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Abbreviations
CaO2	� Arterial concentration of O2

(Ca-C
−
v)O2max	 �Maximal artero-mixed venous differfence 

in O2 concentration
FQ	�  Fractional limitation to V̇O2max imposed 

by cardiovascular O2 flow
Fp	�  Fractional limitation to V̇O2max imposed 

by the peripheral resistance to O2 diffu-
sion and utilization

O2ext, max	 � Maximal oxygen extraction coefficient
Q̇max	�  Maximal cardiac output
Q̇aO2max	� Maximal O2 cardiovascualr transport
Rp	� The peripheral resistance limiting V̇O2max
RQ	� The cardiovascular resistance limiting V̇

O2max
SaO2	�  Arterial oxygen saturation
V̇O2max	� Maximal oxygen uptake
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Abstract
Purpose  Maximal oxygen uptake ( V̇O2max) decays with aging due to decreased maximal cardiac output ( Q̇max) and the 
development of progressive sarcopenia and mitochondrial dysfunctions. The study aimed to develop a quantitative analysis 
of central and peripheral factors in eliciting the observed progressive drop of V̇O2max across the spectrum of ages ranging 
from about 30 yy to 85–90 yy.
Methods  We applied to V̇O2max, Q̇max, and maximal oxygen cardiovascular delivery ( Q̇aO2max) values obtained from litera-
ture, a multifactorial model of V̇O2max limitation describing the progressive drop of the PO2 along the pathway from ambient 
air to mitochondria composed of several steps in series, each of them considered as a resistance (Ri) that must be overcome 
by a pressure gradient (ΔPi). The proposed analysis allowed us to estimate: (i) the maximal oxygen extraction coefficient 
(O2ext, max) and (ii) the changes of the peripheral resistance (Rp) hindering O2 muscular utilization.
Results  O2ext, max progressively decays from 0.80 at 20 yy to 0.60 at 75–80 yy; Rp almost doubles over the same interval of 
inspected ages.
Conclusions  The analysis implemented using data published in the literature suggests that the progressive increase of Rp 
remarkably contributes to the observed gradual decay of V̇O2max observed with aging, perhaps more than the progressive 
drop in the maximal cardiovascular transport of oxygen.
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Introduction

V̇O2max decays with aging (Aspenes et al. 2011; Åstrand 
et al. 1973; Buskirk and Hodgson 1987; Marti and How-
ald 1990; Mc Guire et al., 2001, Robinson 1938; Robinson 
et al. 1975; Rogers et al. 1990; Talbot et al. 2000; Trappe 
et al. 1996), with athletes keeping a higher V̇O2max along 
the entire life span (Dill et al. 1967; Grimsmo et al. 2010; 
Maharam et al. 1999; Robinson et al. 1976; Rogers et al., 
1990; Trappe et al. 1996) in comparison with non -athlet-
ics controls. In élite Master Athletes the progressive drop in 
maximal cycling speeds over different long track distances 
(Capelli et al. 2016) and the one-hour unaccompanied 
cycling record (Capelli 2018) are well justified by the paral-
lel estimated decay of V̇O2max.

Classically, the progressive drop of V̇O2max was attrib-
uted to the decrease of maximal cardiac output ( Q̇max) (Fuchi 
et al. 1989; McGavock et al. 2009; McGuire et al. 2001) and 
to the development of sarcopenia (Fleg and Lakatta 1988; 
Proctor and Joyner 1997). Recently, the development of sar-
copenia was associated with appearance of mitochondrial 
dysfunctions (Marcinek and Ferrucci 2025).

The decrease of Q̇max appears to be the consequence of 
the concomitant reduction of maximal heart rate (HRmax) 
occurring across the spectrum of age, whereas the abso-
lute values of maximal stroke volume (SVmax) appeared to 
be preserved (Maharam et al. 1999; McGuire et al. 2001; 
Rodeheffer et al. 1984; Stamford 1988). Sarcopenia carries 
along the decrease in muscle force and power in humans and 
single muscle fibers (Brooks and Faulkner 1994; Canepari 
et al. 2010; Janssen et al. 2000; Narici and Maffulli 2010).

Although mitochondrial capacity seems to be preserved 
in active individuals (Kent-Braunn et al., 2000, Russ and 
Kent-Braun, 2004), the overall oxidative capacity of skeletal 
muscles seems to decrease with age even after adjusting for 
the level of physical activity (Marcinek and Ferrucci 2025). 
Moreover, it has been shown that the rate of synthesis of 
skeletal muscle mitochondria decreases with age (Johnson 
et al. 2013) together with resting and maximal ATP produc-
tion rate (Short et al. 2004), enzyme activity, and respiratory 
capacity (Bass et al. 1975; Short et al. 2004). These modifi-
cations may translate into a drop in mitochondrial oxidative 
capacity. Therefore, the decline of mitochondrial content 
and function seems to play a role in the decay of V̇O2max.

Although the decay of cardiovascular fitness seems to be 
the primary cause of the decrease of V̇O2max with aging, 
the contribution of the peripheral factors is far from being 
understood and quantified. The available data on oxygen 
extraction and utilization at maximal exercise remain con-
troversial, although they suggest a decrease in the arterial-
venous O2 difference (Ca-C

−
v)O2max and a lower maximal 

O2 extraction coefficient (O2ext, max), (Hagberg et al. 1985; 

Hossack and Bruce 1982; McGavock et al. 2009; McGuire 
et al. 2001; Rivera et al. 1989; Rodeheffer et al. 1984). 
Within the context of the two main multifactorial models 
of V̇O2max limitation (di Prampero and Ferretti 1990; Wag-
ner 1996), this tendency suggests that peripheral limitation 
of V̇O2max may be greater in old than in young individu-
als (Ferretti 2014), although the cardiovascular limitation 
remains predominant.

Unfortunately, the few studies that systematically report 
V̇O2max and Q̇max in large cohorts of volunteers of differ-
ent ages (Carrick-Ranson et al. 2013; Farinatti et al. 2018; 
McGavock et al. 2009; McGuire et al. 2001; Murias et al. 
2010; Ogawa et al. 1992; Pandey et al. 2020) do not report 
arterial O2 concentration (CaO2) thus making it impossible 
to calculate O2 extraction.

The mishap of the lack of essential data necessary to 
calculate maximal cardiovascular delivery ( Q̇aO2max = Q̇
max × CaO2) and oxygen extraction may be, however, tenta-
tively circumvented by applying an analysis performed in 
the light of the multifactorial model of V̇O2max limitation 
proposed by di Prampero and Ferretti (1990) and utilized to 
understand the role of cardiovascular and muscular adapta-
tions on V̇O2max caused by disuse (Bringard et al. 2010; 
Capelli et al. 2006; Ferretti and Strapazzon 2024; Ferretti et 
al. 1997;); modifications of ventilation and oxygen fraction 
in inspired air (Esposito and Ferretti 1997) and training (Del 
Torto et al. 2021).

By estimating Q̇aO2max from Q̇max, we propose a quan-
titative analysis of central and peripheral factors in eliciting 
the observed progressive drop of V̇O2max across the spec-
trum of ages ranging from about 30 yy to 85–90 yy.

Methods

Data sets

The data of V̇O2max and Q̇max utilized in the present analysis 
were derived from the following papers: Adami et al. 2011; 
Bruseghini et al. 2015; Carrick-Ranson et al. 2013; Fari-
natti et al. 2018; McGuire et al. 2001; Mitchell et al. 2019; 
Murias et al. 2010; Ogawa et al. 1992; Pandey et al. 2020. It 
is noteworthy that the first two papers in this list report date 
that were collected in the same laboratory utilizing the same 
techniques and protocols on two different occasions. The 
data were extracted in the very few papers that reported in 
parallel values of V̇O2max and Q̇max assessed in moderately 
active healthy men (Table 1). The volunteers investigated in 
the studies considered in the analysis were non obese, non-
smokers men and they were not taking medications. In most 
of the cases they included moderately active or active men 
who performed regular aerobic activity (< 90 min per week) 
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with the exceptions of one study (Ogawa et al. 1992), which 
included trained volunteers.

The diagrams of Fig. 2 in Carrick-Ranson et al. (2013) 
(men, n = 48) and Fig.  3 in Pandey et al. (2020) (n = 104, 
namely 73 males and 31 females) show the decay of V̇
O2max and Q̇max as a function of age. The diagrams, cap-
tured separately with screen snapshots, were saved at high 
resolution (256 ppi) in pdf format. Afterward, we imported 
the digitized diagrams into a specific software (Digitizelt 
version 2.5.10 for Mac OS X, Borman I, Braunschweig, 
D). This approach allows fixation of the maximum and the 
minimum of the abscissa and the ordinate by selecting, with 
a click of the mouse, the corresponding extremes of the 
two axes displayed on the computer screen. Then, when the 
operator clicks on each single point, Digitizelt automatically 
recognizes the x-y coordinates and converts them into the 
appropriates units. The arrays of data were finally exported 
to spreadsheets in Excel (Microsoft, Seattle, W, USA) for 
subsequent analysis. The V̇O2max and Q̇max data obtained 

by digitizing the points of the diagrams were then divided 
by decades, and the corresponding mean values were calcu-
lated and utilized for the subsequent numerical analysis. As 
for the data obtained from the remaining sources, we uti-
lized the values reported by the authors in the tables or text. 
We then inserted these data in the corresponding decade. 
Table 1 summarizes the V̇O2max and Q̇max values used as 
inputs to the data analysis explained in the following lines 
of the manuscript.

Data analysis

The analysis is carried out in the context of di Prampero’s 
multifactorial model of V̇O2max limitation (di Prampero 
1985; di Prampero and Ferretti 1990) and in the following 
lines we will outline only the essential details needed to 
understand the reasoning behind our analysis. The model 
assumes that in normoxia, as is the case for the present study, 
the resistances to O2 flow upstream of the heart do not limit 
V̇O2max (for a discussion of this aspect, see Ferretti and di 
Prampero 1995). Thus, considering only the cardiovascu-
lar and peripheral resistances to O2 flow, if a physiological 
perturbation yields a given change in the two resistances 
at stake, the consequent V̇O2max change ( V̇O2max + ∆ V̇
O2max) with respect to the initial V̇O2max value is equal to:

.

V
O2max

.

V
O2max

+ ∆
.

V
O2max

= 1 + FQ × ∆ RQ

RQ
+ FP × ∆ RP

Rp
� (1)

where:

1)	 V̇O2max is the value before the perturbation;
2)	 ∆ V̇O2max is the observed change in V̇O2max following 

the perturbation (value after minus value before, so that 
∆ V̇O2max is negative if V̇O2max decreases, positive if 
it increases);

3)	 FQ is the fractional limitation to V̇O2max imposed by 
cardiovascular O2 flow;

4)	 RQ is the cardiovascular resistance before the perturba-
tion, inversely proportional to Q̇aO2max;

5)	 ∆RQ is the change in RQ induced by the perturbation: if 
RQ goes up, ∆RQ is positive; if RQ goes down, ∆RQ is 
negative.

6)	 Fp is the fractional limitation to V̇O2max imposed by the 
lumped peripheral resistances hindering O2 diffusion 
and muscular utilization;

7)	 Rp is the peripheral resistance before the intervention;
8)	 ∆Rp represents the change of the lumped peripheral 

resistance.

Table 1   Data of V̇O2max and Q̇max obtained from the quoted refer-
ences and used in the analysis of the factors affecting the decay of V̇
O2max across the spectrum of age
Source Age   

(yy)
V̇O2max  
(L min− 1)

Q̇max  (L 
min− 1)

Adami et al. 2011 and Bruseghini 
et al. 2015

< 30 4.1 ± 0.4 22.9 ± 5.1

(Active, moderately active) 69 2.4 ± 0.3 15.8 ± 3.2
Carrick – Ranson et al. 2013 < 30 2.6 ± 0.5 18.4 ± 4.0
(Moderately active) 36 ± 1 2.60 ± 0.5 16.4 ± 2.4

44 ± 3 2.4 ± 0.4 17.5 ± 4.6
53 ± 2 2.4 ± 0.4 16.2 ± 1.7
64 ± 2 2.5 ± 0.2 16.5 ± 2.5
78 1.48 13.1
84 ± 3 1.6 ± 0.5 14.1 ± 1.8

Farinatti et al. 2018 < 30 3.5 ± 0.8 22.1
(Moderately active) 69 2.0 ± 0.3 12.5
Mcguire et al., 2001 and Mitchel et 
al., 2019

20 3.3 ± 1.1 20. ± 4.1

(Moderately active) 50 2.9 ± 0.7 21.4 ± 5.1
61 2.4 18.9

Murias et al. 2010 < 30 3.8 ± 0.5 25.9 ± 2.8
(Moderately active) 68 2.3 ± 0.5 16.8 ± 3.0
Ogawa et al. 1992 (UT) <30 3.4 ± 0.4 21.2 ± 2.4
(Heahthy sedentaries) 63 ± 3 2.2 ± 0.3 16.3 ± 2.5
Ogawa et al. 1992 (T) < 30 4.3 ± 0.5 27.4 ± 3.2
(Active) 63 ± 4 3.1 ± 0.4 20.5 ± 2.1
Pandey et al. 2020 < 30 2.3 ± 0.5 17.3 ± 4.0
(Moderately active) 35 ± 3 2.2 ± 0.4 17.4 ± 2.9

44 ± 3 2.1 ± 0.5 16.5 ± 2.5
54 ± 3 1.8 ± 0.6 14.4 ± 2.0
65 ± 3 1.4 ± 0.3 11.0 ± 2.2
73 ± 3 1.6 ± 0.1 10.8 ± 2.2

The data without the indication of SD were not reported in the origi-
nal paper with the statistics
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The perturbation that we deal with in this study is ageing. 
By reducing Q̇max, ageing increases RQ; by reducing mus-
cle mass, it increases Rp. Therefore, the V̇O2max ratio on 
the left hand of Eq. 1 becomes higher, and thus the V̇O2max 
progressively decreases.

V̇O2max and ∆ V̇O2max are measured variables in the 
reported studies; RQ before and after is set as inversely 
proportional to Q̇max, and thus to Q̇aO2max; FQ was dem-
onstrated to be equal to the oxygen extraction coefficient 
(Ferretti 2014), so it was calculated as the ratio of V̇O2max 
to Q̇aO2max ; Fp was then obtained as 1- FQ; ∆ RP /Rp

resulted as a consequence.
Suppose we apply Eq. 1 to the analysis of the progressive 

drop of V̇O2max across the age spectrum, comparing the val-
ues of the older adults classified in different decades to the 
ones of the youngest subjects. In that case, we can write a 
modified version of Eq. 1 as:

.

V
O2max,y

.

V
O2max,y

+ ∆
.

V
O2max

= 1 + FQ
∆ RQ

RQ,y
+ FP × ∆ RP

Rp,y
� (2)

Equation  2 represents a particular case of Eq.  1 for the 
effects of aging on V̇O2max, in which the suffix y indicates 
the youngsters.

Strengths and weaknesses of this model, as well as the 
one of the concurrent model (Wagner 1996), have been dis-
cussed previously (Ferretti 2014) together with a synthesis 
of the two models.

Results

Table 1 reports the values of V̇O2max and Q̇max, plus/minus 
SD when it was possible, utilized in the analysis.

Figure 1 shows the V̇O2max, Q̇max and Q̇aO2max aver-
age values calculated for each decade across the spectrum of 
th ages. Variables significantly and linearly decreased with 
aging: The values plotted in the graphs are also reported in 
Table 2 for the sake of the reader.

In Fig.  2, the average values of V̇O2max calculated in 
each decade are plotted as a function of the corresponding 
Q̇aO2max. The ratio V̇O2max to Q̇aO2max = 1 - C−

v
O2/CaO2 

corresponds to O2ext, max, i.e. the maximal extraction coef-
ficient and the straight lines in Fig. 2 represent identical val-
ues (isopleths) of O2ext, max. Therefore, the drop in V̇O2max 
and in Q̇aO2max across the age spectrum seems to be paral-
leled by a progressive decay of O2ext, max, as the values of the 
older groups cross isopleths corresponding to lower values 
of O2ext, max. This indicates that a progressive decay of the 
capacity to extract and utilize oxygen at the periphery may 
have occurred.
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The data extracted from the sources quoted in the Meth-
ods showed an average decay of V̇O2max of about 37 mL 
min− 1 per year (Fig.  1). This absolute rate of decay is in 
agreement with the 10% decay per decade of the maximal 
aerobic power in healthy active individuals (Hawkins and 
Wiswell, 2003).

Also Q̇max showed a linear decrease of about 151 mL 
min− 1 per year. Should FQ and Fp not change with age, RQ 
and Rp would show a consensual and equal increase: in this 
case, the percent decrease of V̇O2max at age 70, with respect 
to age 20, should be equivalent to the decline of RQ, and 
thus of Q̇max. This is not the case. Considering a starting 
point at 20–30 years, the reduction in V̇O2max appears to be 
greater than that in Q̇max. This indicates that a decrease in 
Q̇max alone does not explain the observed decay of V̇O2max. 
Indeed, the latter is more than expected from this assump-
tion (46% instead of 31%). This finding suggests that: (i) 
Rp may increase to a greater extent than RQ; (ii) Fp should 
be greater at age 70 than at age 20 by an amount equal to 
the corresponding fall of FQ. To sum up, the impairment of 
peripheral gas exchanges seems to substantially contribute 
to the decrease in V̇O2max with age in parallel with cardio-
vascular deconditioning.

A study reported V̇O2max and Q̇max in 5 volunteers tested 
in 1966, 1996, and 2006 (Mitchell et al. 2019). In that study, 
Q̇max seemed to remain preserved for at least 30 years 
(1966–20 yy: 20.0  L min− 1; 1996–50 yy: 21.4  L min− 1), 
to decrease only in the following ten years (2006–60 yy: 
18.9  L min− 1). Conversely, V̇O2max was lower at 50 yy 
(2.9 L min− 1) than at 20 yy (3.3 L min− 1), to decrease further 
in the following decade (2006–60 yy: 2.4 L min− 1). These 
data obtained on the same volunteers are coherent with the 
conclusions written here above, although the preservation of 
Q̇max resulted from an increase in maximal stroke volume 
(SVmax), suggesting a possible overestimate of Q̇max at 50 
years.

In this study, we set RQ proportional to Q̇max, as in Fer-
retti and di Prampero (1990), because in most of the litera-
ture concerning the evolution of V̇O2max and Q̇max with 
age, no measurements of blood haemoglobin concentration 
([Hb]) are reported. Therefore, we assumed that [Hb] does 
not change with age, in agreement with some evidence in 
the literature (Raisinghani et al. 2019). We also assumed 
CaO2 = 210 ml L− 1, which applies to an [Hb] of 155 g L− 1 
and an arterial oxygen saturation (SaO2) at maximal exercise 
of 0.98. These assumptions allowed an estimate of arterial 
oxygen flow at maximal exercise ( Q̇aO2max). The relation-
ship between V̇O2max and Q̇aO2max, shown in Fig.  2, is 
linear. In the same Figure, isopleths of maximal oxygen 
extraction coefficient (O2ext, max) are also indicated.

The assumptions of constant [Hb] and arterial saturation 
across the lifespan are crucial an deserve to be discussed. 

In Fig. 3, the values of FQ and Fp across the age spec-
trum are shown. FQ decreased from 0.77 ± 0.06 at < 30 yy 
to 0.56 at 85 yy of age and showed a significant decreasing 
trend with age (y = 0.8158 − 0.0022 × x; r2 = 0.30; F = 13.1 
(1, 31); P < 0.001). Obviously, Fp symmetrically increased 
from 0.23 ± 0.06 to 0.44 (y = 0.1823 + 0.002 × x; r2 = 0.30; 
F = 12.7 (1, 31); P < 0.001).

In Fig. 4, the calculated values of the ratio ∆Rp/Rp are 
reported as a function of the median value of each decade 
starting from the 30–40 years decade. The diagram suggests 
that the weight of the peripheral resistance limiting O2 utili-
zation and diffusion at maximal exercise intensity increases 
linearly with age. This trend becomes evident at the begin-
ning of the fourth decade and seems to plateau at ages older 
than 65.

Discussion

In this paper, we analysed values of V̇O2max and Q̇max col-
lected in various investigations performed in healthy volun-
teers or patients of different ages. On this basis, we propose 
a quantitative analysis of the central and peripheral factors 
that may elicit the progressive drop of V̇O2max with age, 
observed across a spectrum of ages ranging from 30 yy to 
85–90 yy. To accomplish this task, we utilized a multifacto-
rial model of V̇O2max limitation (di Prampero and Ferretti 
1990). This model assumes that the oxygen cascade, i.e., the 
progressive drop of the PO2 along the pathway from ambi-
ent air to mitochondria, consists of several resistances in 
series (Ri) that are overcome by a pressure gradient (ΔPi). 
Each resistance provides a fraction of the total resistance to 
the oxygen flow from ambient air to mitochondria during 
maximal exercise and thus corresponds to a specific frac-
tion of the overall limitation of V̇O2max. In normoxia, due 
to non – linearities related to the characteristics of the oxy-
gen equilibrium curve (Ferretti 2014), V̇O2max limitation 
is partitioned between two resistances: cardiovascular (FQ) 
and peripheral (Fp). In young individuals, FQ ≈ 0.7 and Fp ≈ 
0.3. The analysis suggests that, from 30 to about 70 years, 
FQ decreases, and Fp increases with age (see Fig. 3). These 
changes seem to be linear. The trend becomes evident from 
the third decade and appears to plateau at ages older than 
65. The following paragraphs are devoted to discussing the 
strengths and weaknesses of the applied approach and the 
crucial premises on which the implementation of the model 
is based.

Fig. 1  Average values plus-minus SD of V̇O2max (upper panel), Q̇max 
(intermediate panel), and Q̇aO2max (lower panel) calculated for each 
decade across the spectrum of the considered ages. Age values refer to 
the median of each decade

1 3



European Journal of Applied Physiology

2025). These figures translate, in the case of worst scenario 
of the sigle oldest subject considered in the analysi, to a 
CaO2 of 186 ml L− 1.

On the basis of the reported calculations we dare say that 
the assumption of invariant values of [Hb] and SaO2 did not 
inject in the calculations of the model any substantial inac-
curacy and bias.

Figure 2, as reported above, shows a progressive 
decrease of O2ext, max with age. Ferretti (2014) demonstrated 
that O2ext, max is equivalent to FQ. Therefore, the reduction of 

The progressive widening of the alveolar-to-arterial gradi-
ent of partial pressure of O2 (PAO2 – PaO2) with ageing, and 
hence of SaO2, has been described and it is usually ascribed 
to the increased inhomogeneity of the ventilation-to perfu-
sion ratio occurring with age (Sharma and Goodwin 2006). 
By applying the regression proposed by Marshall and 
Whyche (1972), we can estimate the PaO2 prevailing at each 
decade. It ranged from 95 to 77 mm Hg from 25 to 85 years 
of age. In turn, these values, thanks to the particular shape 
of the dissociation curve of oxyhemoglobin, correspond to 
SaO2 ranging from 97% to 95% (Kelman 1966) and they 
imply a trivial decay of CaO2 from 210 ml L− 1 to of 206 ml 
L− 1 blood.

Concerning [Hb], a recent paper confirmed that it starts 
significantly decaying to about 14–14.5 g Hb 100 mL− 1 of 
blood after 75–80 years of age, but remaining within bound-
aries of normality until that age (Fig. 2 in Bertolotti et al. 

Table 2  Mean values ± SD of V̇O2max, Q̇max and Q̇aO2max across the 
spectrum of age
Age   (yy) V̇O2max  (L min− 1) Q̇max  (L min− 1) Q̇

aO2max  
(L 
min− 1)

< 30 3.37 ± 0.59 20.6 ± 2.7 4.3 ± 0.6
36 ± 1 2.73 ± 0.64 18.0 ± 2.7 3.8 ± 0.6
44 ± 0 2.68 ± 0.40 18.8 ± 2.2 3.9 ± 0.5
52 ± 2 2.43 ± 0.53 16.4 ± 2.5 3.4 ± 0.5
66 ± 3 2.17 ± 0.36 14.9 ± 2.6 3.1 ± 0.5
76 ± 3 1.53 ± 0.07 11.7 ± 1.6 2.5 ± 0.3
85* 1.62 13.8 2.9
* For the oldest decade, it was possible to report only one value

Fig. 4  Average values plus-minus SD of the calculated values of the 
ratio ∆Rp/Rp as a function of the median value of each decade

 

Fig. 3  Average values plus-minus SD of FQ and Fp across the age spec-
trum. Age values refer to the median of each decade

 

Fig. 2  Average values of V̇O2max plotted as a function of the corre-
sponding Q̇aO2max reported in Figure. together with straight isopleths 
representing a constant value of the maximal O2 extraction coefficient
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Conclusions

In conclusion, the analysis proposed in this paper and imple-
mented using data published in the literature suggests that 
the progressive increase of Rp contributes to the observed 
gradual decay of V̇O2max occurring with aging in parallel 
with the decay of the maximal cardiovascular transport of 
oxygen.
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