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ABSTRACT

Background: Cardiovascular diseases pose a significant challenge to global health, and the role of exercise as a non-
pharmacological intervention has attracted considerable attention. Irisin, a myokine released during exercise, exhibits excellent
potential in regulating metabolism. Its potential intervention value in metabolic and neurodegenerative diseases has been pre-
liminarily confirmed by correlational studies and animal experiments.

Objective: To reveal the unique role of Irisin in the cardiovascular field and clarify its regulatory mechanisms and clinical ap-
plication prospects in cardiovascular health.

Methods: By comprehensively reviewing existing studies, this paper systematically summarizes the therapeutic effects and
molecular mechanisms of Irisin in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, myocardial
ischemia-reperfusion injury, and heart failure) and cerebrovascular diseases (including ischemic stroke, hemorrhagic stroke, and
post-stroke depression), and further explores its association with perivascular adipose tissue.

Results/Content: Irisin demonstrates multi-dimensional therapeutic potential in the aforementioned cardiovascular and cere-
brovascular diseases. Its mechanisms of action involve multiple aspects such as metabolic regulation, inflammation inhibition,
and tissue repair. Additionally, it has a close mutual regulatory relationship with perivascular adipose tissue, collectively forming
a complex regulatory network for cardiovascular health.

Conclusion: This review provides a theoretical basis for the clinical application of Irisin in cardiovascular diseases, not only
opening up new research and application directions but also further highlighting the unique significance of exercise and Irisin
in maintaining cardiovascular health.

1 | Introduction represented by coronary heart disease and stroke share a com-
mon pathological basis of vascular dysfunction. Emerging ev-
Cardiovascular-cerebrovascular disease (CCD) poses a sig- idence has highlighted the critical role of energy metabolism

nificant challenge to human health. Globally, it stands as the disorders in this pathological process [2-4]. As a recently discov-
foremost cause of morbidity, disability and mortality [1]. CCDs ered regulator of energy metabolism, Irisin has shown potential
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in vascular protection by modulating mitochondrial function,
oxidative stress and inflammatory signalling.

Inrecent years, exercise has been fervently advocated as a substan-
tial non-pharmacological strategy for preventing cardiovascular
disease. It is regarded as a primary preventive measure that de-
celerates cardiovascular ageing and promotes longevity [5]. From
a macroscopic perspective, healthcare costs are notably lower for
cardiovascular disease patients who engage in regular physical
activity compared to the non-exercising population [6]. At a more
microscopic level, exercise can inhibit vascular endothelial dys-
function by decreasing levels of soluble intercellular adhesion mol-
ecule-1 (SICAM-1) [7]. Additionally, therapeutic approaches aimed
at rectifying the imbalance of energy metabolism in mitochondria
can effectively bolster the neuroprotection of stroke patients [8].

Irisin, a myokine secreted during exercise, plays a crucial role
in regulating metabolic disorders. Its initial discovery occurred
in studies focused on white fat browning [9]. Recent studies
indicate that Irisin is implicated in a range of metabolic and
neurodegenerative diseases, extending beyond white fat brown-
ing [10-13]. Furthermore, Zhao's study suggests that exercise-
induced Irisin plays a crucial role in maintaining cardiovascular
health through its contribution to angiogenesis. This potential
renders it a novel therapeutic target for ischaemic diseases [14].
Similarly, a population-controlled study has demonstrated an
association between lower circulating Irisin levels and higher
levels of comorbid cardiovascular disease [15]. Overall, Irisin
serves as a connection between exercise and the amelioration of
cardiovascular disease, potentially playing a role in pathomech-
anisms and therapeutic options. For this reason, this paper sum-
marises the therapeutic tools and corresponding mechanisms of
Irisin in cardiovascular and cerebrovascular diseases.

2 | Structure and Biological Function of Irisin

2.1 | Structural Characterisation and Conservation
of Irisin

Irisin was initially discovered by Bostrom during a study on the
browning of white fat and was named after the Greek goddess
of the rainbow, Iris. This factor is produced by the cleavage of
the precursor protein FNDC5, regulated by PGC-1a [9]. It is in-
teresting to note that FNDC5 mRNA in humans has a different
translation start codon compared to that in experimental mice.
Specifically, it has ATA as the translation initiation codon, which
is less efficient in translation compared to ATG [16]. It is worth
noting that Raschke questioned whether the ATA start codon
could efficiently produce Irisin protein, but subsequent studies
have shown that this mutation remains the main translation
mode of human FNDCS5 [17]. Structurally, the FNDC5 protein
comprises 209 amino acid residues, including a signal peptide
(28aa), an FNIII structural domain (93aa), a linker peptide
(30aa), a hydrophobic transmembrane structural domain (19aa)
and an intracellular structural domain (39aa). It is worth not-
ing that the signal peptide in humans is 31aa, resulting in the
FNDCS5 protein having 212 amino acid residues [18]. The Irisin
protein consists of 112 amino acid residues, including the FNIII
structural domain (93 aa) and part of the transmembrane linker
peptide (19 aa).

The molecular weights of FNDCS5 proteins vary in different
tissues, possibly attributed to variations in the number of at-
tached oligosaccharides during glycosylation modifications [19].
Similarly, Irisin, the secreted segment of the FNDCS5 protein,
possesses two N-glycosylation sites, namely, Asn-7 and Asn-52
[20]. Nie et al. concluded that the absence of N-glycosylation in
FNDCS5 could enhance the incidence of structural instability
in the protein and reduce the effective secretion of Irisin [21].
Consequently, the molecular weight of Irisin ranges from ap-
proximately 12 to 35kDa [21]. X-ray crystallography reveals that
the crystal structure of Irisin closely resembles that of the FNIII
protein fold. However, in contrast to the FNIII protein fold, the
Irisin fold lacks association with glycosylation and forms a con-
tinuous intersubunit §-sheet dimer [18]. This type of dimer im-
plies that Irisin is likely to induce spontaneous signalling at the
cell surface [18].

It is noteworthy that the amino acid sequence of FNDC5/Irisin
is highly conserved, with the mouse Irisin sequence being fully
consistent with the human Irisin sequence [18]. This highly con-
served sequence is believed to be associated with the mainte-
nance of basic life functions.

As mentioned by Flori [22] in his article, FNDC5 mRNA is
widely expressed in various regions of the brain and muscle
(heart and bone). However, in humans, brown adipose tissue,
prostate, intestine, pancreas and liver show moderate levels
of expression. In rats, FNDC5 mRNA levels are very low or
undetectable in white adipose tissue, lungs, kidneys, thymus,
spleen, placenta, stomach and liver (Figure 1). We can see that,
although the sequence of Irisin is highly conserved in the two
organisms, the expression of FNDC5 mRNA, the precursor pro-
tein of Irisin, is not the same. The secretion of Irisin is a sys-
temic process, and it is difficult to detect the levels in individual
tissues. However, it is possible to look at FNDC5 mRNA expres-
sion levels by culturing tissues and cell lines [23]. The current
study differs from the initial study in that Irisin is now widely
studied not only as a factor related to fat browning and thermo-
genesis but also as a factor underlying energy metabolism in
the human body. Consequently, Irisin is now extensively stud-
ied not only as a factor associated with fat browning and ther-
mogenesis but also as a factor underlying energy metabolism
in the human body.

2.2 | Mode of Secretion of Irisin

The currently more plausible hypothesis within the scientific
community regarding how exercise releases Irisin is based on
Bao's view. According to this perspective, acute exercise releases
Irisin into the bloodstream by promoting the cleavage of FNDC5
in skeletal muscle. In contrast, chronic exercise increases the
amount of FNDC5 mRNA in tissues [24]. We summarised the
two modes of operation of Irisin based on the available evi-
dence to elucidate the relationship between exercise and Irisin
in Figure 2.

Under normal conditions, the elevation of circulating Irisin
during acute exercise is intended to counteract the stress mol-
ecules produced by the exercise. In acute exercise, the body ex-
periences stress, disrupting internal environmental homeostasis
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FIGURE1 | Irisin synthesis via FNDC5 proteolysis and tissue-specific expression levels. Exercise is the main way to produce Irisin, in which the

FNDCS5 protein in the human body possesses 212 amino acid residues. In contrast, the Irisin protein, which consists of the FNIII structural domain

(93aa) and part of the transmembrane junctional peptide (19aa), has a total of 112aa amino acid residues. The amount of FNDCS5 varies from tissue

to tissue, and Kim's study was the first to sequence FNDCS5 in 16 different cells and tissues [23].

and energy balance [25, 26]. In this process, FNDC5 in the mus-
cle is cleaved to release Irisin into the bloodstream. During acute
exercise, FNDCS5 in the muscle is cleaved, releasing Irisin into
the bloodstream. It reaches the organs, activates factors respon-
sible for energy metabolism (such as AMPK and SIRT) and plays
a role in mitochondria to rapidly fill the ‘energy gap’ [27, 28].
Chronic exercise differs from acute exercise solely in the accu-
mulation of FNDC5 mRNA, the precursor to Irisin [24]. It is
important to note that the accumulation of FNDC5 mRNA is
not confined to muscle tissue but is also present in other tissues,
such as the myocardium. The amount of Irisin cleaved during a
single acute exercise session depends on the amount accumu-
lated during chronic exercise [29-32].

In a diseased state, Irisin functions as a mitochondrial repair
agent. Mitochondrial dysfunction, induced by disease, is the
main contributor to the inhibition of energy metabolism in or-
gans. Here, FNDC5, accumulated due to chronic exercise, initi-
ates the cleavage of Irisin. This process enables Irisin to enter the
bloodstream and circulate through the diseased organ, repairing
the mitochondria. Irisin promotes mitochondrial kinetic homeo-
stasis [33], sustains autophagy [34] and ameliorates the oxidative
stress environment [35], contributing to the repair of damaged
mitochondria.

2.3 | Irisin's Multiple Functions

PGC-1a is a crucial pathway in energy metabolism, playing a
significant role in regulating oxidative stress [36, 37]. In cardiac
metabolism, it acts as an energy regulator and plays a vital role
in cardioprotection [38]. Notably, Irisin regulated by PGC-1a

maintains energy homeostasis by modulating mitochondrial
biogenesis and oxidative stress, a mechanism fully evidenced in
its involvement in fat browning and cardioprotection [9, 38]. In
addition to its initially identified role in fat browning [39-43],
Irisin is involved in bone remodelling through aV@5 [44] and in
maintaining glucose homeostasis in the liver [45]. Furthermore,
Irisin has a unique role in the nervous system [46-53], upregu-
lating the expression level of the neurotrophic factor BDNF and
promoting synaptic plasticity [54, 55]. Therefore, Bao suggests
that Irisin could be an ideal therapeutic target for both meta-
bolic and non-metabolic diseases [24]. Current research has
demonstrated the therapeutic effects of Irisin on other organs
(lungs [56-58], liver [45, 59-63], bones [64-70], ovaries [71],
kidneys [72-74], retina [75], heart [30, 31, 76-83]), as well as
pancreas [84] (Figure 3).

Irisin’'s association with mitochondria has led to claims that
it can cure a range of diseases and conditions. Recent studies
have shown that Irisin activates gene expression related to
mitochondrial fusion and improves mitochondrial kinetic dys-
function [85, 86]. In cases of myocardial injury, Irisin interven-
tion has been shown to improve cardiac dysfunction caused by
ischaemia and hypoxia by modulating the ferroptosis pathway
and the mitochondrial ubiquitin ligase mechanism [87, 88]. The
heart is a vital organ in the human body, and as a result, it con-
sumes a significant amount of energy. This is reflected in the
higher number of mitochondria present in the heart compared
to other organs [89]. Critically, although Irisin is released in
various organ tissues, circulating Irisin is mainly supplied by
cardiac and skeletal muscle [90-92]. The large number of mi-
tochondria in the myocardium and the presence of Irisin have
led the scientific community to believe that Irisin maintains
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FIGURE2 | Two modes of Irisin cleavage. In the normal physiological state, there are two distinct patterns that promote the generation of Irisin.

First, chronic exercise increases the level of FNDC5 mRNA, with its transcription initiation codon being ATA. This process is associated with an

increase in FNDCS5 expression, which in turn enhances the production of Irisin. Second, acute exercise disrupts the balance between energy input
and output in the body, triggering the proteolytic cleavage of FNDCS5 to generate Irisin. In the context of disease states, Irisin plays a pivotal role in
ameliorating mitochondrial dysfunction and regulating energy imbalances within various diseased tissues. Its actions are aimed at restoring homeo-

stasis and promoting tissue health. The figure was created using Figdraw.

mitochondrial homeostasis, regulating energy metabolism in
the heart.

3 | Mechanisms and Effects of Irisin in the
Treatment of Cardiovascular and Cerebrovascular
Diseases

3.1 | Irisin and Coronary Artery Disease

Widely recognised as a crucial factor in improving cardiore-
spiratory fitness, aerobic exercise deserves consideration re-
garding the role of exercise-secreted Irisin. Data from Japan
indicate a correlation between circulating Irisin levels and var-
ious indicators of health assessment. In a cross-sectional study
involving 328 Japanese citizens, Inoue discovered a negative
correlation between circulating Irisin levels and cardiometa-
bolic risk scores, irrespective of gender and age [93]. This find-
ing implies that Irisin may play a significant role in preventing
heart disease, aligning with the established benefits of exercise
in enhancing cardiorespiratory function. Alipoor presents a
different perspective in another cross-sectional study; this re-
search, which recorded Gensini scores in 166 adults, indicated

that circulating Irisin was not significantly associated with the
likelihood of developing coronary artery disease [94]. The dis-
crepancy is attributed to variations in research methodology,
and according to Ou-Yang, the inconsistency in cross-sectional
study results is linked to differences in the level of measurement
[95]. Despite the absence of suitable measurement methods, in-
dependent studies have demonstrated a promising therapeutic
effect of Irisin on coronary artery disease.

3.1.1 | Atherosclerosis

Atherosclerosis (AS) is a complex arterial pathology characterised
by systemic inflammation and the aggregation of plaques within
the arterial wall. It stands as the primary contributor to myocar-
dial infarction and stroke events [96, 97]. The investigation into
the relationship between Irisin and AS traces back to Sesti's 2014
cross-sectional study involving 192 white adults. The statistical
analysis of the study unveiled a positive association between Irisin
and intima-media thickness (IMT), suggesting that elevated levels
of circulating Irisin were associated with an increased incidence
of AS [98]. However, recent studies have contradicted Sesti's find-
ings, suggesting that Irisin levels are lower in patients with AS
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FIGURE 3 | Role of Irisin in various tissues and experimental subjects. Irisin has been studied in various tissues; this figure shows the role of
Irisin in each tissue, and it can be seen that Irisin has been studied in the heart and the brain for a large part of the study.

[99, 100]. Notably, two independent studies on subclinical AS in
leukaemia have reported similar findings [101, 102]. In patients
with this systemic inflammatory disease, serum Irisin levels de-
crease, and there is an increase in IMT [101, 102]. Additionally,
patients with mid-axial spondyloarthritis exhibit accelerated ath-
erosclerosis in clinical settings, with low Irisin levels hastening
plaque formation and, consequently, demonstrating a strong cor-
relation with the presence of plaques [103]. Recent evidence sug-
gests that the association between Irisin and AS may be mediated
through thyroid function and may involve bidirectional regulatory
mechanisms ([104]). Specifically, thyroid dysfunction is thought to
directly or indirectly influence the regulation of Irisin, and in turn,
Irisin may have a regulatory effect on thyroid activity. Of note,
clinical hypothyroidism and subclinical hypothyroidism (SCH)
have been identified as independent risk factors for the patho-
genesis of atherosclerosis and cardiovascular disease [105], but
the currently available data on the relationship between thyroid
function and Irisin are scarce and present the same problems as
described previously. Although the results of the earlier studies are
quite different from the more recent ones, these studies are point-
ing to an expectation that Irisin can be used as an early predictive
biomarker for AS. However, the use of this biomarker has to be
demonstrated by more factual evidence of its relevance. In other
words, its specific association with AS markers such as IMT needs
to be demonstrated.

Investigating the intrinsic mechanisms through both in vivo
and in vitro studies will enhance the credibility of Irisin as a
biomarker for AS, as described above. APOE knockout mice
with FNDCS5 overexpression exhibited a significant reduction in
the area of aortic plaque [106]. This outcome was attributed to
the treatment of endothelial dysfunction and the suppression of
vascular inflammation. In Lu's study, Irisin treatment led to a
reduction in the expression of inflammatory factors, including
macrophages and T lymphocytes. Additionally, it significantly
improved endothelial dysfunction by reducing the apoptosis of
endothelial cells, compared to AS mice treated with saline only
[107]. Similarly, Shimba demonstrated that the Irisin-dependent
protein PGC-1a has the ability to decrease the expression lev-
els of VCAM-1 and MCP-1, reduce cellular accumulation on
vascular endothelial cells and inhibit vascular inflammation
[108]. Although animal models can offer valuable information
about AS, a mechanistic understanding of the condition necessi-
tates evidence from relevant in vitro models [109]. Results from
in vitro experiments revealed that Irisin inhibited apoptosis in
HUVECs (umbilical vein endothelial cells) and promoted the
phosphorylation of AMPK and AKT, leading to reduced oxi-
dative stress production [107]. Building upon this foundation,
Zhang conducted an in-depth study, and the experimental re-
sults indicated that Irisin modulated certain apoptotic factors
(Bcl-2, Bax and caspase-3) to reduce apoptosis. Moreover, it
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FIGURE 4 | The role and mechanism played by Irisin in atherosclerosis. The role of Irisin in atherosclerosis is multifaceted and involves sev-
eral key mechanisms. First, Irisin regulates VCAM-1 to initiate leucocyte adhesion and MCP-1 to mediate their migration, jointly suppressing the
inflammatory cascade to inhibit vascular inflammation and improve endothelial dysfunction. Second, in terms of oxidative stress, Irisin activates
the AMPK and AKT pathways, leading to a reduction in ROS generation. Finally, in relation to cell apoptosis, Irisin modulates apoptotic factors and
suppresses the ROS/p38 MAPK/NF-xB signalling pathway. The figure was created using Figdraw.

inhibited the expression of inflammatory genes by suppressing
the ROS/p38 MAPK/NF-xB signalling pathway, thereby inhib-
iting the expression of inflammatory genes [110]. Additionally,
in vitro, Zhang's study unveiled another regulatory pathway,
indicating that Irisin may also regulate the Akt/mTOR/Nrf2
pathway. This regulatory mechanism could potentially aid in
attenuating oxLDL-induced vascular injury [111] (Figure 4).

3.1.2 | Myocardial Infarction

Myocardial infarction (MI) is a significant cardiovascular event
resulting from persistent ischaemia caused by the occlusion of
coronary arteries, leading to myocardial injury and necrosis
[112]. Exercise is widely recognised as a protective factor against
cardiovascular events. However, the relationship between exer-
cise and MI is multifaceted. Vigorous physical activity elevates
the risk of myocardial infarction in individuals who do not en-
gage in regular exercise [113]. Conversely, moderate and regular
physical activity demonstrates a more favourable cardioprotec-
tive effect [114]. Irisin elucidates this phenomenon at the molec-
ular level.

The relationship between myocardial Irisin levels and adverse
cardiovascular outcomes has garnered significant attention in
research exploring the connection between exercise and MI. In
one of his 3-year follow-up studies, Xie observed that an increase
in serum Irisin concentrations was associated with an elevated
risk of adverse cardiovascular outcomes after MI [115]. To in-
vestigate the role of Irisin in the myocardium, the researcher
conducted animal experiments. Mice were implanted with
adenovirus-vectored Irisin, leading to enhanced myocardial mi-
tochondrial respiration, increased oxygen consumption rate and
elevated reactive oxygen species production [80]. Both clinical
and animal studies suggest that elevated Irisin concentrations
are counterproductive in the treatment of MI. Notably, exclud-
ing these two studies from the same team, more studies have
demonstrated that low Irisin levels are associated with adverse
cardiovascular outcomes. In 2014, Emanuele compared serum
Irisin levels measured in healthy centenarians, healthy young
adults and patients with MI. Her results indicated that young
patients with MI exhibited the lowest serum Irisin levels, even
lower than those of centenarians [116]. A similar follow-up study
on adverse cardiovascular events after MI, in contrast to Xie's
study, revealed that low serum Irisin levels were significantly
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chondrial damage. Additionally, Irisin enhances mitochondrial autophagy through the activation of the PINK1/Parkin-LC3/P62 pathway. Finally,
Irisin promotes angiogenesis by increasing the number of mesenchymal stem cells (MSCs) and phosphorylating ERK. The figure was created using

Figdraw.

associated with such events [117]. Additionally, circulating
Irisin levels were linked to a high degree of vascular stenosis in
patients with MI [118]. Consequently, Irisin has been recognised
in recent years as a novel biomarker for predicting MI, compara-
ble to CK-MB [118-120].

Irisin plays a prominent role in contributing to recovery after
myocardial infarction by exerting significant effects in anti-
inflammation, antioxidative stress and anti-apoptosis [121].
Cardiomyocyte loss and energy imbalance during acute MI
are closely associated with apoptosis induced by lipotoxicity.
Therefore, Moscoso utilised H9C2 cardiomyocytes to examine
the protective effects of Irisin in the context of MI. The experi-
mental results demonstrated that Irisin treatment of H9C2 cells
counteracted apoptosis induced by lipotoxicity and hypoxia.
This effect was closely related to the activation of the Akt path-
way [122]. Similarly, Wu's study demonstrated that aerobic exer-
cise after MI increased Irisin expression and decreased ALCAT1
expression, thereby attenuating oxidative stress and apoptosis
[123]. ALCAT1, or acylprotein thioesterase 1, is an enzyme that

participates in oxidative stress regulation by catalysing the deac-
ylation of palmitoylated proteins, and its abnormally high ex-
pression is closely associated with cell apoptosis. Another study
supported the same idea that aerobic exercise reversed protein
degradation and apoptosis after MI through upregulation of
Irisin and inhibition of ALCAT1 [124]. In addition to improv-
ing oxidative stress pathways, Irisin may treat MI by enhancing
mitochondrial homeostasis. Hypoxia leads to cellular ferro-
ptosis, increased iron metabolism and the onset of mitochon-
drial dysfunction. In contrast, Irisin-treated cardiomyocytes
exhibited reduced ferroptosis and reversed hypoxia-induced
mitochondrial dysfunction [87]. Cao has explored this mecha-
nistically, suggesting that Irisin activates Nrf2/HO-1, thereby
reducing both ferroptosis and mitochondrial damage [87]. Irisin
also plays a distinct role in mitochondrial autophagy. Li demon-
strated that resistance to exercise is essential for the activation
of the PINK1/Parkin-LC3/P62 pathway by Irisin/FNDCS5, en-
hancing mitochondrial autophagy [35]. Additionally, it has been
suggested that OPA1 plays a role in the Irisin-regulated auto-
phagy pathway, consistent with Xin's view [125]. Furthermore,
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Irisin promotes angiogenesis via MSCs for the treatment of MI
[126, 127]. Irisin treatment also significantly increased the phos-
phorylation of ERK, contributing to angiogenesis, and signifi-
cantly improved both infarct size and myocardial fibrosis after
MI [128]. Figure 5 summarises the mechanism of action of Irisin
in MI.

3.1.3 | Cardiac Ischaemia-Reperfusion Injury

Following a myocardial infarction, surgical intervention is
commonly utilised to achieve myocardial reperfusion. This
constitutes the most effective strategy for reducing the size of
the infarction and enhancing clinical outcomes. However, the
myocardium that has experienced ischaemia is susceptible to
ischaemia-reperfusion injury (IR) upon restoration of blood
flow [129, 130]. IR impairs the cardiac regulatory response
and induces metabolic abnormalities in cardiomyocytes,
including oxidative stress, systemic inflammation, mito-
chondrial homeostasis disorders and an imbalance in iron me-
tabolism [131]. Recent literature has shown that Irisin exerts a
beneficial therapeutic effect on IR. IR frequently occurs after
vascular perforator flap transplantation, resulting in surgical
failure. Zhao administered continuous injections of Irisin into
the tail vein of rats for 3days before vascular clamping of the
perforator valve to observe changes in the area of flap sur-
vival. The results indicated a significantly larger area of flap
survival in rats treated with Irisin compared to control rats,
along with a higher density of microvessels [132]. Similarly,
Wang's study demonstrated a significant improvement in
ventricular function after perfusion in ischaemic hearts pre-
treated with Irisin [133]. Further investigation into the in-
trinsic mechanisms by which Irisin improves myocardial IR
revealed its main effects in improving mitochondrial dysfunc-
tion, regulating endoplasmic reticulum (ER) stress and reduc-
ing inflammatory responses.

A study was conducted on H9C2 cardiomyoblasts to investigate
the effects of pretreatment with Irisin. The study found that
Irisin significantly increased SOD-1 and p38 phosphorylation,
indicating its role in inhibiting oxidative stress and protecting
mitochondrial function [133]. This finding is supported by an-
other study conducted by Wang, demonstrating that Irisin in-
tervention restored impaired SOD activity [134]. Interestingly,
this study also co-localised Irisin with mitochondria, and the re-
sults suggested a pattern of overlap between Irisin and Cox IV (a
mitochondrial marker) [134]. Irisin may improve mitochondrial
function by ameliorating oxidative stress pathways and may also
be involved in regulation through the autophagy pathway. In a
study, rats were pretreated with Irisin for 1week before under-
going IR surgery, and mitochondrial autophagy proteins were
measured 24 h after perfusion. The study found that the group
treated with Irisin exhibited a significant increase in the levels
of PINK3 and Parkin proteins [135]. In a mouse model of dia-
betic myocardial ischaemia, Irisin exhibited favourable thera-
peutic effects. Xin observed that treatment with Irisin improved
the compromised AMPK pathway, enhancing mitochondrial
potential and promoting mitochondria-associated cell survival
[136]. Additionally, Irisin played a crucial role in alleviating ER
stress, a significant pathway in the treatment of myocardial IR.
Pretreatment with Irisin resulted in decreased expression of

stress-related proteins in the ER, including GRP78 and CHOP
[137]. Lu's experiments also confirmed this, showing that Irisin
intervention reduced the already elevated levels of IREla pro-
tein in IR [88]. In myocardial IR, NLRP3 inflammatory vesicles
can trigger endothelial dysfunction. Xin's study demonstrated
that Irisin reduced the activation of NLRP3 in diabetic myocar-
dial IR, thereby mitigating cellular damage [136].

The above evidence suggests that Irisin may exert beneficial
effects in modulating myocardial IR, primarily by preserving
mitochondrial function, ameliorating ER stress and alleviating
inflammatory pathways (Figure 6). Interestingly, a recent study
by Liu investigated the gut-heart axis, revealing a significant
association between myocardial IR and gut dysbiosis. Treatment
with Irisin reduced the abundance of Actinobacillus flora and
increased the abundance of the thick-walled bacteria phylum,
thereby reversing gut dysbiosis to an extent that improved myo-
cardial IR [83].

3.1.4 | Heart Failure

Heart failure (HF) is a prevalent end-stage manifestation of
various cardiac diseases, often accompanied by complex comor-
bidities [138, 139]. Studies indicate that, in developed countries,
the prevalence of HF ranges from 1% to 2% [140]. In addition,
34% of hypertensive patients suffer from sarcopenia [140], adult
sarcopenic patients have a higher chance of developing chronic
heart failure [141] and sarcopenia can also lead to other comor-
bidities related to non-alcoholic fatty liver disease, T2DM, obe-
sity, chronic liver disease and cancer, which have been shown
to be associated with cardiovascular disease [142]. Could allevi-
ating sarcopenia reduce the impact on cardiovascular disease?
Circulating levels of Irisin, a biomarker predictive of sarcope-
nia, are of research importance [143]. The societal burden of
HF is substantial. Energy deficiency emerges as a pivotal factor
in HF development and is linked to diminished mitochondrial
biogenesis and function [144]. Morphologically, it is evident that
mitochondria display abnormal volume numbers and struc-
tural integrity loss [145]. Irisin, a pivotal myokine for enhancing
energy metabolism, is abundantly present in the myocardium
[146]. Consequently, numerous scholars have investigated the
correlation between Irisin and HF.

In 2012, Lecker et al. conducted an initial investigation into the
correlation between Irisin expression and HF. The study com-
pared the aerobic exercise capacity of individuals with HF and
discovered that FNDCS5 expression in skeletal muscle was sig-
nificantly higher in those with elevated aerobic exercise capacity
[147]. Following this, Matsuo extended his research by demon-
strating a substantial decrease in FNDC5 and Irisin levels in
the skeletal muscle of HF rats. He suggested that this reduction
may be linked to an increase in inflammatory factors such as
TNF-a and angiotensin II [148]. These trials have significantly
influenced the amelioration of exercise intolerance symptoms in
patients with heart failure and have provided valuable insights.
Crosstalk between peripheral and cardiac organs contributes to
responding to the presence or absence of abnormal lesions in
cardiac organs. A subsequent investigation revealed that serum
Irisin can serve as a predictive biomarker for all-cause mortal-
ity in patients with acute heart failure [149]. Kalkan's study also
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FIGURE 6 | The role and mechanism played by Irisin in myocardial ischaemia-reperfusion. The role of Irisin in myocardial ischemia can be

elucidated through three primary mechanisms. First, in ER stress, Irisin suppresses the expression of ER stress-related proteins, including GRP78,
CHOP and IRE1la. Second, in mitochondrial dysfunction, Irisin activates the AMPK pathway, promoting the phosphorylation of SOD-1 and p38, thus
mitigating oxidative stress. Additionally, Irisin upregulates the expression of PINK3 and Parkin proteins, leading to the enhancement of mitophagy.
Finally, in cellular inflammation, Irisin inhibits the activation of NLRP3, thereby alleviating inflammation caused by cellular injury. The figure was

created using Figdraw.

demonstrated similar findings, revealing significantly higher
serum Irisin levels in HF patients with cardiac cachexia com-
pared to controls [150]. However, recent studies have yielded
conflicting results. El-Mottaleb found lower serum Irisin lev-
els in patients with concomitant myocardial infarction and HF
[151]. Additionally, the analysis revealed a positive correlation
between serum Irisin levels, ejection fraction and HDL-C [151].
Currently, it has been found that Irisin levels in patients with
heart failure are negatively correlated with high troponin I, CK-
MB, tumour necrosis factor (TNF), total cholesterol, low-density
lipoprotein cholesterol and triglyceride levels. In contrast, it
is positively correlated with left ventricular ejection fraction
(LVEF) and high-density lipoprotein cholesterol levels [152]. In
agreement with this, all three of Berezin's studies on the associa-
tion between serum Irisin and HF demonstrated that, in patients
with chronic HF, acute HF or HF with preserved ejection frac-
tion, circulating Irisin levels were significantly lower in these
patients than in the corresponding control group [153-155]. It is

important to note that studies suggesting a positive association
between elevated circulating Irisin levels and the onset of HF
were published earlier. Irisin is a factor in maintaining energy
metabolism homeostasis, as demonstrated in our earlier re-
search. In the later stages of the condition, organs and tissues re-
lease Irisin to sustain energy balance, resulting in elevated levels
consistent with imaging evidence [156].

Irisin can function as a biomarker for heart failure and holds po-
tential therapeutic applications. Peng employed H9C2 cardiomy-
ocytes to simulate oxidative stress injury and treated them with
Irisin. The results demonstrated that Irisin alleviated apoptosis
and reduced reactive oxygen species (ROS) in H9C2 cells. This
effect was mediated by the upregulation of miRNAs [157], which
play a crucial role in the development of cardiac diseases, includ-
ing HF [158]. Similarly, at the cellular level, Sundarrajan’s study
concluded that the knockdown of Irisin in zebrafish results in a
reduction in PGC-1a, troponin C and troponin T2D [159]. The
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FIGURE 7 | The role and mechanism played by Irisin in heart fail-
ure. Irisin plays a pivotal role in augmenting cardiac output in heart
failure through three distinct mechanisms. First, Irisin upregulates
miRNAs, resulting in the reduction of ROS production and subsequent
attenuation of apoptosis. Second, Irisin promotes the upregulation of
PGC-1a, troponin C and troponin T2D, thereby enhancing myocardial
function. Finally, Irisin activates the AMPK-ULK1 signalling pathway,
leading to the induction of protective autophagy. The figure was created
using Figdraw.

study also evaluated the cardiac function of zebrafish following
Irisin intervention. Ultrasound imaging techniques revealed
that the administration of Irisin increased the heart's diastolic
volume and cardiac output [159]. To observe the protective ef-
fect of Irisin on cardiac hypertrophy, Li conducted animal ex-
periments using FNDC5 knockout mice and FNDCS5 transgenic
mice. The study revealed that the extent of cardiac hypertrophy
injury was lower in FNDCS5 transgenic mice than in FNDC5
knockout mice [160]. Subsequent studies have demonstrated
that the mechanism of cardioprotection by Irisin involves the
activation of the AMPK-ULK]1 pathway, inducing protective au-
tophagy [161] (Figure 7). Additionally, two population studies
have suggested that the protective effect of Irisin is associated
with the modulation of oxidative stress [162, 163].

3.2 | Irisin and Cerebrovascular Injury

Cerebrovascular disease, commonly referred to as ‘stroke’,
manifests as a clinical syndrome characterised by the depri-
vation of blood flow to the brain due to the occlusion or rup-
ture of cerebral blood vessels [164]. Consequently, strokes are
categorised as either ischemic or haemorrhagic [165]. Irisin, a

novel myokine, has garnered significant attention in neurosci-
ence research over recent years, particularly in the context of
diseases like Alzheimer's disease and diabetic mild cognitive
impairment (Figure 8).

3.2.1 | Ischemic Stroke

According to Tu's statement following a comprehensive long-
term follow-up study involving 1530 Chinese patients with
ischemic stroke [166], Irisin emerges as an independent prog-
nostic marker for ischemic stroke. The study sought to assess
the predictive value of serum Irisin levels and NTHSS stroke
scores concerning functional outcomes and mortality in pa-
tients with ischemic stroke [166]. Similar conclusions were
drawn in Wu's study involving Chinese ischemic stroke pa-
tients [167]. In a separate observational study conducted in
Japan, researchers explored the relationship between serum
Irisin levels and cerebral small vessel disease, a condition
associated with stroke. The findings indicated that elevated
Irisin levels were linked to a diminished burden of cerebral
small vessel disease in healthy men and hinted at the potential
for intraluminal infarction [168]. These clinical studies under-
score the potential of Irisin levels as a novel and dependable
prognostic factor for ischemic stroke.

Irisin serves not only as a prognostic factor in ischemic stroke
but also exhibits protective and therapeutic effects on ischemic
brain tissue. Nerve cells are highly susceptible to changes in
energy supply during cerebral ischemia, leading to a cascade of
pathophysiological processes [169]. The presence of Irisin has
been demonstrated to exert a protective effect on nerve cells.
In the MCAO mouse model, Irisin treatment significantly de-
creased the cerebral infarction volume and suppressed neu-
roinflammation [170]. In vitro studies further revealed that
the targeted inhibition of the AKT and ERK1/2 pathways re-
versed the neuroprotective effects of Irisin [170]. Peng's study
unveiled the inhibitory impact of Irisin on ROS-NLRPO5 using
an oxygen-glucose deprivation model, consequently reducing
neuronal damage [171]. In Liu's study, Irisin treatment proved
effective in reducing apoptosis levels in the MCAO model
by regulating mitochondria-associated kinetic proteins and
apoptosis-associated proteins [85]. Additionally, Irisin dimin-
ishes ROS generation and alleviates oxidative stress injury by
activating the PI3K/AKT/mTOR signalling pathway [85].

3.2.2 | Haemorrhagic Stroke

Haemorrhagic stroke (HS) is a severe and often fatal subtype of
stroke typically caused by various factors leading to the rupture of
cerebral blood vessels. This rupture results in haematomas, which
compress the surrounding brain tissue, leading to increased in-
tracranial pressure that impacts neurological function [172, 173].
In haemorrhagic stroke, blood enters the brain parenchyma, re-
leasing numerous erythrocytes and plasma components into the
surrounding tissues. This process activates immune cells and
neuroglial cells, leading to neuroinflammation [174]. The neuroin-
flammatory response is essential for repairing neural tissues after
haemorrhagic stroke. However, uncontrolled neuroinflammation
can result in more severe neurological damage. In recent years,
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FIGURE 8 | The role and mechanisms played by Irisin in cerebrovascular injury and post-stroke depression. In ischaemic stroke: (1) Irisin pre-
serves mitochondrial homeostasis by regulating mitochondrial dynamics proteins, thereby suppressing cellular apoptosis. (2) Irisin inhibits ROS-
NLRP3 activation, mitigating neuronal damage. (3) By activating the PI3K/AKT/mTOR signalling pathway, Irisin attenuates ROS production and
alleviates oxidative stress-induced neuronal injury. In haemorrhagic stroke: (1) Irisin promotes the transition of microglia from the M1 phenotype
to the M2 phenotype, suppressing inflammatory responses triggered by astrocyte activation. (2) Irisin modulates the phosphorylation of AKT and
ERK1/2, resulting in the downregulation of TNF-a and IL-6 mRNA expression. (3) Additionally, Irisin inhibits the activation of the MAPK pathway,
reducing NF-xB activation. In post-stroke depression: (1) Irisin enhances the expression of brain-derived neurotrophic factor (BDNF) and insulin-
like growth factor-1 (IGF-1) in the brain, suppressing inflammatory signalling molecules. (2) Irisin also ameliorates mitochondrial damage, thereby

blocking NLRP3 inflammatory responses. The figure was created using Figdraw.

several studies have investigated the potential of targeting Irisin to
modulate neuroinflammation, emphasising the therapeutic role of
Irisin in neuroinflammation and cerebral haemorrhage [27].

The anti-inflammatory properties of Irisin are associated
with cytokine regulation, exerting anti-inflammatory effects
by activating multiple signalling pathways and enhancing the
anti-inflammatory phenotype of microglial cells [175-177].
In Wang's study, immunofluorescence staining revealed that
Irisin treatment led to a rapid reduction in the number of M1
microglia and a significant increase in the number of M2 mi-
croglia [27]. The administration of Irisin after neurotoxicity is
proposed to expedite the transformation of microglia from a
pro-inflammatory to an anti-inflammatory phenotype. Irisin
promotes microglial polarisation from pro-inflammatory M1
to anti-inflammatory M2 phenotype while also inhibiting the
inflammatory response triggered by the activation of astro-
cytes. Previous research has shown that administering Irisin
contributes to the phosphorylation of AKT and ERK1/2. These
two pathways play a crucial role in neuroprotection and in-
hibit TNF-a and IL-6 mRNA [170]. Irisin’s anti-inflammatory

properties are associated with the inhibition of MAPK path-
way phosphorylation and the reduction in the level of NF-xB
activation [176, 178]. The anti-inflammatory effects of Irisin
are comparable to those of three types of MAPK signalling
inhibitors [179], suggesting that Irisin can play a substantial
role in the regulation of neuroinflammation.

3.2.3 | Post-Stroke Depression

Post-stroke depression (PSD) impacts about one-third of
stroke patients and stands as the most prevalent mood disor-
der among them [180, 181]. Individuals experiencing PSD face
more unfavourable outcomes, including increased functional
impairment and elevated mortality rates [182]. The benefi-
cial effects of exercise on mental health cannot be overlooked
when investigating influences on depression. A study exam-
ining the relationship between exercise and depression dis-
covered that exercise significantly improved depression scale
scores [183]. This improvement in depression is likely medi-
ated through Irisin.
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Animal experiments have demonstrated that the systemic
administration of Irisin led to a positive trend in all three be-
havioural tests (tail suspension, forced swimming and open field
test) in mice with depressive-like symptoms [184]. Pignataro
suggested that this was attributed to the upregulation of the
expression of brain neurotrophic factors, BDNF and insulin-
like growth factor (IGF-1) in the brain [184]. In his study, Tang
investigated the relationship between Irisin and PSD. He con-
cluded that Irisin reversed the NLRP3 inflammatory response
by ameliorating mitochondrial damage under stress, thereby
improving depressive-like behaviour in mice [185]. A follow-up
study involving 1205 stroke patients provided clinical evidence.
The study unveiled that serum Irisin levels were significantly
lower in patients with PSD compared to those without PSD.
Additionally, the Irisin level upon admission was predictive of
the development of PSD after 3months [186] (Figure 8).

3.3 | Perivascular Adipose Tissue

The development of cardiovascular disease may be linked to the
dysfunction of perivascular adipose tissue (PVAT) that occurs
in obese populations, and the presence of PVAT contributes to
the maintenance of vascular functional homeostasis [187, 188].
PVAT is considered the fourth type of fat, distinct from white,
beige and brown fats [188]. It exhibits different phenotypic and
functional characteristics depending on its location [189]. Fiet's
study discovered that patients with myocardial infarction un-
dergo a substantial reduction in perimyocardial PVAT, nega-
tively impacting the heart [190]. In imaging evidence, Lee's study
demonstrated that a larger volume of PVAT on CT images is as-
sociated with a higher prevalence of metabolic syndrome [191].
PVAT can only fulfil its specific beneficial effects if it maintains
a dynamic balance, as suggested by the above evidence.

Regardless of changes in adipose tissue, exercise consistently ex-
erts a stabilising effect on adipose tissue. Exercise has the poten-
tial to reverse arteriolar diastolic abnormalities caused by PVAT
dysfunction and can also partially prevent PVAT inflammation
resulting from immune cell infiltration [192, 193]. Irisin, a myo-
kine involved in metabolic regulation, is a crucial target for pre-
venting and treating metabolic disorders. It plays a vital role in
regulating PVAT. Hou and colleagues investigated whether Irisin
could ameliorate metabolic syndrome. They demonstrated that
aortic anticontractility in mice on a high-fat diet was normalised
following Irisin administration, exerting an ameliorative effect on
endothelial dysfunction. HO-1 blockade reversed this beneficial
effect [194, 195]. These findings suggest that Irisin improves en-
dothelial function by modulating PVAT function.

4 | Discussion

This article concentrates on the multifaceted role of Irisin in car-
diovascular health. The protective effects of Irisin in myocardial
ischemia-reperfusion injury are primarily realised through the
regulation of mitochondrial function. Mitochondria serve as the
primary site of energy production in cardiac cells. Ischemia-
reperfusion injury can impair mitochondrial function, resulting in
subsequent cardiac injury. Irisin intervention markedly decreases
the extent of injury by fostering mitochondrial biogenesis and

preserving mitochondrial integrity, offering substantial protection
to the heart. This mechanism holds significant clinical implica-
tions for diminishing cardiovascular events, including myocardial
infarction. Moreover, HF represents a final pathway in various car-
diac diseases, and the role of Irisin is closely associated with the
enhancement of energy metabolism. Individuals with HF often
experience energy deficiency, and heightened levels of Irisin,
a homeostatic factor of energy metabolism, may serve as a self-
protective mechanism against the progression of HF. While ear-
lier studies indicated an association between elevated serum Irisin
levels and adverse outcomes in HF, recent studies propose that
diminished Irisin levels might indicate unfavourable outcomes in
HF. In addressing this paradox, we suggest that it may be linked
to factors such as the type of HF, comorbidities and the stage of
disease progression. Subsequent studies should concentrate on the
specific regulatory mechanisms of Irisin in the development of HF
to furnish a more comprehensive explanation of its evolving pat-
terns in HF patients. These discrepancies underscore the need for
standardised measurement methods and larger cohort studies to
validate its clinical utility.

Moreover, the role of Irisin in the cerebrovascular context consti-
tutes a key element of this paper. Irisin is considered a novel and
independent prognostic marker for ischaemic stroke. Irisin is
considered a novel independent prognostic marker for ischaemic
stroke. Clinical studies have shown that a decrease in serum
Irisin levels is associated with early adverse functional out-
comes. Additionally, Irisin serves not only as a prognostic factor
in ischaemic stroke but also exhibits protective and therapeutic
effects on ischaemic brain tissue. Treatment with Irisin signifi-
cantly decreased the volume of cerebral infarction and inhibited
neuroinflammation in animal models. This lays an experimen-
tal foundation for Irisin to emerge as a new target for ischaemic
stroke therapy. While there has been comparatively limited re-
search on haemorrhagic stroke, recent findings regarding Irisin's
inhibitory effect on neuroinflammation have spurred additional
investigations in this realm. Neuroinflammation plays a pivotal
role in the repair of nerve tissue following haemorrhagic stroke.
Irisin regulates the anti-inflammatory phenotype of microglia,
preventing an excessive response to neuroinflammation. This
mechanism holds the potential to prevent nerve damage and
facilitate nerve repair. Subsequent studies should further eluci-
date its mechanism of action in humans. Post-stroke depression
is a prevalent mental health issue among stroke patients. The
research on Irisin's antidepressant effects opens up new ave-
nues for investigation in this field. Experimental evidence has
demonstrated that systemic administration of Irisin enhances
behavioural performance in depression-like mice, supporting
the association between exercise and Irisin in mental health.
Clinical studies have indicated that serum Irisin levels are sig-
nificantly lower in patients with PSD compared to non-PSD pa-
tients. This implies that Irisin could be a potential therapeutic
target for PSD, offering new ideas for future interventions.

The primary role of perivascular adipose tissue, serving as a
lipid layer around blood vessels, is to maintain vascular homeo-
stasis. This article underscores an additional crucial role in car-
diovascular health by examining the regulatory effects of Irisin
on PVAT. Specifically, in mice subjected to a high-fat diet, Irisin
treatment enhanced arterial anticontractility and normalised
endothelial function. This implies that Irisin might modulate
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FIGURE 9 | Formulation of the scientific question. The molecular
mechanism of Irisin in cardiovascular diseases has not been elucidat-
ed, and studies in different cardiovascular and cerebrovascular diseases
still need to be explored in depth. There is a close connection among
the muscle- heart-brain, and the mechanism of interaction between the
three needs to be further improved.

PVAT to impact normal vascular function. This statement offers
a new target and direction for future therapies targeting cardio-
vascular diseases associated with obesity.

5 | Challenges and Open Scenarios

The present study still has certain limitations. First, the molecular
mechanisms of Irisin have not been fully elucidated. While it has
been demonstrated that Irisin regulates mitochondrial biogenesis,
anti-inflammatory effects and other pathways, further in-depth
studies are needed to elucidate its detailed signalling pathways
and molecular mechanisms. Moreover, the mechanism of action
of Irisin may vary in different types of cardiovascular diseases, re-
quiring more detailed experimental and human studies for con-
firmation. Additionally, some studies have yielded conflicting
results, especially concerning the association between Irisin and
heart failure. These discrepancies may be influenced by factors
such as study design, sample size and the study population. To
enhance the reliability and reproducibility of future studies, it is
necessary to systematically and comprehensively consider these
factors. Currently, there is a disproportionate emphasis on animal
models and cellular experiments, with relatively limited data from
clinical studies. While animal experiments have provided substan-
tial information about the mechanism of action of Irisin, further
human studies are needed to validate the laboratory results and
ensure more accurate extrapolation to humans.

Concerning the exploration of the correlation between Irisin
and cerebrovascular injury, although several studies have
demonstrated the protective impact of Irisin in ischaemic stroke,
there have been relatively few investigations on haemorrhagic
stroke. A more comprehensive investigation into the mecha-
nism of action of Irisin in various types of stroke could provide

more specific treatment options for different stroke subtypes.
Likewise, this article emphasises the regulatory role of Irisin on
PVAT. However, ongoing research on PVAT is still in its early
stages, and relatively little is known about its specific functions
and regulatory mechanisms. Future scholars may enhance the
discussion regarding the interaction between PVAT and Irisin
to unveil its importance in the entire cerebrovascular system.

Through the review, we found that Irisin has a significant effect
on the improvement of both heart and brain function. While there
is some inextricable relationship between heart status and brain
function, it has been found that the increased chance of develop-
ing depression is causally related to the increased risk of coronary
artery disease [70], and some patients after stroke develop cardiac
abnormalities, and the development of cardiovascular complica-
tions is also the second most common cause of post-stroke mor-
tality [196]. It has recently been mentioned that common diseases
such as stroke, arrhythmias and cardiomyopathies show a com-
plex bidirectional relationship with the brain, in which it is the
brain-cardiac axis, the physiological link between the heart and
the brain, that is manifested [197]. Irisin, as a myokine linking
exercise to organ crosstalk, may modulate this axis by improving
mitochondrial function in both heart and brain. Future studies
should explore whether Irisin mediates exercise-induced neuro-
protection in cardiovascular disease and vice versa (Figure 9).

6 | Conclusion

In summary, this review delivers a comprehensive and in-depth
discussion of the various roles of Irisin in the cardiovascular
field. Through summarising its mechanism of action in diseases
like myocardial injury, heart failure, stroke and PVAT, we have
acquired a more comprehensive understanding of the intricate
regulatory network of this myokine in cardiovascular health.
Future studies should concentrate on advancing the clinical ap-
plication of Irisin in cardiovascular medicine by deepening the
understanding of its molecular mechanism, resolving any con-
troversies in the findings and increasing the volume of clinical
data. This will generate new opportunities for the treatment and
prevention of cardiovascular diseases and contribute signifi-
cantly to human cardiovascular health.
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