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ABSTRACT
Background: Cardiovascular diseases pose a significant challenge to global health, and the role of exercise as a non-
pharmacological intervention has attracted considerable attention. Irisin, a myokine released during exercise, exhibits excellent 
potential in regulating metabolism. Its potential intervention value in metabolic and neurodegenerative diseases has been pre-
liminarily confirmed by correlational studies and animal experiments.
Objective: To reveal the unique role of Irisin in the cardiovascular field and clarify its regulatory mechanisms and clinical ap-
plication prospects in cardiovascular health.
Methods: By comprehensively reviewing existing studies, this paper systematically summarizes the therapeutic effects and 
molecular mechanisms of Irisin in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, myocardial 
ischemia-reperfusion injury, and heart failure) and cerebrovascular diseases (including ischemic stroke, hemorrhagic stroke, and 
post-stroke depression), and further explores its association with perivascular adipose tissue.
Results/Content: Irisin demonstrates multi-dimensional therapeutic potential in the aforementioned cardiovascular and cere-
brovascular diseases. Its mechanisms of action involve multiple aspects such as metabolic regulation, inflammation inhibition, 
and tissue repair. Additionally, it has a close mutual regulatory relationship with perivascular adipose tissue, collectively forming 
a complex regulatory network for cardiovascular health.
Conclusion: This review provides a theoretical basis for the clinical application of Irisin in cardiovascular diseases, not only 
opening up new research and application directions but also further highlighting the unique significance of exercise and Irisin 
in maintaining cardiovascular health.

1   |   Introduction

Cardiovascular–cerebrovascular disease (CCD) poses a sig-
nificant challenge to human health. Globally, it stands as the 
foremost cause of morbidity, disability and mortality [1]. CCDs 

represented by coronary heart disease and stroke share a com-
mon pathological basis of vascular dysfunction. Emerging ev-
idence has highlighted the critical role of energy metabolism 
disorders in this pathological process [2–4]. As a recently discov-
ered regulator of energy metabolism, Irisin has shown potential 
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in vascular protection by modulating mitochondrial function, 
oxidative stress and inflammatory signalling.

In recent years, exercise has been fervently advocated as a substan-
tial non-pharmacological strategy for preventing cardiovascular 
disease. It is regarded as a primary preventive measure that de-
celerates cardiovascular ageing and promotes longevity [5]. From 
a macroscopic perspective, healthcare costs are notably lower for 
cardiovascular disease patients who engage in regular physical 
activity compared to the non-exercising population [6]. At a more 
microscopic level, exercise can inhibit vascular endothelial dys-
function by decreasing levels of soluble intercellular adhesion mol-
ecule-1 (sICAM-1) [7]. Additionally, therapeutic approaches aimed 
at rectifying the imbalance of energy metabolism in mitochondria 
can effectively bolster the neuroprotection of stroke patients [8].

Irisin, a myokine secreted during exercise, plays a crucial role 
in regulating metabolic disorders. Its initial discovery occurred 
in studies focused on white fat browning [9]. Recent studies 
indicate that Irisin is implicated in a range of metabolic and 
neurodegenerative diseases, extending beyond white fat brown-
ing [10–13]. Furthermore, Zhao's study suggests that exercise-
induced Irisin plays a crucial role in maintaining cardiovascular 
health through its contribution to angiogenesis. This potential 
renders it a novel therapeutic target for ischaemic diseases [14]. 
Similarly, a population-controlled study has demonstrated an 
association between lower circulating Irisin levels and higher 
levels of comorbid cardiovascular disease [15]. Overall, Irisin 
serves as a connection between exercise and the amelioration of 
cardiovascular disease, potentially playing a role in pathomech-
anisms and therapeutic options. For this reason, this paper sum-
marises the therapeutic tools and corresponding mechanisms of 
Irisin in cardiovascular and cerebrovascular diseases.

2   |   Structure and Biological Function of Irisin

2.1   |   Structural Characterisation and Conservation 
of Irisin

Irisin was initially discovered by Boström during a study on the 
browning of white fat and was named after the Greek goddess 
of the rainbow, Iris. This factor is produced by the cleavage of 
the precursor protein FNDC5, regulated by PGC-1α [9]. It is in-
teresting to note that FNDC5 mRNA in humans has a different 
translation start codon compared to that in experimental mice. 
Specifically, it has ATA as the translation initiation codon, which 
is less efficient in translation compared to ATG [16]. It is worth 
noting that Raschke questioned whether the ATA start codon 
could efficiently produce Irisin protein, but subsequent studies 
have shown that this mutation remains the main translation 
mode of human FNDC5 [17]. Structurally, the FNDC5 protein 
comprises 209 amino acid residues, including a signal peptide 
(28aa), an FNIII structural domain (93aa), a linker peptide 
(30aa), a hydrophobic transmembrane structural domain (19aa) 
and an intracellular structural domain (39aa). It is worth not-
ing that the signal peptide in humans is 31aa, resulting in the 
FNDC5 protein having 212 amino acid residues [18]. The Irisin 
protein consists of 112 amino acid residues, including the FNIII 
structural domain (93 aa) and part of the transmembrane linker 
peptide (19 aa).

The molecular weights of FNDC5 proteins vary in different 
tissues, possibly attributed to variations in the number of at-
tached oligosaccharides during glycosylation modifications [19]. 
Similarly, Irisin, the secreted segment of the FNDC5 protein, 
possesses two N-glycosylation sites, namely, Asn-7 and Asn-52 
[20]. Nie et al. concluded that the absence of N-glycosylation in 
FNDC5 could enhance the incidence of structural instability 
in the protein and reduce the effective secretion of Irisin [21]. 
Consequently, the molecular weight of Irisin ranges from ap-
proximately 12 to 35 kDa [21]. X-ray crystallography reveals that 
the crystal structure of Irisin closely resembles that of the FNIII 
protein fold. However, in contrast to the FNIII protein fold, the 
Irisin fold lacks association with glycosylation and forms a con-
tinuous intersubunit β-sheet dimer [18]. This type of dimer im-
plies that Irisin is likely to induce spontaneous signalling at the 
cell surface [18].

It is noteworthy that the amino acid sequence of FNDC5/Irisin 
is highly conserved, with the mouse Irisin sequence being fully 
consistent with the human Irisin sequence [18]. This highly con-
served sequence is believed to be associated with the mainte-
nance of basic life functions.

As mentioned by Flori [22] in his article, FNDC5 mRNA is 
widely expressed in various regions of the brain and muscle 
(heart and bone). However, in humans, brown adipose tissue, 
prostate, intestine, pancreas and liver show moderate levels 
of expression. In rats, FNDC5 mRNA levels are very low or 
undetectable in white adipose tissue, lungs, kidneys, thymus, 
spleen, placenta, stomach and liver (Figure 1). We can see that, 
although the sequence of Irisin is highly conserved in the two 
organisms, the expression of FNDC5 mRNA, the precursor pro-
tein of Irisin, is not the same. The secretion of Irisin is a sys-
temic process, and it is difficult to detect the levels in individual 
tissues. However, it is possible to look at FNDC5 mRNA expres-
sion levels by culturing tissues and cell lines [23]. The current 
study differs from the initial study in that Irisin is now widely 
studied not only as a factor related to fat browning and thermo-
genesis but also as a factor underlying energy metabolism in 
the human body. Consequently, Irisin is now extensively stud-
ied not only as a factor associated with fat browning and ther-
mogenesis but also as a factor underlying energy metabolism 
in the human body.

2.2   |   Mode of Secretion of Irisin

The currently more plausible hypothesis within the scientific 
community regarding how exercise releases Irisin is based on 
Bao's view. According to this perspective, acute exercise releases 
Irisin into the bloodstream by promoting the cleavage of FNDC5 
in skeletal muscle. In contrast, chronic exercise increases the 
amount of FNDC5 mRNA in tissues [24]. We summarised the 
two modes of operation of Irisin based on the available evi-
dence to elucidate the relationship between exercise and Irisin 
in Figure 2.

Under normal conditions, the elevation of circulating Irisin 
during acute exercise is intended to counteract the stress mol-
ecules produced by the exercise. In acute exercise, the body ex-
periences stress, disrupting internal environmental homeostasis 
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and energy balance [25, 26]. In this process, FNDC5 in the mus-
cle is cleaved to release Irisin into the bloodstream. During acute 
exercise, FNDC5 in the muscle is cleaved, releasing Irisin into 
the bloodstream. It reaches the organs, activates factors respon-
sible for energy metabolism (such as AMPK and SIRT) and plays 
a role in mitochondria to rapidly fill the ‘energy gap’ [27, 28]. 
Chronic exercise differs from acute exercise solely in the accu-
mulation of FNDC5 mRNA, the precursor to Irisin [24]. It is 
important to note that the accumulation of FNDC5 mRNA is 
not confined to muscle tissue but is also present in other tissues, 
such as the myocardium. The amount of Irisin cleaved during a 
single acute exercise session depends on the amount accumu-
lated during chronic exercise [29–32].

In a diseased state, Irisin functions as a mitochondrial repair 
agent. Mitochondrial dysfunction, induced by disease, is the 
main contributor to the inhibition of energy metabolism in or-
gans. Here, FNDC5, accumulated due to chronic exercise, initi-
ates the cleavage of Irisin. This process enables Irisin to enter the 
bloodstream and circulate through the diseased organ, repairing 
the mitochondria. Irisin promotes mitochondrial kinetic homeo-
stasis [33], sustains autophagy [34] and ameliorates the oxidative 
stress environment [35], contributing to the repair of damaged 
mitochondria.

2.3   |   Irisin's Multiple Functions

PGC-1α is a crucial pathway in energy metabolism, playing a 
significant role in regulating oxidative stress [36, 37]. In cardiac 
metabolism, it acts as an energy regulator and plays a vital role 
in cardioprotection [38]. Notably, Irisin regulated by PGC-1α 

maintains energy homeostasis by modulating mitochondrial 
biogenesis and oxidative stress, a mechanism fully evidenced in 
its involvement in fat browning and cardioprotection [9, 38]. In 
addition to its initially identified role in fat browning [39–43], 
Irisin is involved in bone remodelling through αVβ5 [44] and in 
maintaining glucose homeostasis in the liver [45]. Furthermore, 
Irisin has a unique role in the nervous system [46–53], upregu-
lating the expression level of the neurotrophic factor BDNF and 
promoting synaptic plasticity [54, 55]. Therefore, Bao suggests 
that Irisin could be an ideal therapeutic target for both meta-
bolic and non-metabolic diseases [24]. Current research has 
demonstrated the therapeutic effects of Irisin on other organs 
(lungs [56–58], liver [45, 59–63], bones [64–70], ovaries [71], 
kidneys [72–74], retina [75], heart [30, 31, 76–83]), as well as 
pancreas [84] (Figure 3).

Irisin's association with mitochondria has led to claims that 
it can cure a range of diseases and conditions. Recent studies 
have shown that Irisin activates gene expression related to 
mitochondrial fusion and improves mitochondrial kinetic dys-
function [85, 86]. In cases of myocardial injury, Irisin interven-
tion has been shown to improve cardiac dysfunction caused by 
ischaemia and hypoxia by modulating the ferroptosis pathway 
and the mitochondrial ubiquitin ligase mechanism [87, 88]. The 
heart is a vital organ in the human body, and as a result, it con-
sumes a significant amount of energy. This is reflected in the 
higher number of mitochondria present in the heart compared 
to other organs [89]. Critically, although Irisin is released in 
various organ tissues, circulating Irisin is mainly supplied by 
cardiac and skeletal muscle [90–92]. The large number of mi-
tochondria in the myocardium and the presence of Irisin have 
led the scientific community to believe that Irisin maintains 

FIGURE 1    |    Irisin synthesis via FNDC5 proteolysis and tissue-specific expression levels. Exercise is the main way to produce Irisin, in which the 
FNDC5 protein in the human body possesses 212 amino acid residues. In contrast, the Irisin protein, which consists of the FNIII structural domain 
(93aa) and part of the transmembrane junctional peptide (19aa), has a total of 112aa amino acid residues. The amount of FNDC5 varies from tissue 
to tissue, and Kim's study was the first to sequence FNDC5 in 16 different cells and tissues [23].
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mitochondrial homeostasis, regulating energy metabolism in 
the heart.

3   |   Mechanisms and Effects of Irisin in the 
Treatment of Cardiovascular and Cerebrovascular 
Diseases

3.1   |   Irisin and Coronary Artery Disease

Widely recognised as a crucial factor in improving cardiore-
spiratory fitness, aerobic exercise deserves consideration re-
garding the role of exercise-secreted Irisin. Data from Japan 
indicate a correlation between circulating Irisin levels and var-
ious indicators of health assessment. In a cross-sectional study 
involving 328 Japanese citizens, Inoue discovered a negative 
correlation between circulating Irisin levels and cardiometa-
bolic risk scores, irrespective of gender and age [93]. This find-
ing implies that Irisin may play a significant role in preventing 
heart disease, aligning with the established benefits of exercise 
in enhancing cardiorespiratory function. Alipoor presents a 
different perspective in another cross-sectional study; this re-
search, which recorded Gensini scores in 166 adults, indicated 

that circulating Irisin was not significantly associated with the 
likelihood of developing coronary artery disease [94]. The dis-
crepancy is attributed to variations in research methodology, 
and according to Ou-Yang, the inconsistency in cross-sectional 
study results is linked to differences in the level of measurement 
[95]. Despite the absence of suitable measurement methods, in-
dependent studies have demonstrated a promising therapeutic 
effect of Irisin on coronary artery disease.

3.1.1   |   Atherosclerosis

Atherosclerosis (AS) is a complex arterial pathology characterised 
by systemic inflammation and the aggregation of plaques within 
the arterial wall. It stands as the primary contributor to myocar-
dial infarction and stroke events [96, 97]. The investigation into 
the relationship between Irisin and AS traces back to Sesti's 2014 
cross-sectional study involving 192 white adults. The statistical 
analysis of the study unveiled a positive association between Irisin 
and intima-media thickness (IMT), suggesting that elevated levels 
of circulating Irisin were associated with an increased incidence 
of AS [98]. However, recent studies have contradicted Sesti's find-
ings, suggesting that Irisin levels are lower in patients with AS 

FIGURE 2    |    Two modes of Irisin cleavage. In the normal physiological state, there are two distinct patterns that promote the generation of Irisin. 
First, chronic exercise increases the level of FNDC5 mRNA, with its transcription initiation codon being ATA. This process is associated with an 
increase in FNDC5 expression, which in turn enhances the production of Irisin. Second, acute exercise disrupts the balance between energy input 
and output in the body, triggering the proteolytic cleavage of FNDC5 to generate Irisin. In the context of disease states, Irisin plays a pivotal role in 
ameliorating mitochondrial dysfunction and regulating energy imbalances within various diseased tissues. Its actions are aimed at restoring homeo-
stasis and promoting tissue health. The figure was created using Figdraw.
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[99, 100]. Notably, two independent studies on subclinical AS in 
leukaemia have reported similar findings [101, 102]. In patients 
with this systemic inflammatory disease, serum Irisin levels de-
crease, and there is an increase in IMT [101, 102]. Additionally, 
patients with mid-axial spondyloarthritis exhibit accelerated ath-
erosclerosis in clinical settings, with low Irisin levels hastening 
plaque formation and, consequently, demonstrating a strong cor-
relation with the presence of plaques [103]. Recent evidence sug-
gests that the association between Irisin and AS may be mediated 
through thyroid function and may involve bidirectional regulatory 
mechanisms ([104]). Specifically, thyroid dysfunction is thought to 
directly or indirectly influence the regulation of Irisin, and in turn, 
Irisin may have a regulatory effect on thyroid activity. Of note, 
clinical hypothyroidism and subclinical hypothyroidism (SCH) 
have been identified as independent risk factors for the patho-
genesis of atherosclerosis and cardiovascular disease [105], but 
the currently available data on the relationship between thyroid 
function and Irisin are scarce and present the same problems as 
described previously. Although the results of the earlier studies are 
quite different from the more recent ones, these studies are point-
ing to an expectation that Irisin can be used as an early predictive 
biomarker for AS. However, the use of this biomarker has to be 
demonstrated by more factual evidence of its relevance. In other 
words, its specific association with AS markers such as IMT needs 
to be demonstrated.

Investigating the intrinsic mechanisms through both in  vivo 
and in  vitro studies will enhance the credibility of Irisin as a 
biomarker for AS, as described above. APOE knockout mice 
with FNDC5 overexpression exhibited a significant reduction in 
the area of aortic plaque [106]. This outcome was attributed to 
the treatment of endothelial dysfunction and the suppression of 
vascular inflammation. In Lu's study, Irisin treatment led to a 
reduction in the expression of inflammatory factors, including 
macrophages and T lymphocytes. Additionally, it significantly 
improved endothelial dysfunction by reducing the apoptosis of 
endothelial cells, compared to AS mice treated with saline only 
[107]. Similarly, Shimba demonstrated that the Irisin-dependent 
protein PGC-1α has the ability to decrease the expression lev-
els of VCAM-1 and MCP-1, reduce cellular accumulation on 
vascular endothelial cells and inhibit vascular inflammation 
[108]. Although animal models can offer valuable information 
about AS, a mechanistic understanding of the condition necessi-
tates evidence from relevant in vitro models [109]. Results from 
in vitro experiments revealed that Irisin inhibited apoptosis in 
HUVECs (umbilical vein endothelial cells) and promoted the 
phosphorylation of AMPK and AKT, leading to reduced oxi-
dative stress production [107]. Building upon this foundation, 
Zhang conducted an in-depth study, and the experimental re-
sults indicated that Irisin modulated certain apoptotic factors 
(Bcl-2, Bax and caspase-3) to reduce apoptosis. Moreover, it 

FIGURE 3    |    Role of Irisin in various tissues and experimental subjects. Irisin has been studied in various tissues; this figure shows the role of 
Irisin in each tissue, and it can be seen that Irisin has been studied in the heart and the brain for a large part of the study.
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inhibited the expression of inflammatory genes by suppressing 
the ROS/p38 MAPK/NF-κB signalling pathway, thereby inhib-
iting the expression of inflammatory genes [110]. Additionally, 
in  vitro, Zhang's study unveiled another regulatory pathway, 
indicating that Irisin may also regulate the Akt/mTOR/Nrf2 
pathway. This regulatory mechanism could potentially aid in 
attenuating oxLDL-induced vascular injury [111] (Figure 4).

3.1.2   |   Myocardial Infarction

Myocardial infarction (MI) is a significant cardiovascular event 
resulting from persistent ischaemia caused by the occlusion of 
coronary arteries, leading to myocardial injury and necrosis 
[112]. Exercise is widely recognised as a protective factor against 
cardiovascular events. However, the relationship between exer-
cise and MI is multifaceted. Vigorous physical activity elevates 
the risk of myocardial infarction in individuals who do not en-
gage in regular exercise [113]. Conversely, moderate and regular 
physical activity demonstrates a more favourable cardioprotec-
tive effect [114]. Irisin elucidates this phenomenon at the molec-
ular level.

The relationship between myocardial Irisin levels and adverse 
cardiovascular outcomes has garnered significant attention in 
research exploring the connection between exercise and MI. In 
one of his 3-year follow-up studies, Xie observed that an increase 
in serum Irisin concentrations was associated with an elevated 
risk of adverse cardiovascular outcomes after MI [115]. To in-
vestigate the role of Irisin in the myocardium, the researcher 
conducted animal experiments. Mice were implanted with 
adenovirus-vectored Irisin, leading to enhanced myocardial mi-
tochondrial respiration, increased oxygen consumption rate and 
elevated reactive oxygen species production [80]. Both clinical 
and animal studies suggest that elevated Irisin concentrations 
are counterproductive in the treatment of MI. Notably, exclud-
ing these two studies from the same team, more studies have 
demonstrated that low Irisin levels are associated with adverse 
cardiovascular outcomes. In 2014, Emanuele compared serum 
Irisin levels measured in healthy centenarians, healthy young 
adults and patients with MI. Her results indicated that young 
patients with MI exhibited the lowest serum Irisin levels, even 
lower than those of centenarians [116]. A similar follow-up study 
on adverse cardiovascular events after MI, in contrast to Xie's 
study, revealed that low serum Irisin levels were significantly 

FIGURE 4    |    The role and mechanism played by Irisin in atherosclerosis. The role of Irisin in atherosclerosis is multifaceted and involves sev-
eral key mechanisms. First, Irisin regulates VCAM-1 to initiate leucocyte adhesion and MCP-1 to mediate their migration, jointly suppressing the 
inflammatory cascade to inhibit vascular inflammation and improve endothelial dysfunction. Second, in terms of oxidative stress, Irisin activates 
the AMPK and AKT pathways, leading to a reduction in ROS generation. Finally, in relation to cell apoptosis, Irisin modulates apoptotic factors and 
suppresses the ROS/p38 MAPK/NF-κB signalling pathway. The figure was created using Figdraw.
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associated with such events [117]. Additionally, circulating 
Irisin levels were linked to a high degree of vascular stenosis in 
patients with MI [118]. Consequently, Irisin has been recognised 
in recent years as a novel biomarker for predicting MI, compara-
ble to CK-MB [118–120].

Irisin plays a prominent role in contributing to recovery after 
myocardial infarction by exerting significant effects in anti-
inflammation, antioxidative stress and anti-apoptosis [121]. 
Cardiomyocyte loss and energy imbalance during acute MI 
are closely associated with apoptosis induced by lipotoxicity. 
Therefore, Moscoso utilised H9C2 cardiomyocytes to examine 
the protective effects of Irisin in the context of MI. The experi-
mental results demonstrated that Irisin treatment of H9C2 cells 
counteracted apoptosis induced by lipotoxicity and hypoxia. 
This effect was closely related to the activation of the Akt path-
way [122]. Similarly, Wu's study demonstrated that aerobic exer-
cise after MI increased Irisin expression and decreased ALCAT1 
expression, thereby attenuating oxidative stress and apoptosis 
[123]. ALCAT1, or acylprotein thioesterase 1, is an enzyme that 

participates in oxidative stress regulation by catalysing the deac-
ylation of palmitoylated proteins, and its abnormally high ex-
pression is closely associated with cell apoptosis. Another study 
supported the same idea that aerobic exercise reversed protein 
degradation and apoptosis after MI through upregulation of 
Irisin and inhibition of ALCAT1 [124]. In addition to improv-
ing oxidative stress pathways, Irisin may treat MI by enhancing 
mitochondrial homeostasis. Hypoxia leads to cellular ferro-
ptosis, increased iron metabolism and the onset of mitochon-
drial dysfunction. In contrast, Irisin-treated cardiomyocytes 
exhibited reduced ferroptosis and reversed hypoxia-induced 
mitochondrial dysfunction [87]. Cao has explored this mecha-
nistically, suggesting that Irisin activates Nrf2/HO-1, thereby 
reducing both ferroptosis and mitochondrial damage [87]. Irisin 
also plays a distinct role in mitochondrial autophagy. Li demon-
strated that resistance to exercise is essential for the activation 
of the PINK1/Parkin-LC3/P62 pathway by Irisin/FNDC5, en-
hancing mitochondrial autophagy [35]. Additionally, it has been 
suggested that OPA1 plays a role in the Irisin-regulated auto-
phagy pathway, consistent with Xin's view [125]. Furthermore, 

FIGURE 5    |    The role and mechanism played by Irisin in myocardial infarction. The role of Irisin in myocardial infarction is mediated through 
several distinct mechanisms. First, Irisin suppresses the expression of ALCAT1 factor by activating the Akt signalling pathway, thereby mitigating 
protein degradation and cellular apoptosis. Second, Irisin activates the Nrf2/HO-1 pathway, leading to reduced ferroptosis and attenuated mito-
chondrial damage. Additionally, Irisin enhances mitochondrial autophagy through the activation of the PINK1/Parkin-LC3/P62 pathway. Finally, 
Irisin promotes angiogenesis by increasing the number of mesenchymal stem cells (MSCs) and phosphorylating ERK. The figure was created using 
Figdraw.
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Irisin promotes angiogenesis via MSCs for the treatment of MI 
[126, 127]. Irisin treatment also significantly increased the phos-
phorylation of ERK, contributing to angiogenesis, and signifi-
cantly improved both infarct size and myocardial fibrosis after 
MI [128]. Figure 5 summarises the mechanism of action of Irisin 
in MI.

3.1.3   |   Cardiac Ischaemia-Reperfusion Injury

Following a myocardial infarction, surgical intervention is 
commonly utilised to achieve myocardial reperfusion. This 
constitutes the most effective strategy for reducing the size of 
the infarction and enhancing clinical outcomes. However, the 
myocardium that has experienced ischaemia is susceptible to 
ischaemia–reperfusion injury (IR) upon restoration of blood 
flow [129, 130]. IR impairs the cardiac regulatory response 
and induces metabolic abnormalities in cardiomyocytes, 
including oxidative stress, systemic inflammation, mito-
chondrial homeostasis disorders and an imbalance in iron me-
tabolism [131]. Recent literature has shown that Irisin exerts a 
beneficial therapeutic effect on IR. IR frequently occurs after 
vascular perforator flap transplantation, resulting in surgical 
failure. Zhao administered continuous injections of Irisin into 
the tail vein of rats for 3 days before vascular clamping of the 
perforator valve to observe changes in the area of flap sur-
vival. The results indicated a significantly larger area of flap 
survival in rats treated with Irisin compared to control rats, 
along with a higher density of microvessels [132]. Similarly, 
Wang's study demonstrated a significant improvement in 
ventricular function after perfusion in ischaemic hearts pre-
treated with Irisin [133]. Further investigation into the in-
trinsic mechanisms by which Irisin improves myocardial IR 
revealed its main effects in improving mitochondrial dysfunc-
tion, regulating endoplasmic reticulum (ER) stress and reduc-
ing inflammatory responses.

A study was conducted on H9C2 cardiomyoblasts to investigate 
the effects of pretreatment with Irisin. The study found that 
Irisin significantly increased SOD-1 and p38 phosphorylation, 
indicating its role in inhibiting oxidative stress and protecting 
mitochondrial function [133]. This finding is supported by an-
other study conducted by Wang, demonstrating that Irisin in-
tervention restored impaired SOD activity  [134]. Interestingly, 
this study also co-localised Irisin with mitochondria, and the re-
sults suggested a pattern of overlap between Irisin and Cox IV (a 
mitochondrial marker) [134]. Irisin may improve mitochondrial 
function by ameliorating oxidative stress pathways and may also 
be involved in regulation through the autophagy pathway. In a 
study, rats were pretreated with Irisin for 1 week before under-
going IR surgery, and mitochondrial autophagy proteins were 
measured 24 h after perfusion. The study found that the group 
treated with Irisin exhibited a significant increase in the levels 
of PINK3 and Parkin proteins [135]. In a mouse model of dia-
betic myocardial ischaemia, Irisin exhibited favourable thera-
peutic effects. Xin observed that treatment with Irisin improved 
the compromised AMPK pathway, enhancing mitochondrial 
potential and promoting mitochondria-associated cell survival 
[136]. Additionally, Irisin played a crucial role in alleviating ER 
stress, a significant pathway in the treatment of myocardial IR. 
Pretreatment with Irisin resulted in decreased expression of 

stress-related proteins in the ER, including GRP78 and CHOP 
[137]. Lu's experiments also confirmed this, showing that Irisin 
intervention reduced the already elevated levels of IRE1α pro-
tein in IR [88]. In myocardial IR, NLRP3 inflammatory vesicles 
can trigger endothelial dysfunction. Xin's study demonstrated 
that Irisin reduced the activation of NLRP3 in diabetic myocar-
dial IR, thereby mitigating cellular damage [136].

The above evidence suggests that Irisin may exert beneficial 
effects in modulating myocardial IR, primarily by preserving 
mitochondrial function, ameliorating ER stress and alleviating 
inflammatory pathways (Figure 6). Interestingly, a recent study 
by Liu investigated the gut–heart axis, revealing a significant 
association between myocardial IR and gut dysbiosis. Treatment 
with Irisin reduced the abundance of Actinobacillus flora and 
increased the abundance of the thick-walled bacteria phylum, 
thereby reversing gut dysbiosis to an extent that improved myo-
cardial IR [83].

3.1.4   |   Heart Failure

Heart failure (HF) is a prevalent end-stage manifestation of 
various cardiac diseases, often accompanied by complex comor-
bidities [138, 139]. Studies indicate that, in developed countries, 
the prevalence of HF ranges from 1% to 2% [140]. In addition, 
34% of hypertensive patients suffer from sarcopenia [140], adult 
sarcopenic patients have a higher chance of developing chronic 
heart failure [141] and sarcopenia can also lead to other comor-
bidities related to non-alcoholic fatty liver disease, T2DM, obe-
sity, chronic liver disease and cancer, which have been shown 
to be associated with cardiovascular disease [142]. Could allevi-
ating sarcopenia reduce the impact on cardiovascular disease? 
Circulating levels of Irisin, a biomarker predictive of sarcope-
nia, are of research importance [143]. The societal burden of 
HF is substantial. Energy deficiency emerges as a pivotal factor 
in HF development and is linked to diminished mitochondrial 
biogenesis and function [144]. Morphologically, it is evident that 
mitochondria display abnormal volume numbers and struc-
tural integrity loss [145]. Irisin, a pivotal myokine for enhancing 
energy metabolism, is abundantly present in the myocardium 
[146]. Consequently, numerous scholars have investigated the 
correlation between Irisin and HF.

In 2012, Lecker et al. conducted an initial investigation into the 
correlation between Irisin expression and HF. The study com-
pared the aerobic exercise capacity of individuals with HF and 
discovered that FNDC5 expression in skeletal muscle was sig-
nificantly higher in those with elevated aerobic exercise capacity 
[147]. Following this, Matsuo extended his research by demon-
strating a substantial decrease in FNDC5 and Irisin levels in 
the skeletal muscle of HF rats. He suggested that this reduction 
may be linked to an increase in inflammatory factors such as 
TNF-α and angiotensin II [148]. These trials have significantly 
influenced the amelioration of exercise intolerance symptoms in 
patients with heart failure and have provided valuable insights. 
Crosstalk between peripheral and cardiac organs contributes to 
responding to the presence or absence of abnormal lesions in 
cardiac organs. A subsequent investigation revealed that serum 
Irisin can serve as a predictive biomarker for all-cause mortal-
ity in patients with acute heart failure [149]. Kalkan's study also 
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demonstrated similar findings, revealing significantly higher 
serum Irisin levels in HF patients with cardiac cachexia com-
pared to controls [150]. However, recent studies have yielded 
conflicting results. El-Mottaleb found lower serum Irisin lev-
els in patients with concomitant myocardial infarction and HF 
[151]. Additionally, the analysis revealed a positive correlation 
between serum Irisin levels, ejection fraction and HDL-C [151]. 
Currently, it has been found that Irisin levels in patients with 
heart failure are negatively correlated with high troponin I, CK-
MB, tumour necrosis factor (TNF), total cholesterol, low-density 
lipoprotein cholesterol and triglyceride levels. In contrast, it 
is positively correlated with left ventricular ejection fraction 
(LVEF) and high-density lipoprotein cholesterol levels [152]. In 
agreement with this, all three of Berezin's studies on the associa-
tion between serum Irisin and HF demonstrated that, in patients 
with chronic HF, acute HF or HF with preserved ejection frac-
tion, circulating Irisin levels were significantly lower in these 
patients than in the corresponding control group [153–155]. It is 

important to note that studies suggesting a positive association 
between elevated circulating Irisin levels and the onset of HF 
were published earlier. Irisin is a factor in maintaining energy 
metabolism homeostasis, as demonstrated in our earlier re-
search. In the later stages of the condition, organs and tissues re-
lease Irisin to sustain energy balance, resulting in elevated levels 
consistent with imaging evidence [156].

Irisin can function as a biomarker for heart failure and holds po-
tential therapeutic applications. Peng employed H9C2 cardiomy-
ocytes to simulate oxidative stress injury and treated them with 
Irisin. The results demonstrated that Irisin alleviated apoptosis 
and reduced reactive oxygen species (ROS) in H9C2 cells. This 
effect was mediated by the upregulation of miRNAs [157], which 
play a crucial role in the development of cardiac diseases, includ-
ing HF [158]. Similarly, at the cellular level, Sundarrajan's study 
concluded that the knockdown of Irisin in zebrafish results in a 
reduction in PGC-1α, troponin C and troponin T2D [159]. The 

FIGURE 6    |    The role and mechanism played by Irisin in myocardial ischaemia–reperfusion. The role of Irisin in myocardial ischemia can be 
elucidated through three primary mechanisms. First, in ER stress, Irisin suppresses the expression of ER stress-related proteins, including GRP78, 
CHOP and IRE1α. Second, in mitochondrial dysfunction, Irisin activates the AMPK pathway, promoting the phosphorylation of SOD-1 and p38, thus 
mitigating oxidative stress. Additionally, Irisin upregulates the expression of PINK3 and Parkin proteins, leading to the enhancement of mitophagy. 
Finally, in cellular inflammation, Irisin inhibits the activation of NLRP3, thereby alleviating inflammation caused by cellular injury. The figure was 
created using Figdraw.
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study also evaluated the cardiac function of zebrafish following 
Irisin intervention. Ultrasound imaging techniques revealed 
that the administration of Irisin increased the heart's diastolic 
volume and cardiac output [159]. To observe the protective ef-
fect of Irisin on cardiac hypertrophy, Li conducted animal ex-
periments using FNDC5 knockout mice and FNDC5 transgenic 
mice. The study revealed that the extent of cardiac hypertrophy 
injury was lower in FNDC5 transgenic mice than in FNDC5 
knockout mice [160]. Subsequent studies have demonstrated 
that the mechanism of cardioprotection by Irisin involves the 
activation of the AMPK–ULK1 pathway, inducing protective au-
tophagy [161] (Figure  7). Additionally, two population studies 
have suggested that the protective effect of Irisin is associated 
with the modulation of oxidative stress [162, 163].

3.2   |   Irisin and Cerebrovascular Injury

Cerebrovascular disease, commonly referred to as ‘stroke’, 
manifests as a clinical syndrome characterised by the depri-
vation of blood flow to the brain due to the occlusion or rup-
ture of cerebral blood vessels [164]. Consequently, strokes are 
categorised as either ischemic or haemorrhagic [165]. Irisin, a 

novel myokine, has garnered significant attention in neurosci-
ence research over recent years, particularly in the context of 
diseases like Alzheimer's disease and diabetic mild cognitive 
impairment (Figure 8).

3.2.1   |   Ischemic Stroke

According to Tu's statement following a comprehensive long-
term follow-up study involving 1530 Chinese patients with 
ischemic stroke [166], Irisin emerges as an independent prog-
nostic marker for ischemic stroke. The study sought to assess 
the predictive value of serum Irisin levels and NIHSS stroke 
scores concerning functional outcomes and mortality in pa-
tients with ischemic stroke [166]. Similar conclusions were 
drawn in Wu's study involving Chinese ischemic stroke pa-
tients [167]. In a separate observational study conducted in 
Japan, researchers explored the relationship between serum 
Irisin levels and cerebral small vessel disease, a condition 
associated with stroke. The findings indicated that elevated 
Irisin levels were linked to a diminished burden of cerebral 
small vessel disease in healthy men and hinted at the potential 
for intraluminal infarction [168]. These clinical studies under-
score the potential of Irisin levels as a novel and dependable 
prognostic factor for ischemic stroke.

Irisin serves not only as a prognostic factor in ischemic stroke 
but also exhibits protective and therapeutic effects on ischemic 
brain tissue. Nerve cells are highly susceptible to changes in 
energy supply during cerebral ischemia, leading to a cascade of 
pathophysiological processes [169]. The presence of Irisin has 
been demonstrated to exert a protective effect on nerve cells. 
In the MCAO mouse model, Irisin treatment significantly de-
creased the cerebral infarction volume and suppressed neu-
roinflammation [170]. In  vitro studies further revealed that 
the targeted inhibition of the AKT and ERK1/2 pathways re-
versed the neuroprotective effects of Irisin [170]. Peng's study 
unveiled the inhibitory impact of Irisin on ROS-NLRP05 using 
an oxygen–glucose deprivation model, consequently reducing 
neuronal damage [171]. In Liu's study, Irisin treatment proved 
effective in reducing apoptosis levels in the MCAO model 
by regulating mitochondria-associated kinetic proteins and 
apoptosis-associated proteins [85]. Additionally, Irisin dimin-
ishes ROS generation and alleviates oxidative stress injury by 
activating the PI3K/AKT/mTOR signalling pathway [85].

3.2.2   |   Haemorrhagic Stroke

Haemorrhagic stroke (HS) is a severe and often fatal subtype of 
stroke typically caused by various factors leading to the rupture of 
cerebral blood vessels. This rupture results in haematomas, which 
compress the surrounding brain tissue, leading to increased in-
tracranial pressure that impacts neurological function [172, 173]. 
In haemorrhagic stroke, blood enters the brain parenchyma, re-
leasing numerous erythrocytes and plasma components into the 
surrounding tissues. This process activates immune cells and 
neuroglial cells, leading to neuroinflammation [174]. The neuroin-
flammatory response is essential for repairing neural tissues after 
haemorrhagic stroke. However, uncontrolled neuroinflammation 
can result in more severe neurological damage. In recent years, 

FIGURE 7    |    The role and mechanism played by Irisin in heart fail-
ure. Irisin plays a pivotal role in augmenting cardiac output in heart 
failure through three distinct mechanisms. First, Irisin upregulates 
miRNAs, resulting in the reduction of ROS production and subsequent 
attenuation of apoptosis. Second, Irisin promotes the upregulation of 
PGC-1α, troponin C and troponin T2D, thereby enhancing myocardial 
function. Finally, Irisin activates the AMPK-ULK1 signalling pathway, 
leading to the induction of protective autophagy. The figure was created 
using Figdraw.
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several studies have investigated the potential of targeting Irisin to 
modulate neuroinflammation, emphasising the therapeutic role of 
Irisin in neuroinflammation and cerebral haemorrhage [27].

The anti-inflammatory properties of Irisin are associated 
with cytokine regulation, exerting anti-inflammatory effects 
by activating multiple signalling pathways and enhancing the 
anti-inflammatory phenotype of microglial cells [175–177]. 
In Wang's study, immunofluorescence staining revealed that 
Irisin treatment led to a rapid reduction in the number of M1 
microglia and a significant increase in the number of M2 mi-
croglia [27]. The administration of Irisin after neurotoxicity is 
proposed to expedite the transformation of microglia from a 
pro-inflammatory to an anti-inflammatory phenotype. Irisin 
promotes microglial polarisation from pro-inflammatory M1 
to anti-inflammatory M2 phenotype while also inhibiting the 
inflammatory response triggered by the activation of astro-
cytes. Previous research has shown that administering Irisin 
contributes to the phosphorylation of AKT and ERK1/2. These 
two pathways play a crucial role in neuroprotection and in-
hibit TNF-α and IL-6 mRNA [170]. Irisin's anti-inflammatory 

properties are associated with the inhibition of MAPK path-
way phosphorylation and the reduction in the level of NF-κB 
activation [176, 178]. The anti-inflammatory effects of Irisin 
are comparable to those of three types of MAPK signalling 
inhibitors [179], suggesting that Irisin can play a substantial 
role in the regulation of neuroinflammation.

3.2.3   |   Post-Stroke Depression

Post-stroke depression (PSD) impacts about one-third of 
stroke patients and stands as the most prevalent mood disor-
der among them [180, 181]. Individuals experiencing PSD face 
more unfavourable outcomes, including increased functional 
impairment and elevated mortality rates [182]. The benefi-
cial effects of exercise on mental health cannot be overlooked 
when investigating influences on depression. A study exam-
ining the relationship between exercise and depression dis-
covered that exercise significantly improved depression scale 
scores [183]. This improvement in depression is likely medi-
ated through Irisin.

FIGURE 8    |    The role and mechanisms played by Irisin in cerebrovascular injury and post-stroke depression. In ischaemic stroke: (1) Irisin pre-
serves mitochondrial homeostasis by regulating mitochondrial dynamics proteins, thereby suppressing cellular apoptosis. (2) Irisin inhibits ROS-
NLRP3 activation, mitigating neuronal damage. (3) By activating the PI3K/AKT/mTOR signalling pathway, Irisin attenuates ROS production and 
alleviates oxidative stress-induced neuronal injury. In haemorrhagic stroke: (1) Irisin promotes the transition of microglia from the M1 phenotype 
to the M2 phenotype, suppressing inflammatory responses triggered by astrocyte activation. (2) Irisin modulates the phosphorylation of AKT and 
ERK1/2, resulting in the downregulation of TNF-α and IL-6 mRNA expression. (3) Additionally, Irisin inhibits the activation of the MAPK pathway, 
reducing NF-κB activation. In post-stroke depression: (1) Irisin enhances the expression of brain-derived neurotrophic factor (BDNF) and insulin-
like growth factor-1 (IGF-1) in the brain, suppressing inflammatory signalling molecules. (2) Irisin also ameliorates mitochondrial damage, thereby 
blocking NLRP3 inflammatory responses. The figure was created using Figdraw.
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Animal experiments have demonstrated that the systemic 
administration of Irisin led to a positive trend in all three be-
havioural tests (tail suspension, forced swimming and open field 
test) in mice with depressive-like symptoms [184]. Pignataro 
suggested that this was attributed to the upregulation of the 
expression of brain neurotrophic factors, BDNF and insulin-
like growth factor (IGF-1) in the brain [184]. In his study, Tang 
investigated the relationship between Irisin and PSD. He con-
cluded that Irisin reversed the NLRP3 inflammatory response 
by ameliorating mitochondrial damage under stress, thereby 
improving depressive-like behaviour in mice [185]. A follow-up 
study involving 1205 stroke patients provided clinical evidence. 
The study unveiled that serum Irisin levels were significantly 
lower in patients with PSD compared to those without PSD. 
Additionally, the Irisin level upon admission was predictive of 
the development of PSD after 3 months [186] (Figure 8).

3.3   |   Perivascular Adipose Tissue

The development of cardiovascular disease may be linked to the 
dysfunction of perivascular adipose tissue (PVAT) that occurs 
in obese populations, and the presence of PVAT contributes to 
the maintenance of vascular functional homeostasis [187, 188]. 
PVAT is considered the fourth type of fat, distinct from white, 
beige and brown fats [188]. It exhibits different phenotypic and 
functional characteristics depending on its location [189]. Fiet's 
study discovered that patients with myocardial infarction un-
dergo a substantial reduction in perimyocardial PVAT, nega-
tively impacting the heart [190]. In imaging evidence, Lee's study 
demonstrated that a larger volume of PVAT on CT images is as-
sociated with a higher prevalence of metabolic syndrome [191]. 
PVAT can only fulfil its specific beneficial effects if it maintains 
a dynamic balance, as suggested by the above evidence.

Regardless of changes in adipose tissue, exercise consistently ex-
erts a stabilising effect on adipose tissue. Exercise has the poten-
tial to reverse arteriolar diastolic abnormalities caused by PVAT 
dysfunction and can also partially prevent PVAT inflammation 
resulting from immune cell infiltration [192, 193]. Irisin, a myo-
kine involved in metabolic regulation, is a crucial target for pre-
venting and treating metabolic disorders. It plays a vital role in 
regulating PVAT. Hou and colleagues investigated whether Irisin 
could ameliorate metabolic syndrome. They demonstrated that 
aortic anticontractility in mice on a high-fat diet was normalised 
following Irisin administration, exerting an ameliorative effect on 
endothelial dysfunction. HO-1 blockade reversed this beneficial 
effect [194, 195]. These findings suggest that Irisin improves en-
dothelial function by modulating PVAT function.

4   |   Discussion

This article concentrates on the multifaceted role of Irisin in car-
diovascular health. The protective effects of Irisin in myocardial 
ischemia–reperfusion injury are primarily realised through the 
regulation of mitochondrial function. Mitochondria serve as the 
primary site of energy production in cardiac cells. Ischemia–
reperfusion injury can impair mitochondrial function, resulting in 
subsequent cardiac injury. Irisin intervention markedly decreases 
the extent of injury by fostering mitochondrial biogenesis and 

preserving mitochondrial integrity, offering substantial protection 
to the heart. This mechanism holds significant clinical implica-
tions for diminishing cardiovascular events, including myocardial 
infarction. Moreover, HF represents a final pathway in various car-
diac diseases, and the role of Irisin is closely associated with the 
enhancement of energy metabolism. Individuals with HF often 
experience energy deficiency, and heightened levels of Irisin, 
a homeostatic factor of energy metabolism, may serve as a self-
protective mechanism against the progression of HF. While ear-
lier studies indicated an association between elevated serum Irisin 
levels and adverse outcomes in HF, recent studies propose that 
diminished Irisin levels might indicate unfavourable outcomes in 
HF. In addressing this paradox, we suggest that it may be linked 
to factors such as the type of HF, comorbidities and the stage of 
disease progression. Subsequent studies should concentrate on the 
specific regulatory mechanisms of Irisin in the development of HF 
to furnish a more comprehensive explanation of its evolving pat-
terns in HF patients. These discrepancies underscore the need for 
standardised measurement methods and larger cohort studies to 
validate its clinical utility.

Moreover, the role of Irisin in the cerebrovascular context consti-
tutes a key element of this paper. Irisin is considered a novel and 
independent prognostic marker for ischaemic stroke. Irisin is 
considered a novel independent prognostic marker for ischaemic 
stroke. Clinical studies have shown that a decrease in serum 
Irisin levels is associated with early adverse functional out-
comes. Additionally, Irisin serves not only as a prognostic factor 
in ischaemic stroke but also exhibits protective and therapeutic 
effects on ischaemic brain tissue. Treatment with Irisin signifi-
cantly decreased the volume of cerebral infarction and inhibited 
neuroinflammation in animal models. This lays an experimen-
tal foundation for Irisin to emerge as a new target for ischaemic 
stroke therapy. While there has been comparatively limited re-
search on haemorrhagic stroke, recent findings regarding Irisin's 
inhibitory effect on neuroinflammation have spurred additional 
investigations in this realm. Neuroinflammation plays a pivotal 
role in the repair of nerve tissue following haemorrhagic stroke. 
Irisin regulates the anti-inflammatory phenotype of microglia, 
preventing an excessive response to neuroinflammation. This 
mechanism holds the potential to prevent nerve damage and 
facilitate nerve repair. Subsequent studies should further eluci-
date its mechanism of action in humans. Post-stroke depression 
is a prevalent mental health issue among stroke patients. The 
research on Irisin's antidepressant effects opens up new ave-
nues for investigation in this field. Experimental evidence has 
demonstrated that systemic administration of Irisin enhances 
behavioural performance in depression-like mice, supporting 
the association between exercise and Irisin in mental health. 
Clinical studies have indicated that serum Irisin levels are sig-
nificantly lower in patients with PSD compared to non-PSD pa-
tients. This implies that Irisin could be a potential therapeutic 
target for PSD, offering new ideas for future interventions.

The primary role of perivascular adipose tissue, serving as a 
lipid layer around blood vessels, is to maintain vascular homeo-
stasis. This article underscores an additional crucial role in car-
diovascular health by examining the regulatory effects of Irisin 
on PVAT. Specifically, in mice subjected to a high-fat diet, Irisin 
treatment enhanced arterial anticontractility and normalised 
endothelial function. This implies that Irisin might modulate 
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PVAT to impact normal vascular function. This statement offers 
a new target and direction for future therapies targeting cardio-
vascular diseases associated with obesity.

5   |   Challenges and Open Scenarios

The present study still has certain limitations. First, the molecular 
mechanisms of Irisin have not been fully elucidated. While it has 
been demonstrated that Irisin regulates mitochondrial biogenesis, 
anti-inflammatory effects and other pathways, further in-depth 
studies are needed to elucidate its detailed signalling pathways 
and molecular mechanisms. Moreover, the mechanism of action 
of Irisin may vary in different types of cardiovascular diseases, re-
quiring more detailed experimental and human studies for con-
firmation. Additionally, some studies have yielded conflicting 
results, especially concerning the association between Irisin and 
heart failure. These discrepancies may be influenced by factors 
such as study design, sample size and the study population. To 
enhance the reliability and reproducibility of future studies, it is 
necessary to systematically and comprehensively consider these 
factors. Currently, there is a disproportionate emphasis on animal 
models and cellular experiments, with relatively limited data from 
clinical studies. While animal experiments have provided substan-
tial information about the mechanism of action of Irisin, further 
human studies are needed to validate the laboratory results and 
ensure more accurate extrapolation to humans.

Concerning the exploration of the correlation between Irisin 
and cerebrovascular injury, although several studies have 
demonstrated the protective impact of Irisin in ischaemic stroke, 
there have been relatively few investigations on haemorrhagic 
stroke. A more comprehensive investigation into the mecha-
nism of action of Irisin in various types of stroke could provide 

more specific treatment options for different stroke subtypes. 
Likewise, this article emphasises the regulatory role of Irisin on 
PVAT. However, ongoing research on PVAT is still in its early 
stages, and relatively little is known about its specific functions 
and regulatory mechanisms. Future scholars may enhance the 
discussion regarding the interaction between PVAT and Irisin 
to unveil its importance in the entire cerebrovascular system.

Through the review, we found that Irisin has a significant effect 
on the improvement of both heart and brain function. While there 
is some inextricable relationship between heart status and brain 
function, it has been found that the increased chance of develop-
ing depression is causally related to the increased risk of coronary 
artery disease [70], and some patients after stroke develop cardiac 
abnormalities, and the development of cardiovascular complica-
tions is also the second most common cause of post-stroke mor-
tality [196]. It has recently been mentioned that common diseases 
such as stroke, arrhythmias and cardiomyopathies show a com-
plex bidirectional relationship with the brain, in which it is the 
brain–cardiac axis, the physiological link between the heart and 
the brain, that is manifested [197]. Irisin, as a myokine linking 
exercise to organ crosstalk, may modulate this axis by improving 
mitochondrial function in both heart and brain. Future studies 
should explore whether Irisin mediates exercise-induced neuro-
protection in cardiovascular disease and vice versa (Figure 9).

6   |   Conclusion

In summary, this review delivers a comprehensive and in-depth 
discussion of the various roles of Irisin in the cardiovascular 
field. Through summarising its mechanism of action in diseases 
like myocardial injury, heart failure, stroke and PVAT, we have 
acquired a more comprehensive understanding of the intricate 
regulatory network of this myokine in cardiovascular health. 
Future studies should concentrate on advancing the clinical ap-
plication of Irisin in cardiovascular medicine by deepening the 
understanding of its molecular mechanism, resolving any con-
troversies in the findings and increasing the volume of clinical 
data. This will generate new opportunities for the treatment and 
prevention of cardiovascular diseases and contribute signifi-
cantly to human cardiovascular health.
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FIGURE 9    |    Formulation of the scientific question. The molecular 
mechanism of Irisin in cardiovascular diseases has not been elucidat-
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