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Abstract

Background: Soccer’s varied physical demands require meticulous load monitoring,
which is now being advanced by combining GPS for external metrics and NMR-based
metabolomics for internal metabolic profiling. This study aimed to investigate how player
position influences the metabolomic profile (as a marker of internal load) under known
match effort (external load). Methods: This was a longitudinal observational descriptive
study involving 12 professional soccer players from the U-20 Sao Paulo Football Club,
enrolled in the 2022 Sao Paulo State Under-20 Football Championship. Players were moni-
tored across six matches during the season, culminating in a total of 49 individual match
observations from those players (4-2-3-1 formation: Central Defenders [CD], n = 9; Full
Backs [FB], n = 9; Central Midfielders [CM], n = 14; Wide Midfielders [WM], n = 12; For-
wards [F], n = 5). Internal load was assessed via urinary metabolomics, with urine samples
collected 24 h post-match. A non-targeted, global metabolomics approach was employed
using nuclear magnetic resonance (NMR) spectroscopy. External load was monitored using
GPS tracking devices. Multivariate analyses included partial least squares discriminant
analysis (PLS-DA), and heat maps. Results: Metabolomic analysis identified 38 metabo-
lites with a Variable Importance in Projection (VIP) score > 1.0, revealing perturbations in
carbohydrate metabolism and the tricarboxylic acid (TCA) cycle, amino acid and peptide
metabolism, pyrimidine metabolism, and ketone body pathways, and effectively discrimi-
nating post-match recovery metabolic profiles. External load metrics varied significantly by
player position: CMs covered greater distances below 20 km/h (8702.93 & 1271.89 m), ex-
hibited higher relative distance (114.29 £ 7.67 m/min), total distance (9193.21 £ 1261.35 m),
and player load (945.71 4= 135.82 a.u.); CDs achieved higher peak speeds (31.78 = 1.20 m/s);
and WMs performed greater sprint distances (168.11 & 91.69 m). Metabolomic profiles
indicated that CMs showed stronger associations with markers of muscle damage and
inflammation, whereas CDs and WMSs were more closely linked to energy metabolism and
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oxidative stress. Conclusions: These results highlight the importance of a personalized
approach to training load monitoring and recovery strategies, considering the distinct
physiological and metabolic demands associated with each player position.

Keywords: metabolomics; soccer; training; load; metabolism; position

1. Introduction

Contemporary technologies now enable the estimation and exploration of mechanical
impacts during exercise [1]. In the context of physical performance analysis, these vari-
ables are collected via electronic performance tracking systems (EPTS), including global
positioning system (GPS) devices, microelectromechanical systems, and computerized
video systems [2]. These systems allow for the measurement of external load data—such as
time-motion analysis, total distance covered, high-speed running distance, player load, and
accelerations and decelerations produced by the athlete [3]. Soccer is a sport characterized
by intermittent high-intensity efforts interspersed with longer periods of low-intensity ac-
tivity during matches [4]. However, the physical demands imposed on players vary based
on their playing position, specific role, team formation, match location (home or away), the
player’s category, score dynamics, playing style, and the phase of the match [5,6].

For instance, during a match, midfielders cover a greater total distance and perform
more high-intensity work than defenders and forwards [7]. According to Pettersen and
Brenn [8], midfielders exhibited the highest values for high intensity running (1044.2 m),
total running (224.4 m), and accelerations (1 = 185.2), while central defenders (CD) recorded
the lowest values (508.3 m, 85.1 m, and n = 119.0, respectively). Wide midfielders (WMs)
achieved the highest maximum speed (30.3 km/h), and CD the lowest (28.6 km/h). Re-
garding soccer athletes playing position, it is important to note, however, that numerous
definitions and positional classifications exist in the literature without a clear standard.
Generally, a commonly accepted nomenclature states that CD, full-backs (FB), and goal-
keepers (GK) operate in the defensive sector; central midfielders (CM), WM, and defensive
midfielders (DM) comprise the midfield sector; and forwards (F) act in the attacking or
offensive sector [9]. Professional soccer players cover between 9 and 14 km during a match,
with high-intensity running accounting for approximately 5-15% of this total distance [10].

Understanding the impact of mechanical loads on players’ physiological responses
is fundamental for controlling and appropriately prescribing training. In this context,
internal load—which reflects the biological and perceptual responses of the organism to
effort—has emerged as an essential marker for determining the adaptations induced by
physical stimuli [11]. Given that these responses vary both between individuals and within
collective contexts, various strategies have been employed to monitor them. Among the
most widely used tools are objective methods, including heart rate, blood lactate levels,
oxygen consumption, and the training impulse (TRIMP), as well as subjective measures
such as the rating of perceived exertion (RPE), well-being questionnaires, and psychological
inventories [3].

Therefore, with the advancement of technologies applied to sports, metabolomics has
emerged as a promising approach for investigating exercise physiology and its associated
metabolic processes with greater depth and resolution [12]. Metabolomics, as an ‘omics’ dis-
cipline devoted to the comprehensive study of biological systems, characterizes metabolites
produced and released at systemic and cellular levels in response to physiological stimuli
such as physical exercise. These metabolites can be quantified in accessible biological fluids,
including blood, saliva, and urine, enabling dynamic metabolic profiling [13,14]. In this
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context, NMR-based metabolomics represents an innovative tool that bridges fundamental
science and performance, supporting precise, preventive, and personalized strategies for
monitoring and optimizing athlete health and performance [15,16].

The applicability of metabolomics in soccer has been explored to identify metabolic
alterations in athletes induced by training intensity [1]. In an observational longitudi-
nal study, Quintas et al. [13] found an association between external load and the urinary
metabolic profile, which included steroid hormones, hypoxanthine metabolites, acetylated
amino acids, intermediates in phenylalanine and tyrosine metabolism, tryptophan metabo-
lites, and riboflavin. These alterations were linked to changes in biochemical pathways
associated with long-term training adaptation. Given the previously detected differences
in external load between playing positions in soccer, along with metabolomics’ capacity
to correlate with internal loads, it is plausible to hypothesize that metabolomics would
be sensitive enough to detect metabolic profile changes related to playing position. If
confirmed, this hypothesis would expand the applicability of metabolomics in sports, as its
investigation could allow for: mapping position-specific physiological demands; identi-
fying sensitive and early biomarkers of position-specific fatigue, stress, or overload; and
influencing tactical and technical game decisions.

Therefore, understanding the extent to which metabolomic analysis—when associated
with players’ external training load—can differentiate positional game demands in soccer
would reinforce its utility as a tool for optimizing training programs to achieve desired
physiological adaptations for competition. Consequently, this approach could enhance
performance and recovery specific to soccer’s demands while mitigating adverse impacts
on player health. Given this context, the present study aims to determine the capacity of
metabolomics to identify differences between professional soccer players’ positions, asso-
ciated with the effects of different external loads following match play. We hypothesized
that 24 h post-match urinary metabolomics would discriminate between playing positions,
reflecting physical demands measured by external load.

2. Materials and Methods
2.1. Study Design

This observational longitudinal descriptive study involved no intervention or ma-
nipulation of variables by the researchers. The recruitment of volunteers was performed
by convenience, considering the high level of athletes involved. The study describes the
responses of the phenomenon over a seven-week period (September to October 2022),
during which players underwent training sessions and played seven matches in the 3rd
and 4th Qualifying Phases and the Semifinal Phase of the 2022 Sao Paulo State Under-20
Football Championship. All matches from board clearance for data collection until the end
of the Championship were considered in this analysis. Additionally, all players followed
the same training sessions. For the purposes of this study, all analysis was performed in
post-match data. All players involved provided informed consent before engaging in any
data collection activity.

2.2. Participants

Inclusion criteria were: male sex, age between 18 and 20 years, a professional soccer
contract with the participant team, and being eligible for full physical training and playing
time (free from injury or physiotherapeutic treatment by the medical department). The
team was divided into the following playing positions: CD, FB, CM, WM, and F. We
excluded GK from this analysis due to their distinct training loads and specific physical
game characteristics compared to outfield players. The team’s starting formation was
4-2-3-1 for all included matches.
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All 40 players on the Sao Paulo Football Club (SPFC) U-20 roster were considered
for the study, and twelve were selected. The exclusion criteria were not being amongst
the starters or frequent substitutes with significant playing time (>45 min per match),
which were considered part of the championship’s core training group by the technical staff.
Those exclusion criteria were necessary considering the study’s aims to relate the match
external load and the metabolomic profile (internal load). The average total match time was
97.12 & 2.53 min. The team’s eleven-month macrocycle initiated in November 2021, with
the preseason and first team competition in January 2022 (Sao Paulo Junior Football Cup),
the beginning of the state championship in May, and the national championship in June.
In August the team was eliminated from the national championship, and by September
2022 was focused only on the state championship for the data collection period included in
this analysis.

The players were housed at the club training facilities for the data collection period,
and followed the club’s standardized daily regimen, which covered training, rest, and diet.
The SPFC President Laudo Natel Training Center is a large, high-end facility featuring
multiple soccer fields, a 1500-seat stadium, dormitories, a large dining hall, and a 4-star hotel
used for the 2014 World Cup. For the period of data collection (fall), all players included in
this analysis were housed at the club’s facilities and received five daily meals. The team’s
nutrition staff regularly assessed the players to ensure that the required macronutrient and
micronutrient intake was being achieved. The training center houses REFFIS, a dedicated
unit with sports medicine professionals who provide comprehensive care, from injury
diagnosis and physiotherapy to individualized training programs. During weekly micro
cycles, the athletes were engaged in a minimum of seven training sessions, which included
physical, technical, and tactical components, each lasting an average of 70 min. In addition
to these team activities, some athletes also engaged in at least one individual strength
training session. All players included had at least four years of experience competing at the
state level, and at least one year at the national and international levels, with experience in
the U20 and the Senior team.

On the day after the match (MD + 1), urine samples were collected in the morning
from players who participated for at least 45 min. Collection occurred before any exercise
or effort. Additionally, data from game 3 were excluded because the urine collection for
metabolomics analysis was conducted 48 h post-match due to team logistics constraints,
resulting in six games included. The following were excluded from consideration: players
with <45 min played; sporadic substitutes; second roster players and players unwilling
to urinate before the training session started. The final sample consisted of 49 individual
observations of training load data (external and internal) by playing position (CD = 9;
FB =9; CM = 14; WM = 12; F = 5). These observations were derived from the 12 eligible
players across the six season games.

2.3. Variables
2.3.1. External Match Training Load

External load data were obtained via GPS during daily training sessions and matches.
To determine the external load of activities, all players wore a GPS device (Catapult
OPTIMEYE S7®, Melbourne, Australia) during all training sessions and matches of the
season. The device provided the following external load metrics: Total distance covered
(Total Dist; m); Relative distance (Relative Dist; m/min); Player Load (a.u.; individual
player training load intensity); High-intensity running distance (Dist > 20 km /h; m; total
distance covered above 20 km/h); Sprint distance (Sprints Dist; m; >25.0 km/h); Maximum
speed (Max Speed; km/h); Explosive efforts (m; distance covered with acceleration greater
than 1.12 m/s?); Accelerations (11; >2.0 m/s?); Decelerations (11; <—2.0 m/s?); Total distance
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covered below 20 km/h (Dist < 20; m). At the end of each training session and match, the
data collected by the device were transferred to proprietary software developed by the
manufacturer (Open Field Console, v2.2.1, Catapult, Melbourne, Australia). This software
provided the individual movement metrics produced by the players in a spreadsheet, along
with the group average values for each metric analyzed.

2.3.2. Metabolic Analysis of Urine Samples

Urine samples were collected to determine the internal training load and perform
urinary metabolomic analyses on the players. Urine was chosen as the biofluid due to
its advantages of being simple, non-invasive, and quick to collect, making it useful for
detecting metabolic alterations. Data collections began during the Third Qualifying Phase of
the 2022 Sao Paulo Under-20 Football Championship. Over a seven-week period, featuring
one match per week, 25 mL urine samples were collected 24 h post-match (i.e., before the
first training session following the match, MD + 1) to analyze the metabolic impact and
responses of the players to the matches. Samples were collected, immediately frozen at
—20 °C, and shipped by air for analysis to the Nucleus of Analysis and Research in Nuclear
Magnetic Resonance at the Institute of Chemistry and Biotechnology, Federal University
of Alagoas.

An untargeted (global) metabolomics approach was employed using nuclear magnetic
resonance (NMR). Analysis was conducted on a Bruker 600 MHz spectrometer (AVANCE
III, Bruker BioSpin, Ettlingen, Germany) equipped with a 5 mm PABBO probe at 300 K,
using the NOESYGPPRI1D pulse sequence. From the 25 mL collected post-match, 1.5 mL
aliquots were transferred to individual Eppendorf® tubes and centrifuged at 14,000 rpm
(ROTANTA 460R, Hettich Zentrifugen, Tuttlingen, Germany) for 15 min. The supernatant
was then transferred to new tubes and stored at —80 °C for subsequent analysis. For the
NMR analysis, 500 pL of each sample’s supernatant was transferred to a 5 mm NMR tube.
Then, 200 uL of a buffer solution (sodium phosphate, pH = 7.4) containing 100% D,O and
1 mM TSP (trimethylsilylpropanoic acid, used as a chemical shift standard) was added
to each tube. Water signal suppression was achieved through pre-saturation with the
following parameters: NS: 128 (number of scans); D1: 4.00 s (relaxation delay); TD: 64K
(data points); SW: 20 ppm (spectral width); O1P: 4.69 ppm (irradiation frequency for water
suppression); AQ: 5.11 s (acquisition time).

Spectra were processed using TopSpin® software (v. 3.6.5, Bruker Corporation, Bil-
lerica, MA, USA). Metabolite peak identification was performed using Chenomx® NMR
Suite software (v. 11, Chenomx Inc., Edmonton, AB, Canada) and confirmed against the
Human Metabolome Database (HMDB; http:/ /www.hmdb.ca/, accessed on 1 March 2023).
Spectral pre-processing was conducted in R software (v. 4.2.2, R Foundation for Statistical
Computing, Vienna, Austria) using the PepsNMR package (v. 3.17) and involved proce-
dures for overlapping, region alignment, peak picking, and quantification of spectra. The
resulting data were then transferred to Excel® (Microsoft Corporation, Redmond, WA,
USA), to form a matrix with samples in rows and the 38 identified metabolites in columns.

2.4. Statistical Analysis

Data are presented as median or mean and standard deviation (£). All analyses
were conducted using RStudio software, version 13. A one-way ANOVA was used to
assess the effect of player position on external training load data and the metabolic profile.
When a significant main effect of playing position was found, Tukey’s post hoc tests were
performed to identify specific differences between positions. Statistical significance was set
atp <0.05.
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For metabolomic analysis and GPS-derived metrics, multivariate statistical methods
were employed. Discriminant Analysis by Partial Least Squares (PLS-DA) was performed,
generating score and loading plots. These plots provide a Variable Importance in Projection
(VIP) score. We defined relevant variables as follows: for GPS-derived metrics, a VIP
score > 0.8 was considered significant; for urinary metabolites, a more stringent threshold
of VIP > 1.0 was applied due to the higher number of variables. Furthermore, integrative
analyses were conducted using Pearson correlation plots to examine relationships between
the 38 identified metabolites and the external load (GPS) variables obtained from the
athletes after the six championship matches. The methodological design of this study is
outlined in Figure 1.

(a) MATCH SCHEDULE
05/09 11/09 16/09 22/09 05/10 13110 19/110
Match1 |®| Match2 |mp| Match3 g | Matchs »| Matchs [mp| Mache |m|  Match7
RestDay:17/09  RestDay 52?1‘(2)5’09 ™ Rest Day: 07/10
(b) INTERNAL LOAD - URINARY METABOLOMICS
Collected from urine(25 ml): j\’_ — 24h
e 2 z [ Top Spin ] [ HMDB ]
TH-NMR :%’(’_’1‘\.' ..
Tl ,‘L ) B i [ Chenomx ] [ Rstudio ]
Sample Collection Instrumental Data processing, metabolite identification, data interpretation, and
and Preparation Analysis statistical analysis
(c) EXTERNAL LOAD - GPS
* Open Field Console
X x Total dist. (m) | Decelerations (n)
otal dist. (m ecelerations (n
SPFC Relative dist. (m/min) Player load (u.a.)
Dist. > 20km/h (m) o Sprints dist. (m)
Dist. < 20 km/h (m) Explosive efforts (n)
Accelerations (n) | I Max. speed (m/s)

Figure 1. Schematic representation of the study’s methodological design. (a) Match schedule for the
Qualifying Phases and Semifinal Phase of the Sao Paulo Under-20 Football Championship (September
to October 2022). Daily training sessions and rest periods occurred between matches. Match 3 is
highlighted in red, indicating it was excluded from the final sample; (b) Workflow for urine sample
processing. Samples were collected 24 h post-match for urinary metabolomic analysis via NMR,
followed by data processing, analysis, metabolite identification, and interpretation; (c) External
training load data collection via GPS, aggregated by playing position throughout the season.

3. Results
3.1. Description of External Training Load by Playing Position

Comparison of external load data obtained via GPS revealed differences in train-
ing load metrics across playing positions. The CM group presented the highest val-
ues for several metrics. They covered a significantly greater total distance than WM
(9193.21 £ 1261.35 m vs. 6777.92 £ 1506.15 m; p = 0.001). Furthermore, their relative
distance was significantly higher than that of WM, FB, and CD (114.29 £ 7.67 m/min
vs. 111.08 & 6.86 m/min vs. 107.44 £ 7.92 m/min vs. 96.00 & 8.31 m/min, respectively;
p < 0.001). The Player Load for CM was also significantly greater than for CD and WM
(945.71 +135.82 a.u. vs. 749.78 £ 131.27 a.u. vs. 670.67 & 157.07 a.u., respectively; p = 0.001),
as was their distance covered below 20 km/h when compared to WM (8702.93 & 1271.89 m
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vs. 6306.58 + 1404.94 m; p = 0.001). Conversely, CD recorded the highest values for
maximum speed, which was significantly greater than that of CM (31.78 £ 1.20 km/h vs.
29.07 £ 1.94 km/h; p = 0.035). The FB group showed higher values for sprint distance com-
pared to CM (168.11 & 91.69 m vs. 86.86 & 55.99 m; p = 0.065), indicating a non-significant
trend. All data are presented as mean =+ standard deviation and are detailed in Table 1.

Table 1. External Training Load Data by Playing Position during the Six Championship Matches.

External Load Playing Position

(GPS) F (n=5) FB (n=9) WM(@=12) CM (n=14) CD (n=9) p 1-B
Total Dist 8070 + 8016.67 + 6777.92 + 9193.21 + 8106.89 + 0.001 091
(m) 1294.67 1719.3 1506.15 2 1261.352 1431.50 ’ ’
Relative Dist 107.40 + 107.44 £+ 111.08 + 114.29 + 96 + 0.000 0.99
(m/min) 9.48 7922 6.862 7.672 8312 ’ ’
Dist > 20 km/h 635.20 + 591.67 + 471.33 £+ 490.29 + 405.78 + 0.220 045
(m) 189.55 255.73 167.69 239.62 78.06 ’ ’
Dist < 20 km/h 7434.80 & 7425 + 6306.58 + 8702.93 + 7701.11 £+ 0.001 0.94
(m) 1188.19 1591.40 1404.94 2 1271.89 2 1363.95 ’ ’
Player load 861.60 + 801.78 + 670.67 + 945.71 £ 749.78 + 0.001 0.97
(u.a.) 123.98 188.21 157.07 2 135.822 131.272 ’ ’
Sprints Dist 148.80 + 168.11 £+ 12392 + 86.86 + 129.56 +

(m) 54.02 91.69b 72.19 55.99 b 30.40 0.065 0.64
Max Speed 30.60 4 30.33 & 30.33 &+ 29.07 &+ 31.78 + 0.035 0.80
(km/h) 1.52 141 2.19 1.94¢ 1.20°¢ ’ ’
Explosive Efforts 63.20 £+ 49.56 + 49.08 + 59.57 + 46.67 + 0.110 0.42
(n) 20.20 13.78 24.07 14.77 9.15 ’ ’
Accelerations > 2.0 49.20 + 41.11 + 45.17 £+ 51.36 + 45.11 £+ 0.580 0.26
m/s (n) 10.50 15.68 14.15 15.44 6.55 ’ ’
Decelerations < 2.0 41.40 £+ 46.33 + 39.92 + 4471 + 56.22 + 0.230 046
m/s (n) 11.50 14.98 13.99 13.53 19.82 ’ ’

F: forward; FB: full-back; WM: wide midfielder; CM: central midfielder; CD: central defender. Values expressed as
mean + standard deviation. p = p-value (p < 0.05). ? difference from the CM group; ? difference from the WB
group; ¢ difference from the CD group; comparison by one-way ANOVA with Tukey’s post hoc test.

The supervised multivariate analysis of PLS-DA was applied to discriminate the
playing positions of the soccer players in relation to the external load (GPS) variables
after the six championship matches, as observed in Figure 2. Despite a significant p
in the permutation test, the model presented only moderate goodness-of-fit (R?) and a
low predictive ability (Q?). For the sample included in this study, the WM and F playing
positions exhibited the greatest variation between matches, failing to achieve a homogeneity
that characterizes these groups (Figure 2, left panel). Therefore, we chose to deepen the
analysis and repeat the PLS-DA without the two most heterogeneous positional groups,
WM and F, considering that the samples from these two groups overlapped with the other
positions. Therefore, the comparisons involving WM and F groups were inconclusive for
our analysis. The analysis without these most heterogeneous groups may better explain the
external load findings according to playing position and their association with the urinary
metabolomic profile of the remaining player groups.



Biomedicines 2025, 13, 2583

8 of 18

Comp 2 (25%)

0s0{ ®MAX SPEED

OSPRINT DIST

CELERAT! TOTAL_DIST
DIST < 20.0 km/h

PLAYER LOADe
0251 °

Position V.IP.

[or .
B | BN

Comp 2

(]
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Figure 2. PLS-DA score and loading plots showing the main features that discriminate playing
position and external load (GPS) data. Colors represent the different playing positions in the soccer
team (red: F; yellow: FB; green: WM; blue: CM; purple: CD), each point represents a player, and
triangles represent the group mean, respectively (left panel). Next to it, in the loading plot, are
the external load variables and their representations for each playing position, along with a color
gradient highlighting the importance of each variable for the projection according to the VIP score
(right panel). R2 =0.228; Q% = 0.081; permutation p = 0.05.

This new analysis, which included only the external load (GPS) variables for the CM,
FB, and CD groups, from the six championship matches, is described in Figure 3. As
expected, the model presented an enhanced R? and Q?, improving the feasibility of this
analysis. It is notable that the CM group is differentiated from the CD group, and the
FB group is differentiated from both the CM and CD groups, although their ellipses still
slightly overlap or are in proximity (Figure 3, left panel). Furthermore, the relevance of
the external load variables according to playing position can be observed in the loading
plot and the estimated variable importance values of the VIP-score. These results show a
stronger association between players in the CM group and the variables of relative distance,
explosive efforts, player load, total distance, and distance below 20 km/h. The CD group
was more strongly associated with maximum speed, sprint distance, and deceleration.
Meanwhile, the FB group was less distinctly characterized, presenting an intermediate
profile between the other two groups without a single highly weighted variable that
distinctly discriminates this group. Conversely, the variables: high-intensity running
distance; acceleration; explosive efforts; and deceleration; presented lower VIP-score
values, indicating they were less capable of discriminating between the groups (Figure 3,
right panel).
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Comp 2 (30%)

[}
RELATIVE DIST

Position ik
[®] cm 2
[®] 0

Comp2

OPLAYER LOAD

MAX SPEEDe®

3
Comp 1(29%) Comp 1

Figure 3. PLS-DA score and loading plots showing the main features that discriminate CM, CD, WB,
and external load (GPS) data. Colors represent the different playing positions in the soccer team
(blue: CM; yellow: FB; purple: CD), each point represents a player, and triangles represent the group
mean, respectively (left panel). Next to it, in the loading plot, are the external load variables and their
representations for each playing position, along with a color gradient highlighting the importance
of each variable for the projection according to the VIP score (right panel). R? = 0.463; Q? = 0.183;
permutation p = 0.05.

3.2. Urinary Metabolomic Description and Its Association with External Load by Playing Position

A total of 38 metabolites were identified 24 h post-match, as listed in Table 2 with
their respective VIP scores. Among these, based on the group separation observed in the
loading plot (Figure 4), ten metabolites (VIP score > 1.0) were identified as the most relevant
for the variables studied: methylguanidine, trimethylamine, 4-hydroxyphenylacetic acid,
pyruvate, glucose, formate, glycine, dimethylglycine, tyrosine, and uracil. Of these, only
trimethylamine, dimethylglycine and uracil presented significant differences in univariate
analysis (p < 0.05). Subsequently, PLS-DA was performed to discriminate between playing
positions in relation to internal load, as represented by the metabolites detected in urine
after the six championship matches (Figure 4). The model presented a moderately high
goodness-of-fit (R?), but a low predictive ability (Q?). This indicates that the model is
better suited to describing the studied sample set and has limited generalizability to
external samples.
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Table 2. Table of VIP scores of urinary metabolites with their respective scores.

Comp 2 (7%)

Metabolites vIP Metabolites vIP
Uracil 1.75 Succinate 0.79
Tyrosine 1.72 Citrate 0.78
Dimethylglycine 1.58 3-Methylhistidine 0.77
Glycine 1.58 trans-Aconitate 0.73
Formate 1.57 Malonic acid 0.73
Glucose 1.55 3-Aminoisobutyrate 0.69
Pyruvate 1.54 Creatinine 0.69
;L;Ii-(liydroxyphemlacehc 1.46 Creatine-Creatinine 0.68
Trimethylamine 1.44 Dimethylamine 0.65
Methylguanidine 1.24 Urea 0.61
Histidine 0.99 Isobutyrate 0.61
Tartrate 0.98 Taurine 0.59
pi-Methylhistidine 0.96 Hippurate 0.53
Dimethyl sufone 0.94 3-Hydroxyvalerate 0.48
Guanidinoacetate 0.93 Methyluric acid 0.36
2-Hydroxyisobutyrate 0.83 TMAO 0.34
Lactate 0.81 Anserine 0.28
Alanine 0.81 Trigonelline 0.27
Methylamine 0.80 Leucine 0.12
VIP: Variable Importance in Projection.
GIL‘cose

Posion 1 Uracil M L -

o . [}

(0] 0 . . Tyrgsine 05

®4-Hydroxyphenylacetic acid : o
eMethylguanidine . o
. Pyruvate

0
Comp 1 (9%)

.
Glycine

Trimethylamine
.

L
Dimethylglycine

—CIZ 00
Comp 1

Figure 4. PLS-DA score and loading plots showing the main features that discriminate playing

positions, external load data (GPS), and urinary metabolomicss. Colors represent the different

playing positions in the soccer team (blue: CM; yellow: FB; purple: CD), each point represents a

player, and triangles represent the group mean, respectively (left panel). Next to it, in the loading

plot, are the urinary metabolites and their representations for each playing position, along with a

color gradient highlighting the importance of each variable for the projection according to the VIP

score (right panel). R? = 0.492; Q? = —0.345; permutation p = 0.45.
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TOTAL DIST

RELATIVE DIST

PLAYER LOAD

DIST > 20.0 km/h

DIST < 20.0 km/h
SPRINT DIST

MAX SPEED
EXPLOSIVE MOVIMENTS
ACCELERATIONS

DECELERATIONS

Leucine

Isobutyrate

3-Aminoisobutyrate

3-Hydroxyvalerate

Lactate

The loading plot (Figure 4, right panel) suggests an association of the CM group with
uracil, 4-hydroxyphenylacetic acid, methylguanidine, trimethylamine, dimethylglycine,
and glucose; the FB group with glucose, tyrosine, and formate; and the CD group with
tyrosine, formate, pyruvate, and glycine. These results indicate alterations in the urinary
metabolomic profile, involving carbohydrate metabolism and the TCA cycle, amino acid
and peptide metabolism, pyrimidine metabolism, and ketone body pathways, which
discriminate the post-match metabolic recovery profiles. Thus, the metabolic profiles of
the CM group appear to be more closely related to muscle damage and inflammatory
markers. In contrast, those of the FB and CD groups are more strongly associated with

energy metabolism and oxidative stress.

3.3. Integrative Analysis of Internal and External Load Variables

The correlations between the external load variables with urinary metabolites by
playing position after the championship matches were performed via Pearson ma-
trix (Supplementary Material, Table S1) and a heatmap (Figure 5). Specifically, we
found positive correlations between glucose and relative distance (p < 0.01); between
4-hydroxyphenylacetate and total distance, explosive efforts, deceleration, and dis-
tance below 20 km/h, all with (p < 0.05); and between uracil and relative distance
(p < 0.05). Conversely, negative correlations were observed between trimethylamine and
dimethylglycine with maximum speed (p < 0.05); and between glucose and acceleration
(p < 0.01). Supplementary Materials (Figure S1) include an expanded heat map detailing
all pairwise correlations between metabolites and external load variables, along with a
comprehensive correlation table containing all r-values.

Dimethylamine
Methylguanidine
Trimethylamine
Dimethylglycine
Creatine-Creatinine
Dimethyl sulfone
Methyluric acid
pi-Methylhistidine
3-Methylhistidine
Guanidinoacetate
trans-Aconitate

Pyruvate
Succinate
Citrate
Methylamine
Malonic acid
TMAO
Taurine
Glycine
Anserine
Creatinine
Tartrate
Trigonelline
Glucose
Tyrosine
Histidine
Uracil
Hippurate
Formate

Urea
= | 4-Hydroxyphenylacetic acid

2-Hydroxyisobutyrate

Alanine

0.6 04 0.2 0 0.2 04 06 0.8 1

Figure 5. Pearson correlation plot between 38 urinary metabolites and external load variables
after championship matches, including positions FB, CM, and CD. Color scales represent positive
correlations (red) and negative correlations (blue), and significance is indicated by asterisks: * p < 0.05,
*%

p <0.01.

4. Discussion

The present study demonstrated that urinary metabolomics could identify differences
between positions in professional soccer players, as well as discriminate specific physiolog-
ical responses associated with the external loads imposed during matches—which is in line
with the presented hypothesis. Each position exhibited specific patterns of physical perfor-
mance and related metabolic profiles: the CM group showed higher values for distance
covered at speeds below 20 km/h, total distance, relative distance, and player load, and
their profiles were associated with metabolites related to muscle damage and inflammatory
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markers; the FB group showed greater sprint distance; and the CD group demonstrated
higher maximum speed, and were linked to energy metabolism and oxidative stress. The
observed alterations involved pathways of carbohydrate metabolism, amino acids, an-
tioxidants, and inflammatory processes, reflecting distinct post-match recovery profiles
according to playing position.

Playing position in soccer is a key determinant of the physical demands encountered
during match-play. Our findings are supported by the work of Curtis et al. [17], who
quantified positional match demands in male soccer and reported that players at the CM
position covered substantially greater total distance (9941 & 2140 m) than defenders (Effect
Size [ES] = 0.45 £ 0.41). The same authors noted that, due to the pivotal role of their
position in offensive transitions, CMs engage in low- to moderate-intensity activities more
frequently and for longer durations than players in other positions. Similarly, a study by
Teixeira et al. [3] on youth soccer across three age groups (U15, U17, and U19) found that
the highest total distance was covered by players at the CM position (5456.9 £ 1565.9 m),
with significant differences observed between players in CD and F positions in high-speed
running and sprint distance.

Our data further highlights distinct physical profiles between the CM and CD groups.
Specifically, group CM exhibited higher values in relative distance, explosive efforts, player
load, total distance, and distance below 20 km/h, whereas the CD group demonstrated
superior performance in maximum speed, sprint distance, and deceleration. The partial
least squares-discriminant analysis (PLS-DA) multivariate model, which associated playing
position with external load across the six championship matches, also differentiated the FB
group from both the CM and CD groups (Figure 3, left panel). These observations align
with previous evidence indicating lower physical outputs for CDs and higher demands for
WMs in high-intensity running and total sprint distance—differences largely attributable to
tactical roles and attacking positioning [18]. Due to their specific in-game functions, wide
players exhibit greater high-speed running and sprinting volumes than other positions [19].
Furthermore, Modric et al. [20] reported that midfielders performed more accelerations
and decelerations than players in other positional roles.

The integration of NMR-based metabolomics analysis with external load metrics, utiliz-
ing VIP scores, enabled the assessment of the cumulative influence of each metabolic feature
within the PLS-DA model. This approach revealed distinct post-match metabolic profiles
present 24 h after championship games, characterized by alterations in key metabolites:
methylguanidine, trimethylamine, 4-hydroxyphenylacetate, pyruvate, glucose, formate,
glycine, dimethylglycine, tyrosine, and uracil. While this model successfully identified key
metabolites associated with match load, its predictive power (Q?) is low, and the results
are specific to the studied context The metabolite list should therefore be interpreted as
representative of the physiological stress from the specific matches analyzed, not as a
universal profile for all soccer players. This limited generalizability is an expected con-
straint, attributable to the myriad biological and contextual variables in soccer. Despite
this, the study’s core novelty—the ability to discriminate post-match metabolomic pro-
files and correlate them with external load—establishes a foundational methodology for
future research.

Our results align with previous findings; for instance, Marinho et al. [21] identified
several post-game metabolites, including formate, which was suggested to be linked to
energy yield through aerobic metabolism. The presence of formate immediately after
matches may be explained by the oxidation of branched-chain fatty acids. Methylguanidine
and dimethylglycine are metabolites derived from amino acid metabolism and from methy-
lation processes. Methylguanidine has been associated with intense physical stress and
creatine metabolism, potentially indicating increased energy demand. Dimethylglycine,
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conversely, is involved in energy metabolism and the regulation of inflammatory responses,
likely reflecting the high physical exertion required during matches [1,22].

The energetic demands imposed by training load on the body occur in response
to increased metabolic activity from skeletal muscle contraction. This process utilizes
energy metabolites such as carbohydrates and lipids to meet the ATP requirements of
muscles [23]. Glucose and fatty acids serve as primary energy sources oxidized by muscles
during exercise, with their utilization influenced by muscle glycogen content, diet, exercise
intensity, and duration. Pyruvate, a key end-product of glycolysis, enters the tricarboxylic
acid (TCA) cycle. Both pyruvate and blood lactate levels typically decrease within one hour
after exercise; however, elevated concentrations of these metabolites can still be detected
in urine 24 h post-exercise [24]. Exercise induces significant alterations in amino acid
metabolic pathways, ATP metabolism, glycolysis, free fatty acid beta-oxidation, and ketone
body metabolism [25-27]. The presence of specific amino acids in the urinary metabolome
may be explained by their contribution to oxidative phosphorylation and their role as
substrates for gluconeogenesis, ketogenesis, and protein synthesis—particularly following
endurance exercise [24,28]. Supporting our findings, studies employing sports-associated
metabolomics have further demonstrated that ketone bodies are generated and amino acids
are converted to glucose when carbohydrate availability is limited.

The urinary metabolomic profile, when associated with the external load in soccer
players, can serve as a crucial internal load marker for discriminating post-match metabolic
recovery profiles. Our results align with recent investigations in this field. For instance,
Pellegrino et al. [29] demonstrated that the activation of aerobic metabolic pathways,
upregulation of the tricarboxylic acid (TCA) cycle, fatty acid 3-oxidation, and amino acid
metabolism collectively contribute to lower systemic levels of fatty acids, triglycerides,
and cholesterol. This metabolic shift accelerates the utilization of energy substrates and
reduces fat accumulation. In agreement with our findings, post-match energy metabolism
and recovery can be viewed as a reflection of this activation of metabolic pathways, which
facilitates the rapid mobilization of energy substrates following intense physical load
and aids in the recovery process. Furthermore, the relationship between inflammatory
responses and oxidative stress may be interpreted through this metabolic activation. As
highlighted by Pellegrino et al. [29], enhanced aerobic metabolism not only improves
energy utilization but can also generate free radicals, leading to oxidative stress. This
provides a mechanistic justification for the post-game inflammatory response, arising from
both metabolic pathway activation and the production of inflammatory mediators.

The study by Kim et al. [30] raises an important consideration regarding increased
trimethylamine excretion, which has been reported in patients with renal disease—a con-
dition characterized by diminished flavin-containing monooxygenase enzyme activity.
Although not directly related to soccer, this finding offers a valuable perspective on the
broader impact of metabolic activity. It prompts reflection on the relationship between
metabolism and renal function in athletes, particularly those subjected to high physical
loads. Theoretically, trimethylamine excretion could serve as a marker of altered lipid
metabolism or inflammatory response, both of which may be influenced by exercise load.

Metabolomic analysis conducted after soccer matches revealed that CMs exhibited
profiles more closely associated with muscle damage and inflammatory markers, likely
attributable to the higher physical loads they sustained during matches compared to the FB
and CD groups. In contrast, the FB and CD groups demonstrated metabolic profiles linked
primarily to energy metabolism and oxidative stress. Elevated levels of muscle damage
and inflammatory responses following soccer matches have been previously documented
in male athletes [31,32]. These findings are further supported by Mohr et al. [33], who
observed a significant effect of muscle damage and inflammation on performance in
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competitive soccer players. Specifically, the study reported a pronounced reduction in
player performance when recovery was limited to three days, due to increased feelings
of muscle pain and stiffness. This impaired recovery consequently led to diminished
explosive and anaerobic performance during an intensified weekly microcycle featuring
three matches.

The observed correlations between GPS-derived external load parameters and the
metabolomic profile help elucidate how physical exertion affects distinct physiological
processes (Figure 5). Positive correlations between glucose and relative distance (p < 0.01)
suggest increased energy utilization during prolonged efforts, reflecting heightened energy
metabolism. 4-hydroxyphenylacetate—which correlated positively with total distance,
explosive efforts, deceleration, and distance below 20 km/h (p < 0.05)—may be linked to
muscle damage and inflammatory processes, as this metabolite is a tyrosine degradation
product known to be altered in response to intense physical stress. Uracil, associated
with relative distance (p < 0.05), may reflect increased energy metabolism and poten-
tial alterations in cellular recovery processes. Conversely, negative correlations between
trimethylamine and dimethylglycine with maximum speed (p < 0.05), as well as between
glucose and acceleration (p < 0.01), may indicate impaired high-intensity performance due
to inflammatory responses or oxidative stress, given these metabolites’ roles in metabolic
pathways that can interfere with peak performance. These associations demonstrate how
metabolic profiles are modulated by external load, providing valuable insights into physio-
logical adaptation and recovery mechanisms following physical exertion [24,31-33].

The metabolomic changes observed in the study by Vike et al. [34] indicate that
the effect of intense prolonged exercise on the human metabolome can persist for up to
24 h post-exertion. Their findings demonstrate increases in lactate, pyruvate, TCA cycle
intermediates, nucleotide degradation products, glycerol, fatty acids, acylcarnitines, and
ketone bodies following exercise, reflecting ongoing processes of metabolic adaptation
and recovery. In contrast, bile acids decreased, and amino acid concentrations changed in
divergent directions—a pattern likely explained by their diverse synthetic pathways and
multifunctional roles, emphasizing the complexity of post-exercise physiological responses.

Crucially, the persistence of these alterations 24 h after physical exertion underscores
the importance of this time point for measurement. It highlights the continued need
for metabolic rebalancing, muscular recovery, and regulation of anabolic and catabolic
pathways, particularly after exercise that imposes significant energy demands and induces
cellular stress. This reference substantiates our methodological choice to analyze urine
samples 24 h post-match as a valid and physiologically justified alternative. While future
studies may opt for blood sampling at earlier time points, our protocol—utilizing next-day
urine collection—was designed accounting for practical logistical constraints involving
professional athletes and a high number of matches, which would render repeated blood
sampling particularly challenging. Nevertheless, our results must be interpreted with
care, since they reflect the metabolomic profile 24 h post-exercise and not immediately
post-exercise. Considering this is the first time metabolomics are shown to discriminate
among playing positions with different external load during matches on professional
soccer players, future studies must take this proof of concept to further use it as a tool for
monitoring physiological impact and individualization of recovery in this sport.

Several limitations and potential biases in this study must be acknowledged. First,
the timing of urine collection—specifically, the interval between the end of the match and
sample acquisition—could influence detected metabolite levels, introducing variability
not solely attributable to positional role or physical load. However, the literature lacks a
timeline tracking an optimal timeframe for metabolomic responses in urine, our 24 h post-
match collection was still able to demonstrate differences between the playing positions as
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presented here. Future studies should focus on establishing a timeline for these metabolic
changes to identify an optimal window for monitoring them. Furthermore, match-specific
characteristics such as tactical formation, venue (home or away), scoreline dynamics, and
other contextual factors were not controlled for and may represent a source of bias. It
is well-established that in-game strategies can significantly influence the external load
imposed on different positions. As an observational descriptive study, it was not possible to
control these factors; therefore, the results demonstrate associations rather than causation.

The sample size was also relatively small, though data were collected repeatedly over
different matches, which may limit the generalizability of the findings. On this topic, there
were significant differences in GPS-derived metrics among matches, demonstrating that
each match represented a unique physical stressor. Although individual athletes were
sampled multiple times, each observation was taken under different match conditions and
thus represents a unique response. Limited sample sizes are a common constraint in studies
involving elite athletes, given the practical challenges of accessing this population without
disrupting competitive schedules. Lastly, inter-individual variations in metabolism may
confound the association between match load and identified metabolites. We mitigate some
of those confounding factors through standardized team nutrition, sleep protocols, and
professional routines, yet unrecognized sources of physiological variation likely remain.

Given the modest sample size, our results should be interpreted as exploratory and
hypothesis-generating rather than definitive. Although the repeated-measures design
increased robustness, future studies with larger and independent cohorts are needed to
confirm these findings and strengthen their applicability to broader soccer populations.
Despite these limitations, the results are justified as they provide a better understanding
of the framework of metabolomics use and applications in soccer. Given the novelty
of this application, a necessary first step is descriptive observation to understand the
phenomenon, which was the goal of this study. Future studies may benefit from the
results of this descriptive observational design to construct more targeted and powerful
experimental clinical trials, involving targeted metabolomics with specific playing positions
in professional, high-level athletes.

5. Conclusions

The data presented here demonstrates the capability of NMR-based metabolomic
analysis performed on urine 24 h post-match to differentiate between the CD, CM, and FB
playing positions, but comparisons to WM and F positions were inconclusive. Metabolites
with the highest VIP-scores were attributed to the specific physical demands of each
position. In this sample, specifically, the metabolic profile of the CM group was more
closely associated with muscle damage and inflammatory markers, while the FB and
CD groups were linked to energy metabolism and oxidative stress. Considering the low
predictive power achieved by the metabolites” PLS-DA analysis, the results may be specific
to the samples studied. Still, metabolomics capacity to identify different patterns between
groups of players must be emphasized.

The comparison between external and internal load variables revealed a general
pattern of consistency in the metabolic responses across different playing positions, except
for the CM group. This study underscores the importance of adopting a personalized
approach to monitoring training load and recovery, considering the unique physiological
demands inherent to each specific playing position.



Biomedicines 2025, 13, 2583 16 of 18

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines13112583/s1, Figure S1. Complete Pearson correlation matrix
displaying all pairwise correlations between the 38 urinary metabolites and external load variables
following championship matches for the full-back (FB), central midfielder (CM), and central defender
(CD) positions. The color scale represents positive (red) and negative (blue) correlations, with significance
levels indicated by asterisks: * p < 0.05, ** p < 0.01, ** p < 0.001; Table S1. Correlation matrix with
all pearson’s r-values for the correlation matrix between the 38 urinary metabolites and external load
variables following championship matches.
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