ORIGINAL ARTICLE

Cardiovascular and peripheral factors affecting the decay of maximal oxygen uptake across the spectrum of age in humans

Carlo Capelli¹ • G. Ferretti² • P. E. di Prampero³ • E. Tam⁴ •

Received: 28 May 2025 / Accepted: 9 October 2025 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract

Purpose Maximal oxygen uptake ($\dot{V}O_{2max}$) decays with aging due to decreased maximal cardiac output (\dot{Q}_{max}) and the development of progressive sarcopenia and mitochondrial dysfunctions. The study aimed to develop a quantitative analysis of central and peripheral factors in eliciting the observed progressive drop of $\dot{V}O_{2max}$ across the spectrum of ages ranging from about 30 yy to 85–90 yy.

Methods We applied to $\dot{V}O_{2max}$, \dot{Q}_{max} , and maximal oxygen cardiovascular delivery (\dot{Q}_aO_{2max}) values obtained from literature, a multifactorial model of $\dot{V}O_{2max}$ limitation describing the progressive drop of the PO_2 along the pathway from ambient air to mitochondria composed of several steps in series, each of them considered as a resistance (R_i) that must be overcome by a pressure gradient (ΔP_i). The proposed analysis allowed us to estimate: (i) the maximal oxygen extraction coefficient ($O_{2ext. max}$) and (ii) the changes of the peripheral resistance (R_p) hindering O_2 muscular utilization.

Results $O_{2\text{ext, max}}$ progressively decays from 0.80 at 20 yy to 0.60 at 75–80 yy; R_p almost doubles over the same interval of inspected ages.

Conclusions The analysis implemented using data published in the literature suggests that the progressive increase of R_p remarkably contributes to the observed gradual decay of $\dot{V}O_{2max}$ observed with aging, perhaps more than the progressive drop in the maximal cardiovascular transport of oxygen.

Keywords Aging · Maximal aerobic power · Maximal oxygen delivery · Peripheral gas exchanges

		$\begin{array}{c} \textbf{Abbreviations} \\ C_a O_2 \end{array}$	Arterial concentration of O ₂
		$(\operatorname{Ca-C} \bar{v})_{\mathrm{O2max}}$	Maximal artero-mixed venous difference in O ₂ concentration
		$\mathrm{F}_{\mathcal{Q}}$	Fractional limitation to $\dot{V}O_{2max}$ imposed by cardiovascular O_2 flow
Communicated by Stephen Ives		\mathbf{F}_{p}	Fractional limitation to $\dot{V}O_{2max}$ imposed by the peripheral resistance to O_2 diffu-
⊠ Carlo Capelli			sion and utilization
carlo.capelli@unii	nunimi.it	O _{2ext, max}	Maximal oxygen extraction coefficient
	of Pathophysiology and Transplantation, Section y, University of Milano, Via L. Mangiagalli 32, 3, Italy	$\dot{ ext{Q}}_{ ext{max}}$ $\dot{ ext{Q}}_{ ext{a}} ext{O}_{2 ext{max}}$ R_p	Maximal cardiac output Maximal O_2 cardiovascualr transport The peripheral resistance limiting $\dot{V}O_{2max}$
-	of Molecular and Translational Medicine, Brescia, Viale Europa 11, Brescia 25123, Italy	R_{Q}^{r}	The cardiovascular resistance limiting \dot{V} O_{2max}
Department of Udine 33100,	of Medicine, University of Udine, P.le Kolbe, 3, Italy	$\begin{array}{c} {\rm S_aO_2} \\ {\rm \dot{V}O_{2max}} \end{array}$	Arterial oxygen saturation Maximal oxygen uptake
4 Section of Mo	ovement Sciences, Department of Neuroscience,		

VeronaVia F. Casorati, 43, 37131, Italy

Biomedicine and Movement Sciences, University of Verona,

Introduction

 $m VO_{2max}$ decays with aging (Aspenes et al. 2011; Åstrand et al. 1973; Buskirk and Hodgson 1987; Marti and Howald 1990; Mc Guire et al., 2001, Robinson 1938; Robinson et al. 1975; Rogers et al. 1990; Talbot et al. 2000; Trappe et al. 1996), with athletes keeping a higher $\rm \dot{V}O_{2max}$ along the entire life span (Dill et al. 1967; Grimsmo et al. 2010; Maharam et al. 1999; Robinson et al. 1976; Rogers et al., 1990; Trappe et al. 1996) in comparison with non -athletics controls. In élite Master Athletes the progressive drop in maximal cycling speeds over different long track distances (Capelli et al. 2016) and the one-hour unaccompanied cycling record (Capelli 2018) are well justified by the parallel estimated decay of $\rm \dot{V}O_{2max}$.

Classically, the progressive drop of $\dot{V}O_{2max}$ was attributed to the decrease of maximal cardiac output (\dot{Q}_{max}) (Fuchi et al. 1989; McGavock et al. 2009; McGuire et al. 2001) and to the development of sarcopenia (Fleg and Lakatta 1988; Proctor and Joyner 1997). Recently, the development of sarcopenia was associated with appearance of mitochondrial dysfunctions (Marcinek and Ferrucci 2025).

The decrease of \dot{Q}_{max} appears to be the consequence of the concomitant reduction of maximal heart rate (HR_{max}) occurring across the spectrum of age, whereas the absolute values of maximal stroke volume (SV_{max}) appeared to be preserved (Maharam et al. 1999; McGuire et al. 2001; Rodeheffer et al. 1984; Stamford 1988). Sarcopenia carries along the decrease in muscle force and power in humans and single muscle fibers (Brooks and Faulkner 1994; Canepari et al. 2010; Janssen et al. 2000; Narici and Maffulli 2010).

Although mitochondrial capacity seems to be preserved in active individuals (Kent-Braunn et al., 2000, Russ and Kent-Braun, 2004), the overall oxidative capacity of skeletal muscles seems to decrease with age even after adjusting for the level of physical activity (Marcinek and Ferrucci 2025). Moreover, it has been shown that the rate of synthesis of skeletal muscle mitochondria decreases with age (Johnson et al. 2013) together with resting and maximal ATP production rate (Short et al. 2004), enzyme activity, and respiratory capacity (Bass et al. 1975; Short et al. 2004). These modifications may translate into a drop in mitochondrial oxidative capacity. Therefore, the decline of mitochondrial content and function seems to play a role in the decay of \dot{VO}_{2max} .

Although the decay of cardiovascular fitness seems to be the primary cause of the decrease of $\dot{V}O_{2max}$ with aging, the contribution of the peripheral factors is far from being understood and quantified. The available data on oxygen extraction and utilization at maximal exercise remain controversial, although they suggest a decrease in the arterial-venous O_2 difference (Ca-C \overline{v})_{O2max} and a lower maximal O_2 extraction coefficient ($O_{2ext, max}$), (Hagberg et al. 1985;

Hossack and Bruce 1982; McGavock et al. 2009; McGuire et al. 2001; Rivera et al. 1989; Rodeheffer et al. 1984). Within the context of the two main multifactorial models of $\dot{V}O_{2max}$ limitation (di Prampero and Ferretti 1990; Wagner 1996), this tendency suggests that peripheral limitation of $\dot{V}O_{2max}$ may be greater in old than in young individuals (Ferretti 2014), although the cardiovascular limitation remains predominant.

Unfortunately, the few studies that systematically report $\dot{V}O_{2max}$ and \dot{Q}_{max} in large cohorts of volunteers of different ages (Carrick-Ranson et al. 2013; Farinatti et al. 2018; McGavock et al. 2009; McGuire et al. 2001; Murias et al. 2010; Ogawa et al. 1992; Pandey et al. 2020) do not report arterial O_2 concentration (C_aO_2) thus making it impossible to calculate O_2 extraction.

The mishap of the lack of essential data necessary to calculate maximal cardiovascular delivery ($\dot{Q}_aO_{2max}=\dot{Q}_{max}\times C_aO_2$) and oxygen extraction may be, however, tentatively circumvented by applying an analysis performed in the light of the multifactorial model of $\dot{V}O_{2max}$ limitation proposed by di Prampero and Ferretti (1990) and utilized to understand the role of cardiovascular and muscular adaptations on $\dot{V}O_{2max}$ caused by disuse (Bringard et al. 2010; Capelli et al. 2006; Ferretti and Strapazzon 2024; Ferretti et al. 1997;); modifications of ventilation and oxygen fraction in inspired air (Esposito and Ferretti 1997) and training (Del Torto et al. 2021).

By estimating $\dot{Q}_a O_{2max}$ from \dot{Q}_{max} , we propose a quantitative analysis of central and peripheral factors in eliciting the observed progressive drop of $\dot{V}O_{2max}$ across the spectrum of ages ranging from about 30 yy to 85–90 yy.

Methods

Data sets

The data of $\dot{V}O_{2max}$ and \dot{Q}_{max} utilized in the present analysis were derived from the following papers: Adami et al. 2011; Bruseghini et al. 2015; Carrick-Ranson et al. 2013; Farinatti et al. 2018; McGuire et al. 2001; Mitchell et al. 2019; Murias et al. 2010; Ogawa et al. 1992; Pandey et al. 2020. It is noteworthy that the first two papers in this list report date that were collected in the same laboratory utilizing the same techniques and protocols on two different occasions. The data were extracted in the very few papers that reported in parallel values of $\dot{V}O_{2max}$ and \dot{Q}_{max} assessed in moderately active healthy men (Table 1). The volunteers investigated in the studies considered in the analysis were non obese, nonsmokers men and they were not taking medications. In most of the cases they included moderately active or active men who performed regular aerobic activity (<90 min per week)

Table 1 Data of $\dot{V}O_{2max}$ and \dot{Q}_{max} obtained from the quoted references and used in the analysis of the factors affecting the decay of \dot{V}

O_{2max} across the spectrum of age

Source	Age (yy)	$\dot{\mathbf{V}}O_{2\max}$ $(L \min^{-1})$	$\dot{\mathbf{Q}}_{\max}$ (L \min^{-1})
Adami et al. 2011 and Bruseghini et al. 2015	<30	4.1 ± 0.4	22.9±5.1
(Active, moderately active)	69	2.4 ± 0.3	15.8 ± 3.2
Carrick – Ranson et al. 2013	< 30	2.6 ± 0.5	18.4 ± 4.0
(Moderately active)	36 ± 1	2.60 ± 0.5	16.4 ± 2.4
	44 ± 3	2.4 ± 0.4	17.5 ± 4.6
	53 ± 2	2.4 ± 0.4	16.2 ± 1.7
	64 ± 2	$2.5\!\pm\!0.2$	16.5 ± 2.5
	78	1.48	13.1
	84 ± 3	1.6 ± 0.5	14.1 ± 1.8
Farinatti et al. 2018	< 30	3.5 ± 0.8	22.1
(Moderately active)	69	2.0 ± 0.3	12.5
Mcguire et al., 2001 and Mitchel et al., 2019	20	3.3 ± 1.1	$20.\pm4.1$
(Moderately active)	50	$2.9\!\pm\!0.7$	21.4 ± 5.1
	61	2.4	18.9
Murias et al. 2010	< 30	3.8 ± 0.5	25.9 ± 2.8
(Moderately active)	68	2.3 ± 0.5	16.8 ± 3.0
Ogawa et al. 1992 (UT)	< 30	3.4 ± 0.4	21.2 ± 2.4
(Heahthy sedentaries)	63 ± 3	$2.2\!\pm\!0.3$	16.3 ± 2.5
Ogawa et al. 1992 (T)	< 30	$4.3 \!\pm\! 0.5$	27.4 ± 3.2
(Active)	63 ± 4	$3.1\!\pm\!0.4$	20.5 ± 2.1
Pandey et al. 2020	< 30	2.3 ± 0.5	17.3 ± 4.0
(Moderately active)	35 ± 3	2.2 ± 0.4	17.4 ± 2.9
	44 ± 3	2.1 ± 0.5	16.5 ± 2.5
	54 ± 3	$1.8\!\pm\!0.6$	$14.4\!\pm\!2.0$
	65 ± 3	$1.4 \!\pm\! 0.3$	11.0 ± 2.2
	73 ± 3	1.6 ± 0.1	10.8 ± 2.2

The data without the indication of SD were not reported in the original paper with the statistics

with the exceptions of one study (Ogawa et al. 1992), which included trained volunteers.

The diagrams of Fig. 2 in Carrick-Ranson et al. (2013) (men, n=48) and Fig. 3 in Pandey et al. (2020) (n=104, namely 73 males and 31 females) show the decay of V O_{2max} and Q_{max} as a function of age. The diagrams, captured separately with screen snapshots, were saved at high resolution (256 ppi) in pdf format. Afterward, we imported the digitized diagrams into a specific software (Digitizelt version 2.5.10 for Mac OS X, Borman I, Braunschweig, D). This approach allows fixation of the maximum and the minimum of the abscissa and the ordinate by selecting, with a click of the mouse, the corresponding extremes of the two axes displayed on the computer screen. Then, when the operator clicks on each single point, Digitizelt automatically recognizes the x-y coordinates and converts them into the appropriates units. The arrays of data were finally exported to spreadsheets in Excel (Microsoft, Seattle, W, USA) for subsequent analysis. The $\dot{V}O_{2max}$ and \dot{Q}_{max} data obtained by digitizing the points of the diagrams were then divided by decades, and the corresponding mean values were calculated and utilized for the subsequent numerical analysis. As for the data obtained from the remaining sources, we utilized the values reported by the authors in the tables or text. We then inserted these data in the corresponding decade. Table 1 summarizes the $\dot{V}O_{2max}$ and \dot{Q}_{max} values used as inputs to the data analysis explained in the following lines of the manuscript.

Data analysis

The analysis is carried out in the context of di Prampero's multifactorial model of $\dot{V}O_{2max}$ limitation (di Prampero 1985; di Prampero and Ferretti 1990) and in the following lines we will outline only the essential details needed to understand the reasoning behind our analysis. The model assumes that in normoxia, as is the case for the present study, the resistances to O_2 flow upstream of the heart do not limit $\dot{V}O_{2max}$ (for a discussion of this aspect, see Ferretti and di Prampero 1995). Thus, considering only the cardiovascular and peripheral resistances to O_2 flow, if a physiological perturbation yields a given change in the two resistances at stake, the consequent $\dot{V}O_{2max}$ change ($\dot{V}O_{2max} + \Delta \dot{V}O_{2max}$) with respect to the initial $\dot{V}O_{2max}$ value is equal to:

$$\frac{\overset{\circ}{\mathrm{O}_{\mathrm{2max}}^{\dot{\mathrm{V}}}}}{\overset{\circ}{\mathrm{V}}_{\mathrm{O}_{\mathrm{2max}}} + \Delta \overset{\circ}{\mathrm{O}_{\mathrm{2max}}^{\dot{\mathrm{V}}}}} = 1 + \mathrm{F}_{Q} \times \frac{\Delta \, \mathrm{R}_{Q}}{R_{Q}} + \mathrm{F}_{P} \times \frac{\Delta \, \mathrm{R}_{P}}{R_{p}} \tag{1}$$

where:

- 1) $\dot{V}O_{2max}$ is the value before the perturbation;
- Δ VO_{2max} is the observed change in VO_{2max} following the perturbation (value after minus value before, so that Δ VO_{2max} is negative if VO_{2max} decreases, positive if it increases);
- 3) F_Q is the fractional limitation to $\dot{V}O_{2max}$ imposed by cardiovascular O_2 flow;
- 4) R_Q is the cardiovascular resistance before the perturbation, inversely proportional to $\dot{Q}_a O_{2max}$;
- ΔR_Q is the change in R_Q induced by the perturbation: if R_Q goes up, ΔR_Q is positive; if R_Q goes down, ΔR_Q is negative.
- 6) F_p is the fractional limitation to $\dot{V}O_{2max}$ imposed by the lumped peripheral resistances hindering O_2 diffusion and muscular utilization;
- 7) R_n is the peripheral resistance before the intervention;
- 8) ΔR_p represents the change of the lumped peripheral resistance.

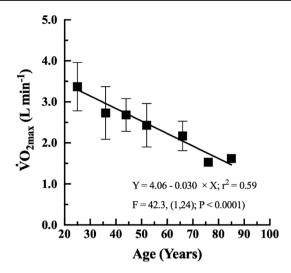
The perturbation that we deal with in this study is ageing. By reducing \dot{Q}_{max} , ageing increases R_Q ; by reducing muscle mass, it increases R_p . Therefore, the $\dot{V}O_{2max}$ ratio on the left hand of Eq. 1 becomes higher, and thus the $\dot{V}O_{2max}$ progressively decreases.

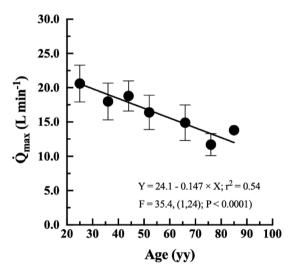
 $\dot{\mathrm{VO}}_{\mathrm{2max}}$ and $\Delta\,\dot{\mathrm{VO}}_{\mathrm{2max}}$ are measured variables in the reported studies; R_{Q} before and after is set as inversely proportional to $\dot{\mathrm{Q}}_{\mathrm{max}}$, and thus to $\dot{\mathrm{Q}}_{\mathrm{a}}\mathrm{O}_{\mathrm{2max}}$; F_{Q} was demonstrated to be equal to the oxygen extraction coefficient (Ferretti 2014), so it was calculated as the ratio of $\dot{\mathrm{VO}}_{\mathrm{2max}}$ to $\dot{\mathrm{Q}}_{\mathrm{a}}\mathrm{O}_{\mathrm{2max}}$; F_{p} was then obtained as 1- F_{Q} ; $\Delta\,\mathrm{R}_{\mathit{P}}/\mathrm{R}_{\mathit{p}}$ resulted as a consequence.

Suppose we apply Eq. 1 to the analysis of the progressive drop of $\dot{V}O_{2max}$ across the age spectrum, comparing the values of the older adults classified in different decades to the ones of the youngest subjects. In that case, we can write a modified version of Eq. 1 as:

$$\frac{\dot{\mathbf{V}}_{\mathbf{O}_{2\mathrm{max,y}}}}{\dot{\mathbf{V}}_{\mathbf{O}_{2\mathrm{max,y}}} + \Delta \dot{\mathbf{V}}_{\mathbf{O}_{2\mathrm{max}}}} = 1 + \mathbf{F}_{Q} \, \frac{\Delta \, \mathbf{R}_{Q}}{\mathbf{R}_{Q,y}} + \mathbf{F}_{P} \times \frac{\Delta \, \mathbf{R}_{P}}{R_{p,y}} \tag{2}$$

Equation 2 represents a particular case of Eq. 1 for the effects of aging on $\dot{V}O_{2max}$, in which the suffix y indicates the youngsters.


Strengths and weaknesses of this model, as well as the one of the concurrent model (Wagner 1996), have been discussed previously (Ferretti 2014) together with a synthesis of the two models.


Results

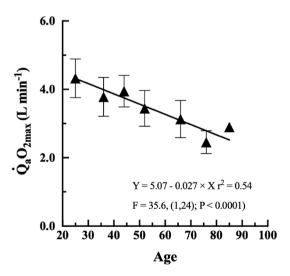

Table 1 reports the values of $\dot{V}O_{2max}$ and \dot{Q}_{max} , plus/minus SD when it was possible, utilized in the analysis.

Figure 1 shows the $\dot{V}O_{2max}$, \dot{Q}_{max} and $\dot{Q}_{a}O_{2max}$ average values calculated for each decade across the spectrum of th ages. Variables significantly and linearly decreased with aging: The values plotted in the graphs are also reported in Table 2 for the sake of the reader.

In Fig. 2, the average values of $\dot{V}O_{2max}$ calculated in each decade are plotted as a function of the corresponding \dot{Q}_aO_{2max} . The ratio $\dot{V}O_{2max}$ to $\dot{Q}_aO_{2max}=1$ - C_vO_2/C_aO_2 corresponds to $O_{2ext,\ max}$, i.e. the maximal extraction coefficient and the straight lines in Fig. 2 represent identical values (isopleths) of $O_{2ext,\ max}$. Therefore, the drop in $\dot{V}O_{2max}$ and in \dot{Q}_aO_{2max} across the age spectrum seems to be paralleled by a progressive decay of $O_{2ext,\ max}$, as the values of the older groups cross isopleths corresponding to lower values of $O_{2ext,\ max}$. This indicates that a progressive decay of the capacity to extract and utilize oxygen at the periphery may have occurred.

Fig. 1 Average values plus-minus SD of $\dot{V}O_{2max}$ (upper panel), \dot{Q}_{max} (intermediate panel), and $\dot{Q}_{a}O_{2max}$ (lower panel) calculated for each decade across the spectrum of the considered ages. Age values refer to the median of each decade

In Fig. 3, the values of F_Q and F_P across the age spectrum are shown. F_Q decreased from 0.77 ± 0.06 at <30 yy to 0.56 at 85 yy of age and showed a significant decreasing trend with age (y=0.8158-0.0022 × x; r^2 =0.30; F=13.1 (1, 31); P<0.001). Obviously, F_P symmetrically increased from 0.23±0.06 to 0.44 (y=0.1823+0.002 × x; r^2 =0.30; F=12.7 (1, 31); P<0.001).

In Fig. 4, the calculated values of the ratio $\Delta R_p/R_p$ are reported as a function of the median value of each decade starting from the 30–40 years decade. The diagram suggests that the weight of the peripheral resistance limiting O_2 utilization and diffusion at maximal exercise intensity increases linearly with age. This trend becomes evident at the beginning of the fourth decade and seems to plateau at ages older than 65.

Discussion

In this paper, we analysed values of $\dot{V}O_{2max}$ and \dot{Q}_{max} collected in various investigations performed in healthy volunteers or patients of different ages. On this basis, we propose a quantitative analysis of the central and peripheral factors that may elicit the progressive drop of $\dot{V}O_{2max}$ with age, observed across a spectrum of ages ranging from 30 yy to 85-90 yy. To accomplish this task, we utilized a multifactorial model of VO_{2max} limitation (di Prampero and Ferretti 1990). This model assumes that the oxygen cascade, i.e., the progressive drop of the PO2 along the pathway from ambient air to mitochondria, consists of several resistances in series (R_i) that are overcome by a pressure gradient (ΔP_i). Each resistance provides a fraction of the total resistance to the oxygen flow from ambient air to mitochondria during maximal exercise and thus corresponds to a specific fraction of the overall limitation of VO_{2max}. In normoxia, due to non - linearities related to the characteristics of the oxygen equilibrium curve (Ferretti 2014), VO_{2max} limitation is partitioned between two resistances: cardiovascular (F_0) and peripheral (F_p). In young individuals, $F_O \approx 0.7$ and $F_p \approx$ 0.3. The analysis suggests that, from 30 to about 70 years, F_O decreases, and F_p increases with age (see Fig. 3). These changes seem to be linear. The trend becomes evident from the third decade and appears to plateau at ages older than 65. The following paragraphs are devoted to discussing the strengths and weaknesses of the applied approach and the crucial premises on which the implementation of the model is based.

The data extracted from the sources quoted in the Methods showed an average decay of $\dot{V}O_{2max}$ of about 37 mL min⁻¹ per year (Fig. 1). This absolute rate of decay is in agreement with the 10% decay per decade of the maximal aerobic power in healthy active individuals (Hawkins and Wiswell, 2003).

Also Q_{max} showed a linear decrease of about 151 mL min^{-1} per year. Should F_O and F_p not change with age, R_O and R_n would show a consensual and equal increase: in this case, the percent decrease of $\dot{V}O_{2max}$ at age 70, with respect to age 20, should be equivalent to the decline of R_O , and thus of \hat{Q}_{max} . This is not the case. Considering a starting point at 20–30 years, the reduction in $\dot{V}O_{2max}$ appears to be greater than that in \dot{Q}_{max} . This indicates that a decrease in \dot{Q}_{max} alone does not explain the observed decay of \dot{VO}_{2max} . Indeed, the latter is more than expected from this assumption (46% instead of 31%). This finding suggests that: (i) R_p may increase to a greater extent than R_O ; (ii) F_p should be greater at age 70 than at age 20 by an amount equal to the corresponding fall of F_O. To sum up, the impairment of peripheral gas exchanges seems to substantially contribute to the decrease in \dot{VO}_{2max} with age in parallel with cardiovascular deconditioning.

A study reported $\dot{V}O_{2max}$ and \dot{Q}_{max} in 5 volunteers tested in 1966, 1996, and 2006 (Mitchell et al. 2019). In that study, \dot{Q}_{max} seemed to remain preserved for at least 30 years (1966–20 yy: 20.0 L min⁻¹; 1996–50 yy: 21.4 L min⁻¹), to decrease only in the following ten years (2006–60 yy: 18.9 L min⁻¹). Conversely, $\dot{V}O_{2max}$ was lower at 50 yy (2.9 L min⁻¹) than at 20 yy (3.3 L min⁻¹), to decrease further in the following decade (2006–60 yy: 2.4 L min⁻¹). These data obtained on the same volunteers are coherent with the conclusions written here above, although the preservation of \dot{Q}_{max} resulted from an increase in maximal stroke volume (SV_{max}), suggesting a possible overestimate of \dot{Q}_{max} at 50 years.

In this study, we set $R_{\mathcal{Q}}$ proportional to \dot{Q}_{max} , as in Ferretti and di Prampero (1990), because in most of the literature concerning the evolution of $\dot{V}O_{2max}$ and \dot{Q}_{max} with age, no measurements of blood haemoglobin concentration ([Hb]) are reported. Therefore, we assumed that [Hb] does not change with age, in agreement with some evidence in the literature (Raisinghani et al. 2019). We also assumed $C_aO_2=210$ ml L^{-1} , which applies to an [Hb] of 155 g L^{-1} and an arterial oxygen saturation (S_aO_2) at maximal exercise of 0.98. These assumptions allowed an estimate of arterial oxygen flow at maximal exercise (\dot{Q}_aO_{2max}). The relationship between $\dot{V}O_{2max}$ and \dot{Q}_aO_{2max} , shown in Fig. 2, is linear. In the same Figure, isopleths of maximal oxygen extraction coefficient ($O_{2ext, max}$) are also indicated.

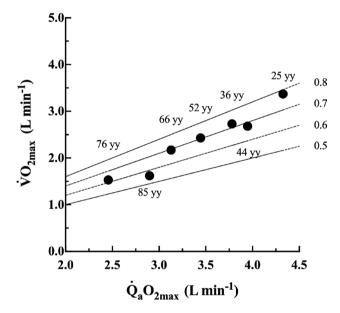

The assumptions of constant [Hb] and arterial saturation across the lifespan are crucial an deserve to be discussed.

Table 2 Mean values $\pm\,SD$ of $\dot{V}O_{2max},~\dot{Q}_{max}$ and $\dot{Q}_{a}O_{2max}$ across the spectrum of age

speed and or age			
Age (yy)	$\dot{\mathbf{V}}\mathrm{O}_{2\mathrm{max}}\ (\mathrm{Lmin}^{-1})$	$\dot{\mathbf{Q}}_{\mathrm{max}} \; (\mathrm{L} \mathrm{min}^{-1})$	Q
			$_{a}O_{2max}$
			(L
			\min^{-1})
<30	3.37 ± 0.59	20.6 ± 2.7	4.3 ± 0.6
$36\!\pm\!1$	2.73 ± 0.64	18.0 ± 2.7	$3.8\!\pm\!0.6$
44 ± 0	2.68 ± 0.40	18.8 ± 2.2	$3.9\!\pm\!0.5$
52 ± 2	2.43 ± 0.53	16.4 ± 2.5	3.4 ± 0.5
66 ± 3	2.17 ± 0.36	14.9 ± 2.6	3.1 ± 0.5
76 ± 3	1.53 ± 0.07	11.7 ± 1.6	$2.5\!\pm\!0.3$
85*	1.62	13.8	2.9

^{*} For the oldest decade, it was possible to report only one value

Fig. 2 Average values of $\dot{V}O_{2max}$ plotted as a function of the corresponding \dot{Q}_aO_{2max} reported in Figure. together with straight isopleths representing a constant value of the maximal O_2 extraction coefficient

The progressive widening of the alveolar-to-arterial gradient of partial pressure of O_2 ($P_AO_2 - P_aO_2$) with ageing, and hence of S_aO_2 , has been described and it is usually ascribed to the increased inhomogeneity of the ventilation-to perfusion ratio occurring with age (Sharma and Goodwin 2006). By applying the regression proposed by Marshall and Whyche (1972), we can estimate the P_aO_2 prevailing at each decade. It ranged from 95 to 77 mm Hg from 25 to 85 years of age. In turn, these values, thanks to the particular shape of the dissociation curve of oxyhemoglobin, correspond to S_aO_2 ranging from 97% to 95% (Kelman 1966) and they imply a trivial decay of C_aO_2 from 210 ml L^{-1} to of 206 ml L^{-1} blood.

Concerning [Hb], a recent paper confirmed that it starts significantly decaying to about 14–14.5 g Hb 100 mL⁻¹ of blood after 75–80 years of age, but remaining within boundaries of normality until that age (Fig. 2 in Bertolotti et al.

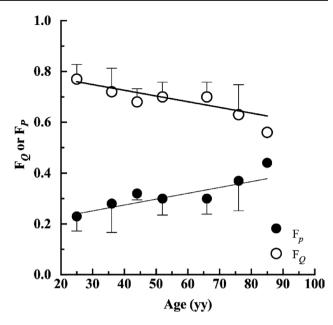
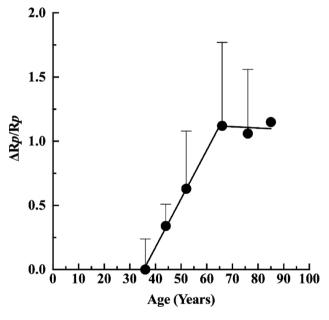



Fig. 3 Average values plus-minus SD of ${\rm F}_Q$ and ${\rm F}p$ across the age spectrum. Age values refer to the median of each decade

Fig. 4 Average values plus-minus SD of the calculated values of the ratio $\Delta R_n/R_n$ as a function of the median value of each decade

2025). These figures translate, in the case of worst scenario of the sigle oldest subject considered in the analysi, to a C_aO_2 of 186 ml L^{-1} .

On the basis of the reported calculations we dare say that the assumption of invariant values of [Hb] and S_aO_2 did not inject in the calculations of the model any substantial inaccuracy and bias.

Figure 2, as reported above, shows a progressive decrease of $O_{2\text{ext, max}}$ with age. Ferretti (2014) demonstrated that $O_{2\text{ext, max}}$ is equivalent to F_O . Therefore, the reduction of

 $O_{2\text{ext, max}}$ indicates a decrease of F_Q , and thus an increase of R_p with age. This can mean only one thing: a deterioration of peripheral oxygen diffusion and utilization with ageing. This follows the development of muscle atrophy, the loss of muscle mitochondria, and the reduced muscle capillarity in aged individuals (Fleg and Lakatta 1988; Groen et al. 2014; Johnson et al. 2013; Wiedmer et al. 2021), all leading to a progressively greater R_p . It's worth noting that R_p represents a lumped factor that considers and depends on all the mechanisms dictating peripheral O_2 diffusion and utilization. As such, it cannot disentangle the single contributions of the single steps affecting the efficiency of the peripheral gas exchanges. (di Prampero and Ferretti 1990).

Several adaptations that occur with aging may converge in eliciting the observed increase of the peripheral resistance that decreases maximal oxygen uptake with aging including impaired vasodilation in active muscles (Poole et al. 2003), muscle mass loss (Wiedmer et al., 2021), an extensive cause contributing to the drop in $\dot{V}O_{2max}$, the declines of mitochondrial content and function, together with resting and maximal ATP production rate, (Short et al. 2004), of enzyme activity, and of respiratory capacity (Bass et al. 1975; Short et al. 2004). The decline of mitochondrial oxidative phosphorylation capacity seems to be an intrinsic, unavoidable consequence of aging and it may be considered and additional intensive factor negatively affecting peripheral gas exchanges independently from any loss of muscle mass contributing to the observed increase of R_n.

In this study we applied a mathematical model that relies on several crucial assumptions. In addition, the database used for the analysis included only the values of $\dot{V}O_{2max}$, and \dot{Q}_{max} ; therefore, it was not possible to incorporate any further information into the model. On the other hand, the proposed approach tried to shed light on the still-open issue concerning the role of central and peripheral factors in affecting the decay of maximal aerobic power with age. Per se, the proposed analysis would be a call for future investigation that would include, in parallel, the assessment of cardiovascular functions and peripheral O_2 utilization in healthy volunteers of different age classes.

The future analysis, in addition, would pave the way for studies investigating whether adaptation to training may differ in young and older volunteers and whether the effect of ageing may impact differently the main factors limiting \dot{V} O_{2max} in the two sexes. Regarding the adaptation to training, recent data seem to suggest that the amelioration of $\dot{V}O_{2max}$ in young and elderly volunteers was positively correlated with improved maximal cardiac performance and peripheral morphological and biochemical adaptations whose entity does not seem to be affected by age (Faricier et al., 2025).

Conclusions

In conclusion, the analysis proposed in this paper and implemented using data published in the literature suggests that the progressive increase of \mathbf{R}_p contributes to the observed gradual decay of $\dot{\mathbf{V}}\mathbf{O}_{2\text{max}}$ occurring with aging in parallel with the decay of the maximal cardiovascular transport of oxygen.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00421-025-06031-6.

Author contributions C Capelli and G. Ferretti contributed equally to the study. CC, GF, di PPE: conception of the study; CC, ET, GF: analysis of the data; CC, GF: interpretation of the data: CC, GF: writing of the first draft. All authors revised, read and approved the final version of the manuscript.

Funding The study was funded by the funds for basic research allocated to the investigators by the Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, and by the fund for the Department of Excellence 2023–2027 allocated by the Italian Ministry of Education to the Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona and to the Department of Physiopathology and Transplantations, University of Milano.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Adami A, Pogliaghi S, De Roia G, Capelli C (2011) Oxygen uptake, cardiac output, and muscle deoxygenation at the onset of moderate and supramaximal exercise in humans. Eur J Appl Physiol 111:1517–1527. https://doi.org/10.1007/s00421-010-1786-y

Aspenes ST, Nilsen TI, Skaug EA, Bertheussen GF, Ellingsen Ø, Vatten L, Wisløff U (2011) Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med Sci Sports Exerc 43:1465–1473. https://doi.org/10.1249/MSS.0b013e31820ca81c

Åstrand I, Åstrand PO, Hallback I, Kilbom Å (1973) Reduction in maximal oxygen uptake with age. J Appl Physiol 35:649–654. ht tps://doi.org/10.1152/jappl.1973.35.5.649

Bass A, Gutmann E, Hanzliková V (1975) Biochemical and histochemical changes in energy supply enzyme pattern of rat muscles during old age. *Gerontologia* 21: 31–45, 1975. https://doi.org/10.1159/000212028

Bertolotti M, Pirotti T, Castellani Tarabini GI, Lancellotti G, Cuccorese M, Trenti T, Mussi C (2025) Modifications in hemoglobin levels associated with age in an outpatient population from Northern Italy. Sci Rep 15:8960. https://doi.org/10.1038/s41598-025-92363-4

Bringard A, Pogliaghi S, Adami A, De Roia G, Lador F, Lucini D, Pizzinelli P, Capelli C, Ferretti G (2010) Cardiovascular determinants of maximal oxygen consumption in upright and supine posture at the end of prolonged bed rest in humans. Respir Physiol Neurobiol 172:53–62. https://doi.org/10.1016/j.resp.2010.03.018

- Brooks SV, Faulkner JA (1994) Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sports Exerc 26:432–439
- Bruseghini P, Calabria E, Tam E, Milanese C, Oliboni E, Pezzato A, Pogliaghi S, Salvagno GL, Schena F, Pozzi Mucelli R, Capelli C (2015) Effects of eight weeks of aerobic interval training and of isoinertial resistance training on risk factors of cardiometabolic diseases and exercise capacity in healthy elderly subjects. *Oncotarget*, 6: 16998–17015, doi: 0.18632/oncotarget.4031
- Buskirk ER, Hodgson JL (1987) Age and aerobic power: the rate of change in men and women. Fed Proc 46:1824–1829
- Canepari M, Pellegrino MA, D'Antona G, Bottinelli R (2010) Single muscle fiber properties in aging and disuse. Scand J Med Sci Sports 20:10–19. https://doi.org/10.1111/j.1600-0838.2009.0096 5.x
- Capelli C (2018) Maximal aerobic power in aging men: insights from a record of 1-hour unaccompanied cycling. Int J Sports Physiol Perf 13:112–114. https://doi.org/10.1123/ijspp.2017-0019
- Capelli C, Antonutto G, Azabji Kenfack M, Cautero M, Lador F, Moia C, Tam E, Ferretti G (2006) Factors determining the time course of \dot{VO}_{2max} decay during bedrest: implications for \dot{VO}_{2max} limitation. Eur J Appl Physiol 98:152–160. https://doi.org/10.1007/s 00421-006-0252-3
- Capelli C, Rittweger J, Bruseghini P, Calabria E, Tam E (2016) Maximal aerobic power and anaerobic capacity in cycling across the age spectrum in male master athletes. Eur J Appl Physiol 116:1395–1410. https://doi.org/10.1007/s00421-016-3396-9
- Carrick-Ranson G, Hastings LH, Bhella PS, Shibata S, Fujimoto N, Palmer D, Boyd K, Levine BD (2013) The effect of age-related differences in body size and composition on cardiovascular determinants of VO_{2max}. J Gerontol Biol Sci Med 68:608–616. https://doi.org/10.1093/gerona/gls220
- del Torto A, Capelli C, Peressutti R, di Silvestre A, Livi U, Nalli C, Sponga S, Amici G, Baccarani U, Lazzer S (2021) Effect of small vs large muscle mass endurance training on maximal oxygen uptake in organ transplanted recipients. *Appl Physiol Nutr Metab* 46: 994–1003, doi: 0.1139/apnm-2020-0987
- di Prampero PE (1985) Metabolic and circulatory limitations to \dot{V} O_{2max} at the whole animal level. J Exp Biol 115:319–331. https://doi.org/10.1242/jeb.115.1.319
- di Prampero PE, Ferretti G (1990) Factors limiting maximal oxygen consumption in humans. Respir Physiol 80:113–128. https://doi.org/10.1016/0034-5687(90)90075-a
- Dill DB, Robinson S, Ross JC (1967) A longitudinal study of 16 champion runners. J Sports Med Phys Fit 7:4–27
- Esposito F, Ferretti G (1997) The effects of breathing He-O₂ mixtures on maximal oxygen consumption in normoxic and hypoxic men. J Physiol (Lond) 503:215–221. https://doi.org/10.1111/j.1469-77 93.1997.215bi.x
- Farinatti P, Monteiro W, Oliveira R, Crisafulli A (2018) Cardiorespiratory responses and myocardial function within incremental exercise in healthy unmedicated older vs. young men and women. Aging Clin Exp Res 30:341–349. https://doi.org/10.1007/s40520-017-0776-x
- Ferretti G (2014) Maximal oxygen consumption in healthy humans: theories and facts. Eur J Appl Physiol 114:2007–2036. https://doi.org/10.1007/s00421-014-2911-0
- Ferretti G, di Prampero PE (1995) Factors limiting maximal O₂ consumption: effects of acute changes in ventilation. *Respir Physiol* 99: 259–271, doi: 0.1016/0034-5687(94)00092-e
- Ferretti G, Strapazzon G (2024) A revision of maximal oxygen consumption and exercise capacity at altitude 70 years after the first climb of Mount everest. J Physiol (Lond) 602:5419–5433. https://doi.org/10.1113/JP285606
- Ferretti G, Antonutto G, Denis C, Hoppeler H, Minetti AE, Narici MV, Desplanches D (1997) The interplay of central and peripheral factors in limiting maximal O₂ consumption in man: the effects of

- prolonged bed rest. J Physiol (Lond) 501:677–686. https://doi.org/10.1111/j.1469-7793.1997.677bm.x
- Fleg JL, Lakatta EG (1988) Role of muscle loss in the age-associated reduction of $\dot{V}O_{2max}$. J Appl Physiol 65:1147–1151. https://doi.org/10.1152/jappl.1988.65.3.1147
- Fuchi T, Iwaoka K, Higuchi M, Kobayashi S (1989) Cardiovascular changes associated with decreased aerobic capacity and aging in long-distance runners. Eur J Appl Physiol Occup Physiol 58:884– 889. https://doi.org/10.1007/BF02332223
- Grimsmo J, Arnesen H, Maehlum S (2010) Changes in cardiorespiratory function in different groups of former and still active male cross-country skiers: a 28-30-year follow-up study. Scand J Med Sci Sports 20:151–161. https://doi.org/10.1111/j.1600-0838.2009.00931.x
- Groen BB, Hamer HM, Snijders T, van Kranenburg J, Frijns D, Vink H, van Loon LJ (2014) Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol 116:998–1005. https://doi.org/10.1152/japplphysiol.00919.2013
- Hagberg JM, Allen WK, Seals DR, Hurley BF, Ehsani AA, Holloszy JO (1985) A hemodynamic comparison of young and older endurance athletes during exercise. J Appl Physiol 58:2041–2046. 0.1152/jappl.1985.58.6.2041
- Hawkins SA, Wiswell RA (2003) Rate and Mechanism of Maximal Oxygen Consumption Decline with Aging. Sports Med 33: 877– 888, doi: 0112-1642/03/0012-0877
- Hossack KF, Bruce RA (1982) Maximal cardiac function in sedentary normal men and women: comparison of age-related changes. J Appl Physiol 53:799–804. https://doi.org/10.1152/jappl.1982.53 4 799
- Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 year. J Appl Physiol 89:81–88. https://doi.org/10.1152/jappl.2000.89. 1.81
- Johnson ML, Robinson MM, Sreekumaran N (2013) Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab 24:247– 256. https://doi.org/10.1016/j.tem.2012.12.003
- Kelman GR (1966) Digital computer subroutine Fro the conversion of of oxygen tension into saturation. J Appl Physiol 21:1375–1376
- Kent-Braun JA, NG AV (2000) Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89:1072–1078. https://doi.org/10.1152/jappl.2000.89.3.1072
- Maharam LG, Bauman PA, Kalman D, Skolnik H, Perle SM (1999) Master athletes. Factors affecting performances. *Sports Med* 28: 273–285, doi: 0.2165/00007256-199928040-00005
- Marcinek DJ, Ferrucci L (2025) Reduced oxidative capacity of skeletal muscle mitochondria is a fundamental consequence of adult ageing. J Physiol 603:17–20. https://doi.org/10.1113/JP285040
- Marshall BE, Whyche MQ (1972) Hypoxemia during and after anesthesia. Anestehesiology 37:178–209. https://doi.org/10.1097/00000542-197208000-00009
- Marti B, Howald H (1990) Long-term effects of physical training on aerobic capacity: controlled study of former elite athletes. J Appl Physiol 69:1451–1459. https://doi.org/10.1152/jappl.1990.69.4.1
- McGavock JM, Hastings JL, Snell PG, McGuire DK, Pacini EL, Levine BD, Mitchell JH (2009) A forty-year follow-up of the Dallas bed rest and training study: the effect of age on the cardio-vascular response to exercise in men. J Gerontol Biol Sci Med Sci 64:293–299. 0.1093/gerona/gln025
- McGuire DK, Levine BD, Williamson JW, Snell PG, Blomqvist CG, Saltin B, Mitchell JH (2001) A 30-year follow-up of the Dallas bedrest and training study: I. Effect of age on the cardiovascular response to exercise. Circulation 104:1350–1357
- Mitchell JH, Levine BD, McGuire DK (2019) The Dallas bed rest and training study. Revisited after 50 years. Circulation

- $140:1293-1295.\ https://doi.org/10.1161/CIRCULATIONAHA.1\\19.041046$
- Murias JM, Kowalchuk JM, Paterson DH (2010) Time course and mechanisms adaptations in cardiorespiratory fitness with endurance training older and young men. J Appl Physiol 108:621–627. https://doi.org/10.1152/japplphysiol.01152.2009
- Narici MV, Maffulli N (2010) Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 95:139–159. https://doi .org/10.1093/bmb/ldq008
- Ogawa T, Spina RJ, Martin WH III, Kohrt WM, Schechtman KB, Holloszy JO, Ehsani AA (1992) Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation 86:494–503. https://doi.org/10.1161/01.cir.86.2.494
- Pandey A, Kraus WE, Brubaker PH, Kitzman DW (2020) Healthy aging and cardiovascular function Invasive hemodynamics during rest and exercise in 104 healthy volunteers. J Am Coll Cardiol Heart Fail 8:111–121. https://doi.org/10.1016/j.jchf.2019.08.020
- Poole JG, Lawrenson L, Kim J, Brown C, Richardson RS (2003) Vascular and metabolic response to cycle exercise in sedentary humans: effect of age. Am J Physiol Heart Circ Physiol 284:H1251–H. htt ps://doi.org/10.1152/aipheart.00790.2002
- Proctor DN, Joyner MJ (1997) Skeletal muscle mass and the reduction of VO_{2max} in trained older subjects. J Appl Physiol 82:1411– 1415. https://doi.org/10.1152/jappl.1997.82.5.1411
- Raisinghani N, Kumar S, Archarya S, Gadegone A, Pai V (2019) Does aging have an impact on hemoglobin? Study in elderly population at rural teaching hospital. J Family Med Prim Care 8:3345–3349. https://doi.org/10.4103/jfmpc.jfmpc 668 19
- Rivera AM, Pels AE III, Sady SP, Sady MA, Cullinane EM, Thompson PD (1989) Physiological factors associated with the lower maximal oxygen consumption of master athletes. J Appl Physiol 66:949–954. https://doi.org/10.1152/jappl.1989.66.2.949
- Robinson S (1938) Experimental studies of physical fitness in relation to age. Arbeits Physiol 10:251–323. https://doi.org/10.1152/japp 1.1976.41.1.46
- Robinson S, Dill DB, Tzankoff SP, Wagner JA, Robinson RD (1975) Longitudinal studies of aging in 37 men. J Appl Physiol 38:263–267. https://doi.org/10.1152/jappl.1975.38.2.263
- Robinson S, Dill DB, Robinson RD, Tzankoff SP, Wagner JA (1976) Physiological aging of champion runners. J Appl Physiol 41:46–51. https://doi.org/10.1152/jappl.1976.41.1.46
- Rodeheffer RJ, Gerstenblith G, Becker LC, Fleg JL, Weisfeldt ML, Lakatta EG (1984) Exercise cardiac output is maintained with

- advancing age in healthy human subjects: Cardiac dilatation and increased stroke volume compensate for a diminished heart rate. *Circulation* 69: 203–213, doi: 0.1161/01.cir.69.2.203
- Rogers MA, Hagberg JM, Martin WH III, Ehsani AA, Holloszy JO (1990) Decline in $\dot{V}O_{2max}$ with aging in master athletes and sedentary men. J Appl Physiol 68:2195–2199. https://doi.org/10.1152/jappl.1990.68.5.2195
- Russ DW, Kent-Barun JA (2004) Is skeletal muscle Oxidatve capacity decreased in old age? Sports Med 34:221–229. https://doi.org/10.2165/00007256-200434040-00002
- Sharma G, Goodwin J (2006) Effect of aging on respiratory system physiology and immunology. Clin Interv Aging 3:253–260. 0.2147/ciia.2006.1.3.253
- Short KR, Vittone JL, Bigelow ML, Proctor DN, Sreekumaran Nair K (2004) Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab 286:E92–E. https://doi.org/10.1152/ajpendo.00366.2003
- Stamford BA (1988) Exercise and the elderly. Exerc Sport Sci Rev 16:341–379
- Talbot LA, Metter EJ, Fleg JL (2000) Leisure-time physical activities and their relationship to cardiorespiratory fitness in healthy men and women 18–95 years old. *Med Sci Sports Exerc* 32: 417–425, doi: 0.1097/00005768-200002000-00024
- Trappe S, Costill D, Vukovich M, Jones J, Melham T (1996) Aging among elite distance runners: a 22-year longitudinal study. J Appl Physiol 80:285–290. https://doi.org/10.1152/jappl.1996.80.1.285
- Wagner PD (1996) Determinants of maximal oxygen transp.ort and utilization. Annu Rev Physiol 58:21–50. https://doi.org/10.1146/ annurev.ph.58.030196.000321
- Wiedmer P, Jung T, Castro JP, Pomatto LCD, Sun PY, Davies KJA, Grune T (2021) Sarcopenia Molecular mechanisms and open questions. Ageing Res Rev 65:101200. https://doi.org/10.1016/j.arr.2020.101200

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

