice (66) marker) increased citate synthase activity in scWAT of trained
mice
* No changes in scWAT mitochondrial respiratory capacity with
cither of the training modalities was observed in trained mice
8 weeks of training, 5 days/week, 45 minutes/day of acrobic (treadmill ~ * Increased expression of pgla and UCP1 in YWAT of aerobic
training) or resistance training (ladder climbing with weights) or HIIT exercise-trained mice
(treadmill training at varying speeds) in obese mice (75)
1 month of a swimming protocol for 90 minutes daily, 5 days/weekin ~ * Increased expression of pgcle, nrfl, tfam, UCP1, and COX IV
mice (76) was observed in scWAT of wild type trained mice.
15 weeks of HIIT or moderate intensity exercise via treadmill training for * No changes in thermogenic markers such as UCP1, Prdm16,
5 days/week in mice in addition to 12.5% calorie restriction in obese Dio2, and Fgf21 in scWAT and vWAT of both training groups
mice (77) * Decrease in UCP1 expression in YWAT of HIIT-trained mice
8 weeks of treadmill training, 45 minutes/day, 5 days/week in HFD mice * Decreased expression of mitochondrial protein in scWAT of
(78) trained mice
6 weeks of voluntary wheel cage training exercise in obese mice (79) * Decreased expression of TNF-0, MCP-1, PAI-1 and IKKS in
vWAT of obese trained mice
* Decreased plasma leptin levels of obese trained mice
12 weeks of resistance training (ladder climbing with weights) 3 days/ ~ * Decreased circulating TG, LDL-C, leptin, TNF-q, and fasting
week and aerobic training for up to 60 minutes/day, 5 days/week via blood glucose levels in resistance and aerobic trained diabetic rats
treadmill in diabetic rats. The rats de-trained for 4 weeks post exercise  * Increased circulating insulin levels in resistance and aerobic trained
intervention (69) diabetic rats
* De-training resulted in an increase in body weight and circulating
TG, leptin and TNF-a levels in both exercise-trained diabetic rats
8 weeks of treadmill training, 5 days/week up to 60 minutes in HF/HS ~ * Improved glucose tolerance in HF/HS trained mice
mice (80) * No changes in circulating adiponectin levels in HF/HS trained
mice
11 days of voluntary wheel cage training in HFD mice (68) * Increased circulating levels of TgfB2 in trained chow diet and HFD
mice
* Increased mRNA expression of TgfB2 in scWAT and vWAT and
increased protein expression of TgfB2 in scWAT of trained chow
fed mice.
11 days of voluntary wheel cage in mice (81) * Increased expression of Rilpl2 and Myo5a in scWAT of trained
mice
4 weeks of voluntary wheel cage running in HFD mice (82) * Increased expression of circadian rhythm genes including Dbp,
Tef, Nr1d2, and Per3 in scWAT and vWAT of trained mice
* Decreased expression of ECM remodeling genes thbsl and sparc
in scWAT and vVWAT of trained mice
Human 3 weeks of exercise training consisting of 30-60 minutes of interval * Pglaand cptlp expression and mtDNA content were significantly
Studies training and 50 minutes of aerobic training. Training sessions were higher in scWAT of active individuals before training.

alternated between the 2 protocols each day. The study groups
included previously active and sedentary individuals (62)

Training did not affect the expression of UCP1, Prdm16, pgcla,
and cpt1p mRNA levels in scWAT of both groups.

(continued)
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WAT Intervention

Outcomes

No effect on expressions of beige-specific genes such as CD137
and TBX1 of both groups.

2 weeks consisting of 6 sessions of sprint interval and MICT up to 60 = Exercise training increased glucose uptake and decreased fatty acid

minutes in IR and healthy participants (83)

8 weeks of strength and aerobic exercises, 3 times/week in women with

obesity (63)

6 weeks of aerobic training, 4 sessions/week of up to 40 minutes in

overweight men (84)

12 weeks of plyometric exercise combined with HIIT, 3 days/week in

females with obesity (64)

uptake in scWAT and vWAT in both IR and healthy groups.
Enhanced adipose tissue vasculature and decreased CD36 and
ANGPTLA4 expression in scWAT of IR exercised individuals.

Increased citrate synthase activity in scWAT of exercised cohort
Decreased mitochondrial uncoupled respiration and UCP1
expression in exercised cohort.

Exercise did not affect mRNA expression of brown and beiging
markers such as UCP1 and CD137 in scWAT of trained
individuals.

Reduced plasma leptin concentration and leptin/adiponectin ratio
in HIIT + plyometric group
Reduced plasma HOMA-IR in HIIT + plyometric group

6 weeks of jump rope exercise training, 5 days/week for 40 minutes/dayin * Increased adiponectin levels in exercised group

males with obesity (65)

7 months of endurance training, 4-5 days/week, 30-60 minutes/day in ~ * Decreased circulating leptin and TNFu levels and increased

females with obesity (85)

Acute bout of exercise for 30 minutes in individuals with T2D (86)

adiponectin levels in exercised group

Increased expression of oncostatin-M in scWAT post exercise

BAT Intervention Outcomes
Animal Exercise training via treadmill, 1 hour/day, 6 times each week for 4 * Upregulation of the insulin/AMPK signaling pathway and PPAR/
Studies weeks (87) VEGTF signaling pathway in BAT of exercised mice
* Downregulation of the Jak-STAT/ErbB/TGF-beta signaling
pathway in BAT from exercised mice
* Upregulated VEGF and COX2 pathway in BAT from exercised
mice
Exercise via treadmill training for 40 minutes/day, 5 days/week for 8 * Increased brown adipocyte progenitor cells from exercised mice
weeks in HFD mice (88) * Increased differentiation of brown pre-adipocytes into brown
adipocytes and UCP1 expression in vitro from exercised mice
Exercise via treadmill training for up to 20 minutes and up to 5days/  * Increased expression of pgcla, prdm16 and UCP1 in BAT from
week for 12 months in obese female mice (89) exercised mice
Exercise via swimming for 1 hour/day, 5 days/week for 6 weeks in * Increased expression of UCP1 and PPARY-2 in BAT of exercised
HFD-induced metabolic syndrome rats (90) mice
Acute bout of exercise via treadmill for 40 minutes and chronic exercise  * Increased circulating levels of batokine 12,13-diHOME
via voluntary wheel cage running for 3 weeks (91)
Human 6 sessions of MICT or HITT in 2 weeks, up to 60 minutes of each * Exercise training decreased insulin-stimulated glucose uptake in
Studies session in healthy men (92) BAT of individuals with high BAT activity

24 weeks of endurance and resistance training, 3-4 times/week
(150 minutes/week of endurance training and 80 minutes/week of

endurance training) in healthy adults (93)

Exercise training had no effect on insulin-stimulated glucose
uptake in BAT of individuals with low BAT activity

No changes in glucose uptake level in BAT in the exercise trained
participants

Abbreviations: 12,13-diHOME, 12,13-dihydroxy-9Z-octadecenoic acid; AMPK, AMP-activated protein kinase; BAT, brown adipose tissue; BFP, body fat percentage;
ECM, extracellular matrix; HFD, high-fat diet; HF/HS, high-fat/high-sugar; HIIT, high-intensity interval training; IL-, interleukin; IR, insulin resistant; LDL-C,

low-density lipoprotein cholesterol; MICT, moderate intensity continuous training; OCR, oxygen consumption rate; scWA'T, subcutaneous white adipose tissue; T2D,
type 2 diabetes; TG, triglyceride; TNF-a, tumor necrosis factor alpha; Ucp1, uncoupling protein 1; vVWAT, visceral white adipose tissue; WAT, white adipose tissue.

exercise increased expression of Pgcla in vWAT and scWAT
(74). In fact, our lab has shown that as little as 11 days of volun-
tary wheel cage running upregulates expression of several genes
involved in mitochondrial activity such as PGC1la, Nrfl, mito-
chondrial transcription factor A (Tfam) and uncoupling protein
1 (UCP1) in scWAT (67). These increases in gene expression

were correlated to improved functional outcomes, as adipocytes
differentiated from the stromal vascular fraction from vWAT
and scWAT of exercised mice had increased basal oxygen con-
sumption rates and maximal respiratory capacity when com-
pared to cells isolated from sedentary mice (67). Exercise has
been reported to affect mitochondrial function in WAT under
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conditions of obesity. Eight weeks of treadmill training increased
Pgcla and UCP1 expression in vWAT (75), while 6 weeks of
treadmill exercise increased citrate synthase activity in scWAT
of HFD-trained mice (66).

In humans with obesity, multiple transcription factors of
mitochondrial biogenesis in WAT, including PGC1la, NRF1,
TFAM, and OXPHOS proteins, are significantly reduced
(43,44, 129).In fact, individuals with obesity have an increase
in circulating oxidative stress markers, including plasma thio-
barbituric acid reactive substance (TBARS) and urinary
8-epi-prostaglandin-F2a. (8-epi-PGF2a), both of which correl-
ate with high BMI and increased WC (123). Mitochondrial
oxygen consumption rates and citrate synthase specific activ-
ity are also significantly decreased in WAT of individuals with
obesity, and this negatively correlates with BMI and body
weight (BW) (130, 131). Interestingly, studies examining
WAT of monozygotic twin pairs who are lean or obese have
revealed a decrease in mitochondrial DNA and PGCla and
OXPHOS protein, correlating an increase in genes associated
with inflammatory pathways and thus suggesting a decrease in
mitochondrial function as a response to obesity (43,49, 132).

In humans, moderate to vigorous aerobic exercise for 3
weeks increased mitochondrial DNA content and expression
of adipose regulatory genes peroxisome proliferator-activated
receptor gamma (PPARy) and Cpt1p in scWAT, in healthy
subjects (62), but these increases were not seen in healthy
male or female subjects after 6 weeks of HIIT (133).

In contrast to rodent studies, the exercise-induced mito-
chondrial adaptations in individuals with obesity is complex.
Twelve weeks of combined aerobic and resistance training in-
creases mitochondrial respiration of scWAT via enhanced ex-
pression of complex I and II of the electron transport chain in
women with moderate obesity and a BMI of 30 to 40 kg/m”
(134). Moreover, 8 weeks of combined aerobic and strength
training increased mitochondrial energy production in
scWAT, and elevated citrate synthase activity in women
with obesity (63). Interestingly, 12 weeks of combined aerobic
and resistance exercise did not affect OXPHOS and mito-
chondrial biogenesis markers in the scWAT of men with obes-
ity (72). A further understanding of how various exercise
modalities, exercise duration, and sex influence modifications
to WAT depots, specifically the mitochondria, in the context
of obesity warrants further investigation.

Thermogenic remodeling of WAT. An important exercise-
induced adaptation to rodent adipose tissue is a “beiging”
of scWAT (67, 135). Adipose tissue is a highly plastic tissue,
and the plasticity of white adipocytes is bi-directional; cold
stress and exercise induce a “beige” phenotype to increase
thermogenic capacity, while obesity does the opposite and in-
creases a “whitening” of the adipose tissue in animal models
(136-138).

In rodents, exercise induces a beige phenotype in scWAT
which is sustained up to 3 weeks post-exercise training (13,
67, 76, 135). This phenotype is observed more prominently
in male rodents, as well as an increase in genes and pathways
related to lipid utilization, aerobic metabolic pathways, tissue
remodeling, and angiogenesis, while exercise in female ro-
dents enhances pathways involved in adipogenesis and insulin
signaling (70, 73).

In rodent models of HED, the role of exercise to induce beig-
ing has been inconsistent; studies have reported differing effects
of exercise on the expression of Ucp1, a mitochondrial protein

which facilities non-shivering thermogenesis, dissipating en-
ergy in the form of heat (139, 140). One study demonstrated
that 8 weeks of aerobic exercise increased expression of
UCP1 in scWAT of HFD mice but decreased mitochondrial
content protein (74), while others showed that 15 weeks of
HIIT or moderate intensity exercise had no effect on thermo-
genic markers including UCP1 and Prdm16 in scWAT of
HEFD mice (77, 78). These studies shed light on the fact that al-
terations to UCP1 gene expression are not a direct measure of
its activity and subsequent metabolic outcomes, and the find-
ings indicate that to uncover the functional relevance of an in-
crease in UCP1, other direct measures of thermogenic capacity
such as indirect calorimetry and infrared thermography are
essential.

Interestingly, exercise does not induce a beiging of scWAT
in humans. Multiple studies have reported no difference in
the expression of beiging markers UCP1 and Prdm16 in lean
and obese populations after exercise (72, 84, 141). In contrast,
studies have shown that the tissue does have the capability to
beige, but exercise is not an effective stimulus (142, 143).
Several hypotheses have been brought forward to address
the phenomenon of the exercise-induced beiging observed in
rodents. Firstly, in contrast to cold and pharmacological stim-
uli, which trigger an increase in thermogenesis to compensate
for heat loss, exercise itself is a heat-generating activity (144-
146). Another interesting perspective is that exercise decreases
the size of lipid droplets and overall adipocyte size in scWAT,
leading to reduced insulation and a potential cold stress, war-
ranting the need for increased thermogenesis in rodents (147-
149). In line with this idea is the fact that at room temperature,
which for humans is ~20-22 °C, mice are under a minor cold
stress (150). The optimal comparable temperature for mice to
study metabolic responses is thermoneutral conditions, which
is 30 °C (150). Importantly, when mice are exercised at ther-
moneutral temperatures, the beiging effect of WAT is blunted,
supporting the idea that cold stress contributes to the beiging
of scWAT in rodents (151, 152).

Collectively, these findings suggest that exercise triggers the
thermogenic remodeling of WAT in rodents and does not in-
duce beiging in human scWAT. Future studies focused on ad-
dressing these differences, with a focus on obesity, could
potentially provide greater insight and translational relevance
to the exercise-induced adaptations of WAT.

Endocrine function of WAT. WAT secretes a myriad of adipo-
kines which play a crucial role in regulating energy storage
and expenditure, glucose and lipid metabolism, inflammatory
responses, and insulin sensitivity (68, 153-157). Adipokines
can act in an autocrine, paracrine, or endocrine manner.
Here we will discuss the endocrine function of WAT, specific-
ally leptin, adiponectin, and transforming growth factor beta
receptor 2 (TGF-B2), oncostatin-M and adipose-derived
extracellular vesicles (AdEVs).

Leptin. Leptin is produced by adipose tissue and plays an es-
sential role in maintaining the balance between energy intake
and energy expenditure by binding to leptin receptors (LepR)
(153). LepR is expressed on several organs throughout the
body, including the hypothalamus of the brain (158-160).
Leptin binding to LepR results in the activation of down-
stream pathways and subsequently increased energy expend-
iture and reduced food intake (153).
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In animals, circulating leptin levels are proportional to body
fat mass, with increasing obesity leading to increased leptin
concentrations (154). In mice, treatment with leptin reduces
hyperglycemia and improves insulin resistance (161-164).
Leptin activates AMPK in other metabolic tissues, which pro-
motes fatty acid oxidation, reduces fat accumulation, and en-
hances insulin sensitivity (165). Chronic exercise lowers BW,
which coincides with reduced leptin levels in both obese and
nonobese conditions (166, 167).

In humans, individuals with obesity have higher leptin lev-
els compared to lean individuals (155). Elevated leptin is also
associated with an increased incidence of metabolic syndrome
(168, 169). While short-term and moderate intensity exercise
do not significantly impact leptin levels, chronic training (up
to 12 months) reduces circulating leptin, and this is associated
with a decrease in % body fat and fat mass (170-173). An add-
itional study found that 12 weeks of HIIT combined with
plyometric training reduced leptin levels, which coincided
with reduced fat mass and with improvements in lean body
mass in obese subjects (64).

Adiponectin. Adiponectin is one of the most abundant adipo-
kines, predominantly expressed in WAT, and known for its anti-
inflammatory, anti-obesity, and antidiabetic properties (156,
157). In animal models of obesity and diabetes, administration
of adiponectin improves hyperglycemia, while its absence leads
toreduced insulin sensitivity (174-176). Exercise elevates plasma
adiponectin in rodents, alleviating metabolic disorders such as
T2D and CVD (80, 177-179). Furthermore, 10- to 12-week
exercise interventions have been associated with increased ex-
pression of adiponectin-related myocardial receptors in apolipo-
protein E protein knockout mice and improved endothelial
function in the aorta of T2D mice (178, 179).

Similarly in humans, adiponectin levels are reduced in individ-
uals with obesity and diabetes across all age groups, whereas
increased adiponectin is linked to improved insulin resistance
(180-186). Genetic mutations in adiponectin-related genes are
associated with a heightened susceptibility to metabolic disor-
ders (187-189). Human studies indicate that exercise training,
ranging from 6 weeks to 24 months, results in increased adi-
ponectin levels, coinciding with improved triglyceride levels,
insulin sensitivity, and cardiorespiratory fitness which corre-
lated with a decrease in body fat (65, 85, 190). Notably, just
2 or 3 sessions of aerobic exercise can elevate adiponectin lev-
els by 260% independent of changes in BW. Additionally,
physical training enhances the expression of adiponectin re-
ceptors in muscle, as well as AMPK, highlighting adiponec-
tin’s potential role in mediating insulin resistance in
individuals with metabolic syndrome (191, 192).

Transforming growth factor beta receptor 2. To evaluate
whether exercise-induced adaptations to WAT contribute to
beneficial effects on metabolic health, our lab investigated the ef-
fects of transplantation of scWAT from exercise-trained mice
into sedentary mice (13). Interestingly, scWAT transplanted
from exercise-trained mice resulted in improved glucose toler-
ance of recipient mice at 9 days post-transplantation even under
HEFD conditions (13, 68). The exercise-trained scWAT mediated
metabolic improvements via the adipokine TGF-B2, which is in-
volved in fatty acid and glucose metabolism (68). Additionally,
mice with an adipose tissue-specific deletion of TGF-$2 did not
display exercise-induced systemic glucose uptake, emphasizing
its crucial role in metabolic adaptations (68).
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In humans, 12 weeks of endurance exercise increase expres-
sion of TGF-B2 in the scWAT of healthy male subjects (68)
and a combination of MICT, HIIT and resistance training
for 6 weeks and a 2-week high-intensity training protocol in-
creased circulating TGF-B2 levels in healthy male subjects
(68). Together these data identified a previously unknown
role for exercise-induced adipokine TGF-B2 to regulate glu-
cose and lipid metabolic pathways that may affect metabolic
health.

Adipose tissue extracellular vesicles. Extracellular vesicles (EVs)
are a diverse group of lipid-enclosed nanoparticles that function
as messengers between tissues when released into the extracellu-
lar space (193-195).The main categories of EVs include exo-
somes, microvesicles, and apoptotic bodies (196). Various cell
types, including adipocytes, secrete EVs (AdEVs), which con-
tain bioactive molecules such as microRNAs (miRNAs), mes-
senger RNAs (mRNAs), DNA, proteins, lipids, and
metabolites. These EVs are believed to play a significant role
in obesity and its associated comorbidities (197-200).

An important study highlighted the critical role of circulating
AdEVs; in mice lacking the adipose-specific miRNA-processing
enzyme Dicer, circulating miRNA levels were significantly re-
duced. Transplantation of adipose tissue reversed this effect,
underscoring the importance of adipose tissue as a source of cir-
culating miRNAs (201). Rodent studies have shown that AdEVs
contribute to obesity through various cargoes. For example, a
previous study demonstrated that treatment with vWAT-EVs
from obese mice induced insulin resistance in recipient mice
(202). This effect was mediated by retinol binding protein 4
(RBP4) in vWAT-EVs, which activated macrophages and pro-
moted an inflammatory state by increasing IL-6 and TNF-o pro-
duction. Similarly, other studies have shown that vWAT-EVs
from obese mice have reduced levels of miR-141-3p, a
miRNA involved in AKT phosphorylation in recipient hepato-
cytes, which enhances insulin signaling. A decrease in
miR-141-3p levels impaired insulin signaling in vitro, leading
to reduced insulin sensitivity (203).

Aerobic exercise in DIO mice alters circulating miRNA lev-
els, which correlate with miRNA expression in both the liver
and WAT. Specifically, miR-22 levels were negatively corre-
lated with the expression of adipogenesis and insulin sensitivity
markers in WAT, as well as the presence of liver steatosis (204).

In individuals with obesity, changes to the size, number, and
cargo composition of AAEVs have been reported, with implica-
tions for insulin signaling and inflammatory pathways (205-
208). Importantly, several miRNAs, including miR-23b,
miR-4429, miR-148b, and miR-4269, are differentially ex-
pressed in adipocytes from lean and obese individuals.
Pathway analysis revealed alterations in TGF-p and Wnt/
B-catenin signaling, suggesting an impact on the development
and progression of inflammatory and fibrotic activities (209).

Studies examining the effects of exercise on EVs in humans
have shown that acute bouts of exercise rapidly increase EV
release into circulation, with signatures linked to endothelial
cells and leukocytes in healthy male subjects (210-212).
Interestingly, when comparing normal-weight and male and
female subjects with obesity, it was found that normal-weight
individuals exhibited higher levels of microvesicles after exer-
cise than individuals with obesity. Additionally, exercise re-
duced circulating EVs more in male than female individuals
(213). While these studies highlight the role of EVs in obesity
and exercise, they primarily focus on circulating EVs. Further

G20z JeaquienopN G| uo 1s8nb Aq g98£91.8// | 0JeUA/ABIPUS/QLZ L (L /IOP/a[o1lIE-80UBAPE/AIPS/WO00 dNo olWepeoe//:sdiy Wol) papeojumMo(]



Endocrine Reviews, 2025, Vol. 00, No. 0

research specifically targeting AdEVs in response to obesity
and exercise is needed to better understand these changes
and their potential for therapeutic exploitation in metabolic
diseases. These data show that exercise has profound effects
on WAT, including changes in endocrine activity, and identify
a unique role for adipose tissue-mediated EV communication
as a potential contributor to improved metabolic health.

Exercise induces adaptations to different cell types within WAT.
Adipose tissue is a heterogeneous tissue, including adipocytes
and the stromal vascular fraction, which comprises pre-
adipocytes, mesenchymal cells and immune cells among
others (214, 215). Studies have found that exercise-induced
modifications to adipose tissue also mediate distinct changes
to the various cells residing within adipose tissue which con-
tribute to WAT’s endocrine function. One recent study using
a mouse model highlighted a unique role of exercise modu-
lated molecular shifts to mesenchymal stem cells in obesity
(82). Specifically, 6 weeks of HFD resulted in an increase in
extracellular matrix (ECM) remodeling genes in mesenchymal
stem cells of WAT with implications in fibrogenesis and in-
flammatory roles in both humans and rodents (82). Four
weeks of exercise attenuated the increased expression of
ECM-related genes (82). HFD-induced obesity also downre-
gulated circadian rhythm genes associated with insulin sensi-
tivity and adipogenesis in mesenchymal stem cells, but
exercise reversed this effect and increased expression of these
genes (82).

Another distinct fining is the identification of oncostatin-M,
an exercise-induced adipokine. A recent study showed that
the cytokine oncostatin-M was increased in the scWAT tran-
scriptome of patients who were normoglycemic or had T2D
after an acute bout of exercise (86). Further investigations
showed that oncostatin-M was predominantly produced by
the immune cell fraction within scWAT and in vitro treatment
of human adipocytes with oncostatin-M results in enhanced
MAPK signaling and lipolysis (86). After a 3-hour recovery
period, the oncostatin-M receptor gene was increased in skel-
etal muscle cells, hinting at the possible crosstalk of adipose
tissue and muscle via immune cell mediated oncostatin-M re-
sponse to exercise (86, 216). These data emphasize the role of
exercise to mediate potential beneficial effects to specific cell
types within WAT which positively contribute to the endo-
crine function of WAT.

Are exercise-induced adaptations to scWAT required for the bene-
ficial effects of exercise?. Given the importance of
exercise-induced adaptations to WAT, another study investi-
gated the beneficial effects of exercise in the absence of
scWAT by having mice undergo an 11-day exercise protocol
after removal of scWAT (135). Surprisingly, scWAT removal
had minimal effects on improved glucose and insulin homeo-
stasis in exercised mice, with no compensatory changes ob-
served in other metabolic tissues such as skeletal muscle. This
finding provides a unique perspective, as most rodent studies
indicate that exercise-induced adaptations to scWAT contrib-
ute to improved metabolic health, while these findings suggest
that the various exercise-induced adaptations to scWAT and its
regulation of glucose and insulin homeostasis are not linked
but can occur independently of one another (135).

Together these data indicate that exercise mediates favorable
outcomes on the various functions of WAT. Importantly,
modulation of WAT’s mitochondrial and endocrine activity

in both humans and rodents and rodent-specific thermogenic
plasticity highlights the potential of WAT to improve meta-
bolic health as a response to exercise, which can be used to
combat obesity and obesity-related diseases.

Exercise and brown adipose tissue adaptations in obesity

In rodents, brown adipose tissue (BAT) can be found in several
regions, including the interscapular, mediastinal, perirenal, axil-
lary, and cervical areas (217). In humans, BAT is predominantly
found in the cervical, supraclavicular, axillary, and paraverte-
bral regions (218, 219). BAT has emerged as a potential thera-
peutic target to combat obesity and cardiometabolic diseases,
due to its inverse correlation with the occurrence of T2D and
CVD in humans (220). However, the precise underlying mech-
anisms of how BAT is associated with combating obesity are un-
known (218, 221). Alterations to BAT’s mitochondrial and
thermogenic functions and endocrine activity in obesity, and a
potential role for exercise, will be discussed below (Fig. 2B,
Table 1).

Mitochondrial and thermogenic function of BAT. BAT’s thermo-
genic capacity closely relies on its mitochondrial activity, mainly
due to the presence of UCP1 in the mitochondria. Impaired BAT
mitochondrial activity has been reported in animals with obesity
(222-224). In rodents, HFD induces obesity and hyperglycemia
and elevates mitochondrial ROS generation which coincides
with increased inflammation in BAT (223). A recent study
with mice on HFD for 8 weeks revealed that a BAT-specific de-
ficiency of thioredoxin-2 (TRX2), a mitochondrial redox pro-
tein, disrupts mitochondrial function by specifically enhancing
the generation of mitochondrial ROS and results in the cytosolic
release of mtDNA (225). These mitochondrial aberrations result
in the activation of an immune response triggering the cyclic
GMP-AMP synthase (cGAS)-stimulator of interferon genes
(STING) pathway and NOD-like receptor protein-3 (NLRP3)
inflammasome pathways.

Exercise in murine models has shown favorable outcomes
in obesity by affecting mitochondrial activity and thermogen-
esis (67, 90). Studies have shown that 4 to 8 weeks of aerobic
exercise (swimming or treadmill) in HFD-induced obese mice
increased BAT mass, expression of thermogenic genes, and ex-
pression of markers associated with glucose and lipid metab-
olism (87, 88, 90), and 12 months of treadmill training
preserved expression of thermogenic genes in BAT in obese
aged mice (89). However, several other studies have shown
that exercise training either did not affect BAT mass or
UCP1 expression (136, 226, 227) or did not increase Ucpl
protein expression and reduced basal oxygen consumption
rates (67). These discrepant data are of interest, as it is not
clear why exercise, which is a thermogenic activity, would re-
quire an increase in the thermogenic activity of BAT.

With regard to the role of BAT in humans, a recent retrospect-
ive analysis of 52 487 patients reported that individuals with the
presence of BAT detected via '*F-fluorodeoxyglucose positron
emission tomography—computed tomography scans (FDG-
PET CT) scans had a lower odds of T2D and lesser association
with cardiometabolic diseases (220). These results were ampli-
fied in individuals with obesity, indicating a role for BAT to at-
tenuate obesity-associated diseases (220). In another human
study, there was no difference in BAT volume or activity among
lean subjects and subjects with obesity; however, there was a
strong inverse correlation between BAT volume, cold-induced
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thermogenesis, FDG uptake, and visceral adipose tissue (228).
Other studies found that metabolically healthy overweight or in-
dividuals with obesity had a higher presence of BAT when com-
pared to their metabolically unhealthy counterparts, and
individuals with obesity and active BAT had lower visceral fat
mass than those without detectable BAT activity (229, 230),
highlighting a potential role for BAT to attenuate
obesity-associated outcomes.

Studies investigating the effects of exercise on BAT in hu-
mans have shown a minimal effect on the thermogenic role
of BAT. A comparative study in male subjects showed that 2
hours of cold exposure resulted in significantly lower BAT ac-
tivity measured by FDG-PET CT scans in endurance athletes
when compared to sedentary individuals (231), indicating
that exercise training decreased BAT activity. Another study
revealed that exercise training reduces insulin-stimulated glu-
cose uptake in BAT in individuals with detectable BAT activ-
ity (92). A recent human trial, ACTIBATE, reported that
24-weeks of endurance and resistance training did not affect
glucose uptake in BAT or BAT mass, implying that BAT’s abil-
ity to take up glucose is not affected by exercise (93). The ef-
fect of exercise in humans has mostly been investigated in
healthy individuals and it is unclear if exercise would induce
similar effects in BAT in people with obesity. It is also import-
ant to note that the standard measurement technique to meas-
ure BAT activity is FDG-PET CT, which solely relies on BAT’s
ability to take up glucose, using an indirect substrate uptake
mechanism to indicate activity. Alternative methods, includ-
ing infrared thermography and near-infrared time-resolved
spectroscopy, have also reported reliable assessment of human
BAT (232, 233); T2 mapping, which uses magnetic resonance
imaging to measure fat T2 relaxation time, based on BAT hav-
ing higher water compared to WAT without requiring cold ex-
posure to detect BAT (234, 235) is another alternative
method. However, the use of these alternative techniques
has not been optimized to determine potential effects of exer-
cise on BAT.

Endocrine activity of BAT. Although these studies emphasize
that exercise does not increase BAT mass or the ability of
BAT to take up glucose, some studies have shown that exercise
can possibly alter BAT’s endocrine activity (91, 236). In fact,
in the previously described ACTIBATE study, endocrine fac-
tors from BAT were not measured. Recent studies have iden-
tified several factors released from BAT in response to exercise
(237); here we will discuss 2 of these batokines, including
12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME)
and fibroblast growth factor 21 (FGF21) in the context of ex-
ercise and obesity.

12,13-diHOME. 12,13-Dihydroxy-9Z-octadecenoic  acid
(12,13-diHOME), is a lipokine released from BAT in response
to acute and chronic cold and exercise in humans and is nega-
tively correlated with BMI, adiposity, circulating triglycerides,
and insulin sensitivity, and positively correlated with VO,
peak (91, 238).

In rodents, 12,13-diHOME is increased in response to both
acute and chronic exercise and cold exposure. When mice
underwent surgical removal of the interscapular BAT and
then were subjected to an acute exercise protocol, there was
no elevation in 12,13-diHOME levels, confirming that the
exercise-induced increase in 12,13-diHOME was BAT specific
(91). Acute treatment of 12,13-diHOME results in increased
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fatty acid uptake into skeletal muscle both in vivo (Luc
ActaCre mice) and in myotubes in vitro (C2C12 cells) and
brown adipose tissue, and the heart and increased cardiac
function (91, 238, 239), and sustained overexpression of
12,13-diHOME attenuated BW gain and preserved cardiac
function in mice fed a high-fat diet (HFD) (239). These data
highlight an important endocrine role for BAT in response
to exercise.

FGF21. FGF21, a hormone primarily released by the liver,
plays a crucial role in glucose and lipid metabolism (240,
241). It is released from WAT and BAT in response to cold
stimuli and B-adrenergic pathway stimulation in rodents
(242-244). Studies have shown that BAT transplantation in
mice leads to a 5-fold increase in serum FGF21 concentrations
and 2-fold increase in FGF21 protein expression in endogen-
ous BAT which coincided with improved glucose tolerance
and increased insulin sensitivity (245, 246).

In humans, studies have shown that neonates have a signifi-
cant expression of both FGF21 and UCP1 in BAT and mild
cold exposure increases circulating FGF21 levels indicating
the possible link between FGF21 and BAT related thermogen-
esis in humans (247, 248).

Acute and chronic exercise increases circulating FGF21 levels
in humans (236, 249) and rodents (249), but the direct effects of
exercise on FGF21 expression in and release from BAT in re-
sponse to exercise have not been established. Investigating the
effect of BAT to mediate FGF21 in response to exercise in the
presence of obesity could potentially reveal new roles for BAT
to mediate FGF21. Collectively, these findings suggest that exer-
cise plays a distinctive role in enhancing the endocrine function
of BAT while minimally affecting glucose uptake into BAT in
human subjects.

Obesity driven alterations to the liver

The liver is an essential regulator of whole-body metabolic
homeostasis via its role in lipid and glucose metabolism (250-
252). Under nonobese conditions, fatty acid storage in the
form of triglycerides and fatty acid oxidation form a tightly regu-
lated balance which results in less than 5 % of triglyceride levels in
the liver (250). Under obese conditions, mechanisms underlying
adipose tissue and liver crosstalk are altered. For example, circu-
lating fatty acid levels are increased due to adipose tissue dysfunc-
tion, resulting in ectopic storage in the liver. This improper
storage contributes to the downregulation of hepatic mitochon-
drial and cellular functionality, yielding an increase in oxidative
stress (253-256). This increase in circulating fatty acid is often
coupled with low-grade systemic inflammation which promotes
the activation and infiltration of hepatic immune cells and conse-
quently inflammation and fibrogenesis (253-256). These cellular
and molecular abnormalities have prompted the generation of a
large body of studies which have shown that obesity can contrib-
ute to the development and progression of metabolic dysfunc-
tion—associated fatty liver disease (MAFLD) and MASH (257-
261).

Exercise has emerged as one of the key lifestyle modifica-
tions recommended to patients with obesity concurrently di-
agnosed with MAFLD/MASH (31, 46, 52, 262-265). The
effects of exercise to potentially ameliorate obesity-related
MAFLD and MASH will be discussed below.

G20z JeaquienopN G| uo 1s8nb Aq g98£91.8// | 0JeUA/ABIPUS/QLZ L (L /IOP/a[o1lIE-80UBAPE/AIPS/WO00 dNo olWepeoe//:sdiy Wol) papeojumMo(]



Endocrine Reviews, 2025, Vol. 00, No. 0

Exercise-induced modulations to the liver in obesity. Numerous
studies have reported altered glucose and lipid metabolism
in MASH with significant effects on pathways involved in gly-
colysis, gluconeogenesis, and fatty acid oxidation. Animal
models of diet-induced obesity have shown an upregulation
of enzymes involved in glycolysis, like hexokinase 2, phospho-
fructokinase muscle isoform, and pyruvate kinase muscle iso-
form (266) and enhanced hepatic gluconeogenesis (267-269).
Modifications in lipid metabolism also contribute to MASH
progression, including increased de novo lipogenesis, lipid up-
take, and fatty acid oxidation. Fatty acid oxidation-related
genes such as PPARa, PGCla, and CPT1a and fatty acid
translocase receptors CD36 and FAT binding protein 1
(FABP1) are significantly upregulated in animal fatty liver
models indicating the increased uptake and oxidation of fatty
acids which consequently promote the disruption of hepatic
insulin sensitivity (270-274).

Exercise is highly effective in mitigating MASH and MAFLD.
Studies show that various forms of exercise enhance insulin sig-
naling, improve glucose tolerance, and reduce liver steatosis in
animal models (264,275-279). For instance, HIIT improves glu-
cose tolerance and decreases markers of hepatic lipogenesis such
as PPARy, diacylglycerol O-acyltransferase 1 (Dgatl),
acetyl-CoA carboxylase alpha (Acaca), and acetyl-coenzyme A
carboxylase beta (Acacb) (264). Four weeks of exercise also de-
creased gluconeogenesis enzymes such as fructose-1,6-
bisphosphatase 1, alongside increased Ser473-phosphorylation,
suggesting the activation of the PKB/Akt insulin signaling path-
way (278). Twelve weeks of strength training in DIO rats also
correlated with reduced hepatic fatty acid storage and fatty
acid uptake receptor CD36 expression, alongside lipogenesis
marker sterol regulatory element-binding transcription factor 1
(SREBP1) expression and a 12-week swimming protocol in
HFD-fed mice decreased of FABP1 (276, 279). Exercise also in-
creased activation of AMPK, an important factor in fatty acid
oxidation in the liver (262). This potentially integral role of fatty
acid oxidation re-establishment was corroborated in a separate
study in which mice were exposed to either MIT or HIIT for 8
weeks (14). Both training regimens resulted in increased circulat-
ing levels of adiponectin, and an increase in hepatic adiponectin-
mediated fatty acid oxidation markers such as sirtuin 1 (SIRT1),
PPARa, CPTla, cytochrome P450 Family 2 Subfamily E
Member 1 (Cyp2el), and insulin receptor substrate 2 (Irs2) in
conjunction with significantly lower hepatic glycogen and lower
hepatic mRNA levels of SREBP1c, Fas Cell Surface Death
Receptor (FAS), CD36, and lipin1 (14). Additionally, exercised
mice had increased levels of hepatic pAMPK/AMPK ratio and re-
duced glycogen content (14).These preclinical studies demon-
strate the potential of exercise in reestablishing proper hepatic
fatty acid oxidation functionality through crosstalk between
AT and the liver which can play a mitigating role in the progres-
sion of liver disease.

In human studies, patients with steatohepatitis have in-
creased hepatic glucose phosphorylation and those with ele-
vated intrahepatic triglycerides have higher endogenous
glucose production and very low-density lipoprotein triglycer-
ides from hepatic de novo lipogenesis (280-283). MAFLD pa-
tients also have increased lipogenesis and liver X receptor
(LXRa) levels, which promote lipogenesis via SREBP1C acti-
vation (284-286). A study that metabolically profiled
tissue-specific insulin resistance in individuals who were over-
weight or have obesity revealed high levels of circulating
branched chain amino acids such as valine and isoleucine,

1

triglycerides, lactate and reduced glycine levels which corre-
lated with liver specific insulin resistance (287).

Exercise benefits individuals with MASH by reducing intra-
hepatic lipid content, improving insulin sensitivity, and main-
taining glucose homeostasis (288-291). Two weeks of
resistance training, high-intensity interval aerobic training,
and moderate intensity continuous aerobic training decreased
hepatic fat content, liver stiffness, and inflammatory markers
like leptin and ferritin (288). Additionally, 12 weeks of a com-
bined aerobic and resistance training program resulted in de-
creased intrahepatic lipid content and improved peripheral
insulin sensitivity by 23% for individuals with MAFLD
(292). Human studies have also yielded consistent results
demonstrating the importance of aerobic exercise training in
reducing expression of inflammatory markers. Specifically,
both circulating TNF-o and IL-6 were decreased, alongside a
reduced expression of oxidative stress markers (31, 293,
294). Additionally, a post hoc analysis of liver biopsies from
the NASHFit trial reported that a 20-week moderate intensity
exercise routine correlated with reduced liver fat, as well as re-
duced levels of FGF21 levels (295). FGF21 has been impli-
cated in MASH progression, due to disrupted lipid
oxidation pathways (295). MASH and MAFLD has been as-
sociated with a FGF21-resistant state rendering FGF21 and
its analogues as effective therapeutic options for liver disease
(296-299). Interestingly, a simple resistance training protocol
consisting of pushups and squats for 12 weeks or walking for
200 minutes per week for a year corresponded with a decrease
in hepatic steatosis, regression of hepatic fibrosis, and lower
FGF21 levels (15, 265).

Taken together, both animal and human data point toward
the metabolic remodeling capacity that exercise can induce in
obese conditions, as well as demonstrate a potential hepato-
protective effect against the development of further liver
disease.

Obesity-induced modifications to the skeletal muscle

Skeletal muscle is one of the most metabolically active organs
in the body, responsible for up to 80% of insulin-stimulated
glucose uptake and disposal under nonobese conditions
(300, 301). However, in cases of obesity, numerous muscular
metabolic pathways can be adversely altered, reducing insulin
sensitivity and impairing function of insulin signaling recep-
tors and key glucose transporters (16, 301-303). Obesity dis-
rupts lipid metabolism pathways in muscle, resulting in
increased lipid accumulation and mitochondrial dysfunction
preceding incomplete oxidation of fatty acids (16, 304).

Similar to other metabolically relevant organs, exercise
training improves skeletal muscle glucose and lipid metabol-
ism and mitochondrial function, thus attenuating the negative
impacts of obesity (16, 305). Exercise-induced adaptations to
skeletal muscle as a potential method to improve metabolic
regulation in obesity will be discussed below.

Exercise-mediated skeletal muscle adaptations in obesity. Skeletal
muscle is a vital organ for maintaining metabolic balance
through its significant contribution to energy expenditure, in-
sulin response, and ability to adapt to the body’s metabolic de-
mand, via its mitochondrial content and oxidative capacity
(306-308). However, under obese conditions, skeletal muscle
exhibits reduced insulin-mediated glucose uptake, impaired
oxidative metabolism, and increased lactate production,
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which is often associated with impaired insulin signaling and
glucose metabolism pathways, such as reducing glucose trans-
port, glycogen synthesis, and glucose oxidation (302, 303,
309-312). Additionally, lipid metabolic pathways are also
negatively affected, including an enhanced fatty acid transport
system, leading to increased fatty acid esterification and high-
er intramuscular triacylglycerol levels (313, 314).

HEFD in animal models results in muscular lipid accumula-
tion, insulin resistance, and a reduction of mitochondrial bio-
genesis markers such as AMPK and PGCla, contributing to
metabolic dysfunction (315-318). Murine studies have shown
that aerobic/endurance exercise enhances insulin signaling via
upregulation of AKT, as well as translocation of the glucose
transporter GLUT4 in obese mice (319, 320). AMPK also plays
a critical role in insulin-stimulated glucose uptake by skeletal
muscle after exercise via the inhibition of the Rab-GTPase-ac-
tivating protein TBC1D4, which consequently results in the
translocation of GLUT4 to the membrane and enhanced glu-
cose uptake (321). A whole-body TBC1D4 knock-in mouse
model showed that after an acute bout of treadmill exercise,
improvement in whole-body and muscle insulin sensitivity
was dampened after exercise (321). These findings are corrobo-
rated in a notable human study where skeletal muscle from in-
dividuals with TBC1D4 p.Arg684Ter variant displayed a
reduced post-exercise insulin sensitization effect (322).
Specifically, individuals with the TBC1D4 p.Arg684Ter vari-
ant had up to 50% of reduced glucose uptake in the skeletal
muscle after 1 hour of exercise. Exercise in rodent studies has
also shown that moderate intensity endurance training in rats
increases oxidative phosphorylation, lipid oxidation, and mito-
chondrial biogenesis and decreases mitochondrial stress in skel-
etal muscle (323).

In humans, obesity is associated with metabolic impairments
in skeletal muscle, including diminished insulin-induced glucose
uptake, reduced oxidative metabolism, and increased lactate
production (303, 310). Individuals with obesity have reduced
insulin-stimulated phosphorylation of IRS1 and Akt and lipid
oxidative capacity and higher levels of intramuscular triacylgly-
cerol (304, 312, 324, 325). Like in rodents, human studies have
shown that endurance exercise increases fatty acid oxidation, re-
duces intramuscular triglyceride accumulation, and inflamma-
tion in skeletal muscle (326-328). One study investigating
women with obesity revealed that 12 weeks of combined aerob-
ic and resistance training from moderate to vigorous intensity
resulted in changes to the skeletal muscle lipid intermediate lev-
els, such as cardiolipin and phosphatidylcholine, which was ac-
companied by an increase in mitochondrial respiration (329).
Other studies using endurance exercises have shown a decrease
in intermuscular adipose tissue for older individuals with
obesity, and body fat reduction alongside improvements in
muscle mitochondrial content for diet-resistant women with
obesity (330, 331). Additionally, in the context of obesity,
exercise-induced myokines, which include cytokines, small pro-
teins, and peptides released from the skeletal muscle, also under-
go alterations (332). Some myokines affected by obesity and
exercise include IL-6 which plays an anti-inflammatory role
alongside improving insulin-stimulated glucose uptake and glu-
cose transporter GLUT 4 translocation in skeletal muscle (333,
334), metrnl which has been linked to worsening glucose toler-
ance and plays a role in thermogenic and energy expenditure
pathways (335, 336) and irisin which is associated with insulin
resistance and has been implicated in the browning of white fat
among its musculoskeletal roles (337-339). Detailed
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mechanisms of additional myokines including IL-6, metrnl,
and irisin and their role in mediating metabolic diseases are
thoroughly reviewed elsewhere (332, 340).

Overall, these studies provide compelling evidence that ex-
ercise is an effective and powerful tool to alleviate the detri-
mental effects of obesity and improve overall health.
However, escalating levels of obesity and associated diseases
pose a significant global health challenge and necessitate the
advancement of additional mechanisms that could be used
as a combinatorial approach with exercise.

Pharmacotherapeutics, Bariatric Surgery, and
Exercise: Potential for Combined Therapies?

Alternative methods, including incretin therapies and bariat-
ric surgery, have presented promising results in weight reduc-
tion with improved cardiovascular outcomes (17, 18, 341-
343). These promising outcomes may aid in progressing
health benefits for individuals that have less impactful effects
from conventional methods to reduce fat mass and improve
metabolic health. Moreover, with the advantageous effect of
exercise on obesity, combinations of these methods and exer-
cise could likely exploit effectual mechanisms that would aid
in enhanced treatment of larger groups of individuals with
obesity.

Reviewing current findings on the impacts of incretin
therapy and bariatric surgery in combination with exercise
in humans provides a holistic outlook on the potential of syn-
ergistic approaches to combat obesity (Table 2).

Incretin therapy and exercise

Incretins are a group of hormones that are released by the gastro-
intestinal tract in response to nutrient uptake and have physio-
logical actions on multiple organs. Specifically, incretins
endogenously function to stimulate glucose-stimulated insulin
secretion by pancreatic B-cells and simultaneous reduction in
the secretion of glucagon and slowing of gastric emptying, which
promotes satiety and reduces appetite (341, 342). Multiple stud-
ies have linked the secretion of glucagon-like peptide 1 (GLP-1)
to obesity (361-365). For instance, individuals with obesity
have lower plasma GLP-1 levels compared to lean controls fol-
lowing a solid meal test, which coincides with higher gastric
emptying in the obese subjects (361, 365). Furthermore, the large
ADDITION-PRO study, which included 1462 participants,
found that individuals classified as obese or overweight showed
a reduction of up to 20% in plasma GLP-1 levels following an
oral glucose test (363). Notably, BMI and WC were negatively
correlated with GLP-1 levels (363).

Several incretin therapies have been studied as therapeutics
for obesity. Among incretins, GLP-1 (and specifically GLP-1
receptor agonists [GLP-1 RAs]) have gained the most popular-
ity in treating T2D and obesity, with additional cardiovascu-
lar benefits (18, 341, 342). GLP-1 RAs are altered versions of
GLP-1 which mimic its biological activity, conferring the ben-
efits of lowering blood glucose levels with an extended half-
life and avoiding severe hypoglycemic states (366, 367).
Currently the FDA has approved 3 GLP-1 RA s for the treat-
ment of obesity: liraglutide, semaglutide, and tirzepatide (the
latter is a GLP-1/glucose-dependent insulinotropic polypep-
tide [GIP] dual agonist). Studies on liraglutide have demon-
strated that daily treatment when combined with lifestyle
interventions, including dietary deficits and physical activity,
for 56 weeks can result in significant weight loss with a
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Table 2. Recent findings on outcomes of combination of incretin therapy, bariatric surgery, and exercise in humans

Combinatorial Weight loss  Interventions Outcomes
therapies in human procedure
studies
Incretin therapy and Liraglutide 1 year of liraglutide at 3.0 mg/day and moderate to vigorous * Abdominal fat percentage reduced by 6.1%
exercise intensity exercise 4 times a week (344) * Metabolic syndrome severity z-score decreased
by 0.48
1 year of liraglutide at 3.0 mg/day and moderate to vigorous * Weight loss of 9.5 kg
exercise 4 times a week (21) * Body fat reduction by 3.9%
* Improvements in insulin sensitivity and glycated
hemoglobin
1 year of liraglutide at 3.0 mg/day and moderate to vigorous * 6.88 kg of weight loss change
intensity exercise 4 times a week (345) * Unchanged bone mineral density at hip and
lumbar spine
1 year follow up after termination of intervention from same * Reduced body weight of approximately 5.1 kg
cohort that previously received 1 year of liraglutide at * Reduced body fat percentage of 2.3%
3.0 mg/day and moderate to vigorous intensity exercise ¢ Weight regain of 2.5 kg
4 times a week (346)
Semaglutide 20 weeks of 0.5 mg or 1.0 mg of semaglutide weekly then  * Improved body fat percentage
combined with aerobic exercise (average heart rate reserve  * Improved glycemic control
of 75% of maximum) 3 times per week for 12 weeks in ¢ Improved pancreatic beta cell insulin secretion
patients with T2D (347)
Tirzepatide 6 weeks of 2.5 mg or 5.0 mg of tirzepatide weekly and 3 * Reduced body weight, waist circumference, fat
sessions per week of resistance and aerobic exercises (348) mass, and waist to hip ratio
* Exercise did not have an additive effect on
fasting blood glucose and triglyceride levels
Bariatric surgery and Presurgery Aerobic dance-based exercise for 60 minutes, 2 days a week * Improved functional capacity
exercise for 8 weeks. Analysis after 8 weeks of intervention and ¢ Improved muscle strength and endurance
5 months post SG (349) * Improved physical activity
* Improved fatigue scores
* These results were seen both at 8 weeks post
intervention and 5 months postsurgery
12 weeks of endurance and strength training. 3 sessions per * Improved 6-minute walking test
week for 80 minutes and monthly aqua gym (350) * Increased half-squats
* Increased arm curl repetitions
* Improved social interaction score
1 year postsurgery RYBG or SG evaluation of presurgery ~ * Increased physical activity
exercise intervention mentioned previously (350, 351) * Increased 6-minute walking test
* Increased half-squat test
* Decreased BMI
Aecrobic and stretching exercises, 25 minutes each, 2 * Reduced body weight for the exercise and
sessions weekly in addition to cognitive-behavioral exercise + CBT groups
therapy (CBT), once a week for 4 months (352) * Reduced BMI for the exercise group and
exercise + CBT group
* Improved functional capacity and
cardiometabolic parameters such as blood
pressure for both exercise and exercise + CBT
groups
Aerobic (including HIIT) and resistance training, 2 sessions * Reduced BMI
per week for 6 months (353) * Reduced fat mass
* Improved blood pressure
Postsurgery Resistance training for 1 hour, 3 times a week for 18 weeks * Increased lower-limb muscle strength

post RYGB in addition to supplemental whey protein
dose of 48 grams/day (354)

5-year postsurgery follow up of previously mentioned
intervention (20, 354)

60-min group exercise classes with functional strength,
flexibility, and aerobic activities, 2 times per week for 6
months and at least 3 days per week of self-directed
exercise post RYG, SG, and GB (355)

Increased physical activity
Lower weight regain

Increased aerobic fitness after 6 months of
intervention that lasted an additional 6 months
with maintenance

(continued)
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Table 2. Continued
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Combinatorial Weight loss  Interventions Outcomes
therapies in human procedure
studies

12 weeks of aerobic and strength training, 3 times per week ¢ Reduced weight

post RYGB and SG (356)

Resistance training for 12 weeks, 60-80 minutes, 3 times a

week post RYGB (357)

Aerobic and resistance training for 60 minutes, 3 times a
week for 12 weeks post RYGB, SG, and GB (358)

Aerobic and resistance exercise up to 74 minutes, for 5
months separated into 5 blocks for every 4 weeks post SG

(359)

Aerobic exercise for 120 minutes, 3 to 5 times per week for 6

months post RYGB (360)

Reduced percent body fat
Reduced fat mass
Increased change in 12-minute walk test

Improved muscle strength and quality including
less press strength, leg extension strength, and

leg press quality

Decreased fat mass
Improved physical function

Reduced fat mass
Reduced blood glycemic levels
Reduced cholesterol levels

Reduced fat mass
* Reduced abdominal adipose tissue
* Maintenance of skeletal muscle mass

Abbreviations: BMI, body mass index; GB, gastric banding; HIIT, high-intensity interval training; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; T2D, type

2 diabetes.

reduction of up to 25.2% (368-370). Forty weeks of com-
bined liraglutide treatment and physical activity also affects
the visceral adiposity of individuals, leading to a reduction
of vWAT by 12.49% (371). Similarly, semaglutide treatment
for 68 weeks, alongside lifestyle modifications, led to signifi-
cant reductions in BW, BMI, vWAT, and cardiometabolic
risk factors such as lipid levels and blood pressure (18, 372,
373). Tirzepatide studies showed significant weight loss as
well, with reductions up to 25.3% and notable improvements
in cardiometabolic parameters like WC, fasting insulin, and
lipid levels across various doses (374-377).

Although GLP-1 RAs mediate favorable effects in the set-
ting of obesity, the benefits of GLP1-RAs are accompanied
by conflicting results about bone health, particularly the risk
of bone fractures and reduced bone mass density (378-380).
Weight regain after the termination of GLP-1 RAs treatments
is also a concern for current therapeutic strategies (381, 382).
Less is known about the combined effects of exercise and sem-
aglutide or tirzepatide. One study showed that a combination
of semaglutide and aerobic exercise for 12 weeks in T2D indi-
viduals with prior semgalutide use for 20 weeks directly en-
hances insulin secretion, body composition parameters such
as body fat, and glycemic control (347). A 68-week study
demonstrated that weekly semaglutide administration in com-
bination with 150 minutes of weekly physical activity resulted
in 14.9% of BW reduction when compared to the control
groups (18). However, once treatment was terminated, partic-
ipants regained approximately two-thirds of BW lost in a year
and the benefits to cardiometabolic risks were reversed (18,
382). In the case of tirzepatide treatment, a 6-week study com-
bining tirzepatide and aerobic and resistance training showed
no additive effects of exercise to fasting blood glucose and tri-
glyceride levels (348).

Studies investigating the combined effects of liraglutide and
moderate to vigorous intensity exercise reported improve-
ments in multiple metabolic health parameters, such as insulin
sensitivity, hemoglobin glycation levels, and reduced abdom-
inal obesity and BFP (21, 344), while a year-long regimen

helped preserve bone mass density in the hip and lumbar spine
(345). This suggests that the combination of liraglutide and
exercise not only provides metabolic and inflammation related
benefits but also supports bone health. Interestingly, Jensen
et al studied the long-term benefits of daily liraglutide in com-
bination with vigorous exercise 1 year after the termination of
interventions (346) and found that participants who had re-
ceived a combination of liraglutide and exercise had main-
tained weight loss up to 10% of initial BW and the same
group had a weight regain of only 2.5 kg 1 year after termin-
ation of treatment, and increased physical activity when com-
pared to the control groups, suggesting that vigorous exercise
could potentially prolong beneficial effects of GLP1-RAs dir-
ectly or indirectly through encouraging healthy physical activ-
ity habits (346).

These recent findings imply that any form of physical activ-
ity strengthens the effects of GLP1-RAs. Moderate to vigorous
exercise amplify the impacts of GLP1-RAs on weight loss and
overall metabolic health. Extensive studies would be required
to identify the exact synergistic mechanisms of exercise and
GLP1-RAs in curbing the adverse effects reported with
GLP-1 RAs therapy alone.

Bariatric surgery and exercise

Bariatric surgeries are a set of stomach or intestinal proce-
dures aiming to achieve long-term weight loss in cases of se-
vere obesity, with results of weight loss up to 25% at 10
years after intervention (17, 343, 383, 384). Some of the
most common procedures include Roux-en-Y gastric bypass
(RYGB) and the sleeve gastrectomy (SG) (17). Bariatric sur-
gery enhances transcriptional signatures for mitochondrial
oxidative phosphorylation in scWAT (385, 386) and can alter
circulating factors such as IL-27 (387). With the drastic
weight loss after bariatric surgery comes the long-term adverse
effects of decreased muscle strength, weight regain, and pro-
tein and micronutrient deficiencies (20, 381, 388, 389).
Notably, studies have demonstrated that exercise training,
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specifically aerobic and resistance training, improve clinical
outcomes such as greater fat loss, longer 6-minute walking
distance, lower systolic blood pressure, and increased muscle
strength up to 1 year after bariatric surgery (Table 2) (20, 354-
360). A study conducted with 76 female participants after
RYGB analyzed a combination of resistance training and pro-
tein supplementation following bariatric surgery (354). The
results showed that 6 months postsurgery, participants who
received additional whey protein intake of 48 grams per day
in addition to 3 weekly resistance training sessions had in-
creased lower-limb muscle strength when compared to control
groups (354). A S-year follow up of this study showed that
even though muscle strength decreased over time in patients
with protein supplementation and exercise, there was an in-
crease in physical activity levels, which positively correlated
with lower weight regain postsurgery (20).

Preoperative exercise interventions are beneficial for pa-
tients prior to bariatric surgery (Table 2) (349-353). A recent
study reported that a presurgery aerobic dance-based exercise
program for 60 minutes, twice a week for 8 weeks results in
increased muscle strength and endurance, physical activity
levels, functional capacity, and quality of life when compared
to the group that only received physical activity counseling
and these effects were sustained up to 5 months after surgery
(349). Additionally, longer durations of presurgery exercise
including 6 months of aerobic and resistance training showed
improvements in BMI, BFP, and blood pressure (353).

These studies collectively highlight the importance of exer-
cise in achieving long-term beneficial outcomes of bariatric
surgery, emphasizing exercise as a critical component in obes-
ity management. Furthermore, it is crucial to recognize that
many findings, as shown in Table 2, demonstrate that the posi-
tive effects of exercise—such as enhanced insulin sensitivity,
increased muscle strength, and reduced fatigue—are inde-
pendent of weight loss. This underscores the fact that the ad-
vantageous adaptations of exercise in obese individuals are
not solely driven by changes in BW.

Can Exercise Override the Genetic Causes
of Obesity?

The causes of obesity are multifaceted and various genetic and
environmental factors contribute to disease development (390-
393). Several environmental factors are modifiable, including
things like diet and sedentary lifestyle, and there are multiple
studies that discuss how exercise can combat these
environmental factors (394-396).While lifestyle factors are im-
portant contributors to the pathogenesis of obesity, genetic fac-
tors also play a significant role. Monogenic or polygenic
disorders to critical genes or regulatory processes can result in
the development of nonsyndromic obesity, which causes
early-onset obesity (397, 398). Nonsyndromic obesity is primar-
ily associated with genetic mutations to factors involved in the
leptin-melanocortin pathway and presents as a disruption to en-
ergy homeostasis and its monogenic form affects approximately
5% of the population with early-onset obesity (398-401).
Aberrations at the gene, chromatin, and RNA-associated post-
transcriptional modification levels can contribute to the devel-
opment of nonsyndromic obesity, highlighting the genomic
complexity of the disease. While the genomic impacts on disease
are most likely irreversible, exercise may be a powerful tool to
mitigate the extent to which these factors can contribute to dis-
ease onset and progression.
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Nonsyndromic obesity—associated genes and exercise

Multiple genes have been identified by emerging research as
being potential contributors to the development of nonsyn-
dromic obesity. Genetic mutations resulting in variants of
LepR, such as K109R, Q223R, and K656N, have an increased
association with obesity (402-406). Chavez et al followed a
family over 3 generations and found that early-onset obesity
and delayed puberty observed within individuals of the family
were associated with mutations to LepR (407). While the role
of exercise in mediating the effects of this type of genetic
aberration are unknown, physical activity has been shown
to have beneficial effects on individuals with a greater likeli-
hood for higher BMIs by attenuating genetic effects on obesity
including leptin and LepR single nucleotide polymorphisms
(SNPs) (408, 409). Thus, it is possible that exercise could
be beneficial to ameliorate some of the consequences of
genetic obesity.

Another nonsyndromic obesity—related gene is the fat mass
and obesity associated gene (FTO), which encodes the FTO
protein that demethylates N°-methyladenosine (m®A) and is
essential for adipogenesis (410-412). Genome-wide associ-
ation studies found that single nucleotide polymorphisms in
the FTO gene were associated with obesity parameters such
as BMI; however, the proportion of population affected by al-
terations to the FTO genes greatly vary on the population
being studied as population frequencies have been reported
up to 46% in Western and Central Europeans and up to
29% in Asians (413-418). The well-investigated rs9939609
polymorphism was associated with increased BW and BMI
and was shown to influence appetite and fat oxidation during
exercise (419-421). Interestingly, physical activity reduces the
association between FTO rs9939609 and the odds of obesity
(422). The beneficial effects of exercise were additionally ob-
served in individuals with the FTO rs1421085 variant as
when individuals with this risk variant regularly exercised, a
lesser weight gain and an increase in BMI was observed
(423). Together, these studies demonstrate that diverse genes
and their associated mutations can increase the risk of obesity
predisposition. However, this risk can partially be mitigated
by exercise, demonstrating its importance as a tool for destra-
tification of altered gene activity and disease onset.

Nonsyndromic obesity—associated regulatory mechanisms
and exercise

Regulation of gene activity via chromatin accessibility is an
extensively established field of research often associated
with various diseases. DNA methylation is one of the broadly
studied epigenetic mechanisms that has been associated with
nonsyndromic obesity regulation (424-426). Notably, numer-
ous cytosine-phosphate-guanine  (CpG) sites within
obesity-associated genes have enriched DNA methylation
(424, 427-429). Specifically, studies have found that DNA
methylation is associated with alterations to BMI and WC
(427-430). Interestingly, a study analyzing blood samples
from subjects that conducted an 18-month low-fat or low-
carbohydrate diet with and without exercise showed that
CpG sites for genes associated with obesity were negatively
correlated with changes to BW after the diet and exercise
intervention (431).

In addition to chromatin modulations dictating gene acces-
sibility, gene product modifications also play a noteworthy
role in nonsyndromic obesity onset. MiRNAs are noncoding
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RNAs which regulate post-transcriptional modifications to the
genome and have been reported to have effects on adipogenesis
and adipose tissue inflammation response (432, 433). Various
miRNAs have been associated with obesity (BMI levels) and
body fat distribution in children and adults (434, 435).

Exercise alters miRNA profile in individuals with obesity
(436). Specifically, a 3-month long physical activity intervention
resulted in a decrease in circulating miR-146a-5p with a strong
correlation with WC and inflammatory cytokine IL-8 (437).
Together, these studies demonstrate the crucial role of regula-
tory elements at both the DNA and RNA levels in predisposing
individuals to obesity, as well as the role of exercise in mitigating
these epigenetic and post-transcriptional modification factors.

Emerging data demonstrates that exercise can potentially
affect genetic obesity, but there are significant limitations.
For instance, it is unlikely that exercise could completely
change gene expression. It is more likely that exercise can
modify epigenetic alterations that impact gene expression re-
lated to whole-body metabolic function which can attenuate
or circumvent the negative effects conferred by genetic altera-
tions. This emphasizes the concept that obesity is a complex
disease induced by numerous genomic and environmental fac-
tors, and that no single treatment option may be powerful
enough to truly overcome the disease alone.

Future Directions

Exercise induces beneficial metabolic changes to WAT, BAT,
liver, and skeletal muscle in both humans and rodents, miti-
gating the adverse effects of obesity. While distinct mecha-
nisms within the two species exist, such as exercise
triggering a beiging response in WAT of rodents, it is import-
ant to acknowledge that other functions, such as enhanced
endocrine activity and mitochondrial activity, play an import-
ant role in exercise-induced adaptations in obesity. Multiple
factors determine the effectiveness of exercise-induced adap-
tations, including sex, genetic aberrations, duration, modal-
ity, temperature, and metabolic health status. When
discussing exercise and its notable benefits, an important con-
sideration is Pontzer’s constrained energy expenditure hy-
pothesis, which suggests that physical activity minimally
affects daily caloric burn, with nonexercised activity thermo-
genesis (NEAT) and dietary patterns playing key roles (438).
NEAT decreases with excessive exercise unless dietary com-
pensation occurs (439) and greater efficiency in physical activ-
ity may further reduce total energy expenditure (440-442).
These insights highlight the need for comprehensive strategies
that address behavioral and metabolic complexities. Current
ongoing studies investigating a possible combinatorial thera-
peutic strategy with pharmacotherapeutics, bariatric surgery,
and exercise to curb the adverse effect of obesity report prom-
ising results in minimizing drawbacks of extreme weight loss
strategies, reinforcing exercise’s potential as a compelling
therapeutic tool.

Conclusion

Obesity is a complex, multifactorial disease that encompasses
metabolic changes to associated organs such as adipose tissue,
liver, and skeletal muscle. A combination of genetic and environ-
mental factors has been shown to play a crucial role in the patho-
genesis of obesity, with a lifestyle change including exercise
emerging as first-line therapy to treat the disease. With the rapid
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growth in obesity levels worldwide, the urgency to explore new
therapeutic strategies has led to numerous intensive treatment
options such as bariatric surgery and incretin therapy. While
these studies are promising, factors such as sex differences,
age, fitness measurement techniques, accuracy of anthropo-
metric measurements, and their potential contribution to
exercise-induced adaptations to combat obesity should be con-
sidered to fully elucidate the beneficial effects of exercise to in-
crease efficacy. A continued understanding of how multiple
contributing factors in obesity modulate exercise-induced bene-
fits to key organs and metabolic health will potentially provide
therapeutically relevant targets to combat obesity.
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