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Abstract
It is now well-established that exercise can disturb various aspects of gastrointestinal integrity and function. The pathophysi-
ology of these perturbations, termed “exercise-induced gastrointestinal syndrome (EIGS),” can lead to exercise-associated 
gastrointestinal symptom (Ex-GIS) inconveniences. EIGS outcomes can impact physical performance and may lead to 
clinical manifestation warranting medical intervention, as well as systemic responses leading to fatality. Athlete support 
practitioners seek prevention and management strategies for EIGS and Ex-GIS. This current position statement aimed to 
critically appraise the role of EIGS and Ex-GIS prevention and management strategies to inform effective evidence-based 
practice and establish translational application. Intervention strategies with mostly consistent beneficial outcomes include 
macronutrient (i.e., carbohydrate and protein) intake and euhydration before and during exercise, dietary manipulation of 
fermentable oligo-, di-, and mono-saccharides and polyols (FODMAP), and gut training or feeding tolerance adjustments 
for the specific management of Ex-GIS from gastrointestinal functional issues. Strategies that may provide benefit and/or 
promising outcomes, but warrant further explorations include heat mitigating strategies and certain nutritional supplementa-
tion (i.e., prebiotics and phenols). Interventions that have reported negative outcomes included low-carbohydrate high-fat 
diets, probiotic supplementation, pharmaceutical administration, and feeding intolerances. Owing to individual variability in 
EIGS and Ex-GIS outcomes, athletes suffering from EIGS and/or support practitioners that guide athletes through managing 
EIGS, are encouraged to undertake gastrointestinal assessment during exercise to identify underlying causal and exacerbation 
factor/s, and adopt evidence-based strategies that provide individualized beneficial outcomes. In addition, abstaining from 
prevention and management strategies that present unclear and/or adverse outcomes is recommended.

1  Background

It is now well established that taking part in exercise (i.e., 
hobby, fitness, and/or health) and sports activities (i.e., 
training and/or competition) can disturb various aspects of 
gastrointestinal integrity and function, leading to signs and 
symptoms of gastrointestinal abnormality. Early reports of 
abdominal pain and nausea in response to exercise stress 
have been documented in scientific literature for a century 
[1]. However, there is speculation that gastrointestinal com-
plaints by those undertaking competitive sports activities 
have existed undocumented since the ancient and modern 

Olympiad, which takes into account the reported historical 
perspective of competitive sports across centuries [2] and 
what is currently known about how exercise stress impacts 
the gastrointestinal system [3]. Awareness and understand-
ing of “how and why” exercise stress disturbs the gastro-
intestinal tract, and subsequently promotes gastrointestinal 
symptoms, only started to develop during the 1980–90s, 
with landmark exploratory investigations reporting high 
incidence and severity of gastrointestinal symptoms in 
endurance-based exercise [4–8]. From a professional prac-
tice perspective, gastrointestinal disturbances and associated 
symptoms in response to exercise are seen as a common 
outcome in active and athlete populations adhering to train-
ing and/or competition schedules, comprising a substantial 
case load for practitioners (e.g., sports dietitians, sport and 
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Key Points 

Clinical and non-clinical manifestations of exercise-
induced gastrointestinal syndrome (EIGS) and subse-
quent debilitating exercise-associated gastrointestinal 
symptoms (Ex-GIS) are a common feature of exercise 
adherence and are exacerbated by various extrinsic and 
intrinsic factors.

Macronutrient intake during exercise, maintenance of 
euhydration, dietary manipulations (i.e., FODMAP), 
and gut training have been shown to provide beneficial 
outcomes in EIGS and/or Ex-GIS management; while 
heat mitigating strategies and certain nutritional sup-
plementation (i.e., prebiotics and phenols) have shown 
promising outcomes, but other dietary manipulations and 
nutritional supplementation appear less favorable.

Individual athlete assessment, to established main causal 
factors of EIGS and Ex-GIS, aids tailored and effective 
prevention or management strategies in translational 
practice.

exercise nutritionists, and sports medical practitioners) [9, 
10]. Indeed, it is evident at a global level that an increas-
ing number of athletes and their support crews (e.g., sport 
institutes, sport and fitness professionals, coaches, and/or 
health professionals) are seeking referral for assessment, 
intervention, and monitoring for such exercise-associated 
gastrointestinal issues, especially in the endurance and ultra-
endurance sports scene [11–14]. In addition, a substantial 
number of athletes also access local event medical crew 
support and/or management information, with the aim of 
seeking prevention or management of their unwanted and 
potential performance-debilitating exercise-associated gas-
trointestinal issues [15–17].

Such exercise-induced gastrointestinal disturbances can 
range from minor to major symptomatic inconvenience 
that may impact exercise performance; including reduced 
workload, cessation of exercise, or withdrawal from activ-
ity [17–20]. In turn, these symptoms may potentially sig-
nal more serious clinical concerns warranting medical 
attention; which may include, but are not limited to, fecal 
blood loss and acute colitis, [21–25] gastroparesis with 
or without ileus, [12, 26–28] sepsis (i.e., endotoxemia 
and bacteremia) with subsequent systemic inflammatory 
response and linked to the pathophysiology of heatstroke, 
[29–33] and/or chronic inflammatory diseases of the gas-
trointestinal tract in susceptible predisposed individuals 
[3]. It is therefore not surprising that there has been an 
exponential growth in exercise gastroenterology research 
focusing on strategies to prevent or manage (i.e., attenuate 

or ameliorate the inevitable) the detrimental effects of 
exercise on the integrity and function of the gastrointesti-
nal tract. Anecdotal evidence from case reports and refer-
ral platforms suggest that practitioners seek expertise in 
the scientific literature for evidence-based effective and 
efficient prevention and management strategies to support 
athletes that present with “exercise-associated gastrointes-
tinal syndrome” (EIGS) and “exercise-associated gastroin-
testinal symptoms” (Ex-GIS). Therefore, this joint Sports 
Dietitians Australia (SDA) and Ultra Sports Science Foun-
dation (USSF) position statement will focus on critically 
appraising the role of EIGS and Ex-GIS prevention and 
management strategies to provide guidance and recom-
mendations for effective evidence-based practice and 
establish translational application. A scoping review style 
approach (i.e., PubMed, SPORTSdiscus, and Ovid Med-
line) was used to obtain and screen for relevant research 
studies (i.e., original investigation, field research, and 
case study, in healthy athlete or active populations) in the 
respective EIGS and/or Ex-GIS prevention or management 
strategy assigned to academics, researchers, and/or prac-
titioners with established track records (i.e., research and/
or professional practice) in the topic area. Only research 
papers that provided some level of research methodologi-
cal competency and/or contributed to the consensus state-
ment discussions were included. Gathered information was 
used by the author group to establish efficacy in prevention 
and management of disturbances to gastrointestinal integ-
rity and function, systemic responses, and/or symptoms, 
with provisions towards a “grade of evidence” established 
by standardized assessment procedure and group consen-
sus (Sect. 2).

1.1  Exercise‑Induced Gastrointestinal Syndrome 
(EIGS)

The etiology and pathophysiology of EIGS is presented in 
Fig. 1 [3, 34]. EIGS comprises two primary pathophysi-
ological pathways. The circulatory-gastrointestinal path-
way describes the splanchnic hypoperfusion and gastro-
intestinal ischemia that occurs due to a redistribution of 
blood flow to skeletal muscle and peripheral circulation, 
addressing the metabolic and thermoregulatory demands 
of the exercise [35, 36]. Such typical physiological altera-
tions in response to exercise may result in intestinal epi-
thelial injury and hyperpermeability, as well as local and/
or systemic inflammatory effects in response to translo-
cated luminal originating pathogens, including but not 
limited to whole bacteria and/or bacterial endotoxins [33, 
37–40]. The neuroendocrine-gastrointestinal pathway 
describes the stress response contribution to gastrointes-
tinal integrity and functional disturbances, potentially via 
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increases in sympathetic activation and stress hormone 
responses [26–29]. These neuroendocrine stress responses 
are synonymous with impaired gastrointestinal motility, 
transit, digestive function, and nutrient absorption [26–28, 
41–46]. They are likely associated with negative impacts 
on the myenteric and/or submucosal plexuses of the enteric 
nervous system, and/or the independent intestinal smooth 
muscle activation of interstitial cells of Cajal (i.e., pace-
maker cells of the gastrointestinal tract that are coupled 
with gastrointestinal smooth muscle and epithelial tissue) 
[47–49]. Two additional pathways have been proposed, but 
still warrant substantial investigation for clarity in patho-
physiological contribution. These include the mechanical 
strain of exercise (i.e., jarring, jolting, macro- and micro-
vibrations, and/or tissue friction) on the splanchnic area 
and exaggerated metabolic responses to exercise (i.e., 
increased pH). First, biomechanical abnormalities aligned 
with mechanical strain on the splanchnic area may impact 
the circulatory-gastrointestinal and neuroendocrine-gastro-
intestinal pathways and potentially lead to hypersensitivity 
of epithelial, connective, and/or surrounding tissues of the 
gastrointestinal tract [7, 50]. Second, metabolic acidosis 
associated with high intensity exercise and hypoglyce-
mia associated with prolonged endurance exercise have 
been identified as culprits in exercise-associated nausea 
[51–53].

1.2  Exercise‑Associated Gastrointestinal Symptoms 
(Ex‑GIS)

One of the predominant outcomes of EIGS, which has been 
established to affect exercise performance and may provide 
an indication of something more clinically sinister, is Ex-
GIS. Several reviews have reported on the incidence and 
severity of Ex-GIS predominantly in observational field 
studies, specifically in endurance and ultra-endurance activi-
ties that focus on running and/or cycling modalities in both 
elite and recreational populations [17, 20, 60–62]. Reported 
studies applied baseline and/or retrospective post-race gas-
trointestinal symptoms (GIS) subjective assessment tools 
of different origins and applications (e.g., established or 
in-house fabrications, Likert-type or visual analog scale). 
Considering the difference in methodological approach, it 
is not surprising that a large variation in symptom incidence 
and severity is evident. These range from negligible Ex-GIS 
incidence in a recreational endurance running event, [61] 
4% after marathon competition, [20] and ≥ 93% in response 
to ultra-endurance event participation, [19, 63] with sever-
ity ranging from minor inconvenience to severe that war-
ranted event withdrawal. These and other reports provide 
some indication that longer-duration exercise, especially 
when conducted in hot ambient conditions, tends to promote 
higher incidence rates of Ex-GIS [17]. Moreover, longer 

duration exercise bouts that require exogenous feeding tend 
to induce more Ex-GIS incidence despite a lower exercise 
intensity, which has been linked to individual variation in 
feeding tolerance [20, 41–43, 64–66]. To improve consist-
ency in Ex-GIS interpretation within exercise gastroenter-
ology research, the use of a standardized exercise-specific 
validated and reliable GIS assessment tool has been recom-
mended [67, 68].

The type of Ex-GIS reported, in accordance with the 
ROME criteria for symptom type (i.e., currently ROME IV 
criteria), [69, 70] can be classified as either gastro-esopha-
geal (i.e., upper-GIS): belching, heartburn (gastroesophageal 
reflux), upper-abdominal bloating or pain, urge to regurgitate, 
and/or regurgitation; intestinal (i.e., lower-GIS): flatulence, 
lower abdominal bloating or pain, urge to defecate, abnor-
mal defecation, and/or fecal blood loss; and/or other symp-
toms not otherwise specified (i.e., nausea and acute transient 
abdominal pain—stitch) [68]. Despite mainstream dogma 
proposing that lower-GIS symptoms (e.g., diarrhea) are more 
commonly linked to exercise, the scientific literature does not 
support this notion, with upper-GIS consistently being more 
commonly reported during and/or immediately after exercise, 
both in laboratory controlled and field-based experimental 
models [17, 20, 42, 71–73]. In addition, nausea appears to be 
a frequently reported symptom in ultra-endurance activities, 
[19, 20, 63, 74] which is rarely reported in lesser exercise 
loads or experimental models [20, 44, 61, 65, 72]. Taken 
together, the available research suggests that the magnitude 
(i.e., exercise duration, intensity, and environmental factors) 
of exertional stress and requirement for feeding during the 
exercise plays a key role in Ex-GIS incidence and severity. 
The incidence type, severity, time of onset, and when symp-
toms subside may provide some indication of relationships 
between Ex-GIS and EIGS pathophysiology (Fig. 1).

1.3  EIGS and Ex‑GIS Exacerbation Factors

Several extrinsic and intrinsic factors have now been iden-
tified and/or confirmed to exacerbate EIGS and Ex-GIS, 
ranging from minimal, to modest, to more extensive impact; 
which has been summarized in Table 1. Consensus impact 
was assigned on the basis of: (1) the number of research 
studies (i.e., cross-sectional analysis, exploratory, or inter-
vention laboratory-controlled trials) investigating the impact 
of the exacerbation factor or factors on gastrointestinal and/
or systemic perturbations to exercise; (2) the quality of 
experimental procedures and control of confounding fac-
tors in accordance with exercise gastroenterology research 
best-practice recommendations checklist [67]; (3) the magni-
tude of response (i.e., none, to modest, to clinically relevant 
minimal detectable change) of any identified gastrointesti-
nal and/or systemic perturbations to exercise [33]. Assigned 
magnitude of impact on EIGS and/or Ex-GIS may include: 
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unknown (?), minimal ( +), moderate (+ +), and extensive 
(+ + +). These factors and their potential magnitude of 
impact need to be considered when assessing the potential 

effectiveness of proposed prevention or management strate-
gies for EIGS and Ex-GIS, and using such strategies for 
individual athlete therapeutic intervention. This is important, 

Fig. 1  Updated schematic description of exercise-induced gastro-
intestinal syndrome (EIGS) and links to exercise-associated gastro-
intestinal symptoms (Ex-GIS). Text boxes: Darkest grey, instigation 
and final outcome; dark grey, primary causal mechanisms; medium 
grey, secondary outcomes to the causal mechanisms; light grey, sub-
sequent follow-on outcomes in response to the secondary outcomes. 
Beige arrows indicate EIGS pathway flow and direction, and black 
arrows indicate intra-EIGS linkage. aSpecialized antimicrobial pro-
tein-secreting (i.e., Paneth cells) and mucus-producing (goblet cells) 
cells aid in preventing intestinal-originating pathogenic microor-
ganisms entering systemic circulation. bIncrease in neuroendocrine 
activation and suppressed submucosal and myenteric plexuses may 
result in epithelial cell loss and subsequent perturbed epithelial tight 
junctions [49, 54]. cSplanchnic hypoperfusion and subsequent intes-
tinal ischemia and injury (including mucosal erosion) may result in 
direct (e.g., enteric nervous system and/or enteroendocrine cell) or 
indirect (e.g., braking mechanisms) alterations to gastrointestinal 
motility [27–29, 37, 55]. dGastrointestinal brake mechanisms: nutri-
tive and non-nutritive residue along the small intestine, including the 
terminal ileum, results in neural and enteroendocrine negative feed-
back to gastric activity [44, 55–58]. eAggressive acute or low-grade, 
prolonged mechanical strain is proposed to contribute to disturbances 

to epithelial integrity (i.e., epithelial cell injury and tight junction 
dysregulation) and subsequent “knock-on” effects for gastrointesti-
nal functional responses [50]. fMetabolic acidosis associated with 
high intensity exercise and hypoglycemia associated with prolonged 
endurance exercise may prompt Ex-GIS [51–53]. gLumen originating 
to circulatory translocation of pathogenic agents may include, but is 
not limited to: whole bacteria, bacterial endotoxins (e.g., lipopolysac-
charide, lipid A, flagella, and/or peptidoglycan), exocrine originated 
digestive enzymes, and/or food protein allergens [38]. hBacteria and 
bacterial endotoxin MAMPs and stress induced DAMPs are proposed 
to contribute toward the magnitude of systemic immune responses 
(e.g., systemic inflammatory profile) [59]. *Primary role in EIGS 
pathophysiology still warrants substantial exploration and investiga-
tion. EIGS, exercise-induced gastrointestinal syndrome; GIS, gastro-
intestinal symptoms; MAMPs, microorganism molecular patterns; 
DAMPs, danger-associated molecular patterns. Adapted with permis-
sion from “Systematic review: exercise-induced gastrointestinal syn-
drome- implication for health and disease,” by R.J.S. Costa, R.M.J. 
Snipe, C. Kitic, and P. Gibson, 2017, Alimentary Pharmacology and 
Therapeutics, 46(3), pp. 246–265. Copyright 2017 by John Wiley & 
Sons Ltd. [3]
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as these constitute potential confounding factors for exer-
cise-associated disturbances to gastrointestinal integrity and 
function and systemic immune responses [12, 75].

2  Methodological Considerations 
in Exercise Gastroenterology Research 
and Translational Practice

In the last decade, there has been exponential growth in 
EIGS and Ex-GIS prevention and management strategy 
research in response to potential performance and health 
implications. It has, however, been highlighted that a large 
proportion of EIGS and Ex-GIS prevention and manage-
ment strategy intervention studies contain substantial limi-
tations in experimental methodologies to a degree that may 
influence data outcomes and interpretations in professional 
practice [67]. Areas of identified methodological concern 
include, but are not limited to: the clear selection and screen-
ing of participants; the justification of exercise protocols 
(e.g., intensity, duration, and modality); ambient temperature 
control and/or application of sufficient heat stress; dietary 
control and nutritional provision before and during exercise; 
regulation and monitoring of hydration status; the justifica-
tion of EIGS measurement variables (e.g., intestinal epithe-
lial tissue integrity and pathogenic translocation biomarkers, 
systemic inflammatory response biomarkers, and/or gastro-
intestinal functional responses) and application of a suite 
of such markers; and the choice of Ex-GIS assessment tool 
employed. In addition, the consideration for other identi-
fied outcome and interpretation impacting factors have been 
acknowledged, such as power calculations to support sample 
size; data presentation (i.e., baseline values, absolute and 
relative change); inclusion of broad heterogeneous popula-
tions (e.g., biological sex, age, fitness status, and/or modal-
ity participation); and/or inclusion of confirmed erroneous 
measurement variables and analytical techniques. It has 
been argued that “such limitations increase the risk of mis-
representing research outcomes, which can have significant 
translational implications for practitioners, with outcomes 
ranging from ineffective interventions to the risk of fatality” 
[67]. In the context of the current review, the experimental 
design checklist, as presented in Costa et al. (2022), was fol-
lowed to ascertain the experimental quality and subsequent 
justification for inclusion in assessing the level of evidence 
for overall therapeutic strategy efficacy in the prevention 
and management of EIGS and Ex-GIS. Table 2 provides 
details of categories and types of disturbance to gastrointes-
tinal integrity and function, and systemic responses, com-
monly reported in the published literature. In addition, it 
provides a level of evidence based on best practice recom-
mendations in exercise gastroenterology research. Research 
that predominantly meets best-practice recommendations in 

exercise gastroenterology research may be assigned “Grade 
I” or “Grade II” level of evidence, while research that does 
not predominantly meet best-practice criteria is limited to 
“Grade III” evidence.

3  EIGS and Ex‑GIS Prevention 
and Management Strategies

To assess the impact of researched interventions on the 
prevention and management of the various primary causal 
mechanisms, pathophysiological pathways, secondary out-
comes, performance and/or clinical manifestation, Table 2 
provides a general overview of exercise-associated gastro-
intestinal disturbance categories and outcomes. Table 3 
presents a summary of evidence of efficacy. The level of 
evidence used, after screening for best practice experimental 
quality, [67] is also described in Table 2 and was adapted 
from levels of evidence presented in Thomas et al. [107] 
Areas of coverage include macronutrient intake before and 
during exercise, dietary interventions, nutritional supple-
ment interventions, hydration status, heat stress mitigating 
strategies, gut training and tolerance to feeding during exer-
cise (supplementary file 1) in specific relation to Ex-GIS. 
Other prevention and management strategies (i.e., physical 
applications and pharmaceutical interventions) and consid-
erations (i.e., recovery nutrition) explored are presented in 
the supplementary materials (supplementary file 2).

4  Macronutrients and Derivatives

A variety of macronutrients or their derivatives, which are 
consumed for a short- (< 24 h) or long-term (≥ 24 h) period 
before and/or during an exertional or exertional-heat stress 
model, have been studied for their efficacy in the prevention 
and management of EIGS. These include carbohydrate, pro-
tein, certain singular amino acids (i.e., glutamine, cysteine, 
arginine, and/or L-citrulline), and amino acid mixture for-
mulations. Such nutritional intervention approaches appear 
to target splanchnic perfusion dynamics via villi microvas-
cular regulation, epithelial cell metabolism and/or stability, 
and/or epithelial tissue tight-junction stability [37, 108–112].

4.1  Carbohydrate

Carbohydrate ingestion during prolonged exercise is com-
mon practice, and its effects on EIGS and Ex-GIS are there-
fore of interest. Carbohydrate ingestion immediately before 
or during exercise may attenuate disturbances to gastroin-
testinal integrity associated with EIGS through postpran-
dial hyperemia [108, 112]. Carbohydrate ingestion during 
exercise also aids the maintenance of blood glucose that 
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Table 1  Summarized overview of extrinsic and intrinsic exacerba-
tion factors of exercise-induced gastrointestinal syndrome (EIGS) 
and exercise-associated gastrointestinal symptoms (Ex-GIS). Criti-
cal explanation includes impact on markers of gastrointestinal integ-

rity and function, systemic responses, symptomology, and degree 
of exposure required to instigate perturbation to minimal detectable 
change [33]

Factors Impact Description References

Extrinsic factors
 Exercise duration +++ - Increasing exercise duration, irrespective of 

intensity, results in increased EIGS integrity 
and systemic response biomarkers and Ex-GIS, 
likely attributed to splanchnic hypoperfusion and 
subsequent gastrointestinal ischemia

- Exercise stress per se impairs gastrointestinal 
function without any duration impact (i.e., 1–3 h 
of exercise comparison), likely attributed to sym-
pathetic drive and stress hormone responses, with 
or without splanchnic hypoperfusion effects

- Considerable perturbations occur with ≥ 2 h exer-
cise duration compared with < 2 h, but appears to 
plateau ≥ 2 h thereafter

- Substantial Ex-GIS, with episodes of medi-
cal management, in prolonged endurance and 
ultra-endurance events. However, the full impact 
of ultra-endurance exercise activities on EIGS 
integrity/systemic and functional outcomes is still 
unknown and warrants further exploration

[17, 26, 28, 71, 76]

 Exercise intensity ++ - Increasing exercise intensity (e.g., continu-
ous ≥ 70% VO2max or HIIT or resistance exercise 
of ≤ 2 h) results in modest increases in EIGS 
integrity and systemic response biomarkers, 
functional responses, and Ex-GIS

[33, 40, 77–80]

 Exercise modality  + - Field exploratory studies suggest running-based 
activities prompt greater gastrointestinal distur-
bance and Ex-GIS compared with swimming 
and cycling (i.e., with or without inclusion in 
triathlon events) modalities, proposed to be 
linked with the addition of mechanical strain on 
the splanchnic area

- Controlled laboratory studies have not provided 
substantial evidence to suggest exercise modality 
differences (i.e., running vs. cycling) for markers 
of EIGS and Ex-GIS

- Impact of other exercise activities with respec-
tive body positioning and mechanical strain (e.g., 
swimming, canoeing and kayaking, motor and/
or winter sports) on EIGS markers and Ex-GIS is 
warranting exploration

[7, 20, 81]
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Table 1  (continued)

Factors Impact Description References

Environmental conditions +++ - Exercising in hot ambient conditions 
(e.g., ~ 35 °C), irrespective of relative humid-
ity, results in increases in EIGS integrity and 
systemic response biomarkers, and Ex-GIS. Cor-
relation and regression analysis have confirmed 
a positive association and prediction between 
maximal and Δ core body temperature with 
pathophysiological markers of EIGS. Core body 
temperature values of ≥ 39.5ºC or Δ ≥ 2.5ºC 
indicative of clinical  significancea, but values 
of ≥ 39.0ºC or Δ ≥ 2.0ºC are reported above mini-
mal detectable change and of clinical relevance

- Exercise stress per se impairs gastrointestinal 
function without any substantial additional heat 
stress impact

- Other thermoregulatory modifiers that may influ-
ence maximal (e.g., ≥ 39 °C) or magnitude of 
change (≥ 2 °C) in core body temperature (e.g., 
clothing, wind speed, water temperature, hydra-
tion status, heat acclimation/acclimatization and/
or individual thermoregulatory responses (i.e., 
heat tolerance) may result in increases in EIGS 
integrity and systemic response biomarkers, and 
Ex-GIS

[27, 33, 72, 82, 83]

Topographical elevation*  + - Some evidence suggested that altitude 
(e.g., > 2500 m ASL) at which exercise is per-
formed may increase disturbances to gastroin-
testinal integrity and function, and subsequently 
exacerbate Ex-GIS. However, further and 
repeatable exploration of the impact of altitude 
on EIGS integrity and functional markers is 
warranted

[11, 84–86]

Time of day exercise is performed (circadian vari-
ation)

++ - Nocturnal exercise prompts greater disturbance to 
gastrointestinal function responses and subse-
quent Ex-GIS compared with diurnal exercise

- No effect of nocturnal versus diurnal exercise on 
EIGS integrity and systemic biomarkers

[26]

External pharmaceutical administration +++ - Nonsteroidal anti-inflammatory drugs (NSAIDs) 
are considered gastrointestinal irritants, impact-
ing stomach gastric secretions, bicarbonate 
release in the duodenum, and/or erosion of the 
mucosal lining along the gastrointestinal tract

- The administration of NSAIDs prior to exercise 
can markedly increase gastrointestinal integrity 
perturbations, impair functional responses, and/or 
exacerbate Ex-GIS

[87–92]

Intrinsic factors

 Biological sex*  + - Differences in gastrointestinal integrity and func-
tion, systemic responses, and Ex-GIS between 
male and female participants in exercise gastroen-
terology research have been observed. Outcomes 
have not been consistent, with both biological 
sexes reporting varied markers of EIGS and Ex-
GIS dependent on the experimental model. Any 
differences have also been low to modest in nature

- It is proposed that female athletes present greater 
EIGS and Ex-GIS than male athletes owing to the 
menstrual cycle. However, clear and consistent 
evidence with substantial magnitude to support 
this plausibility is still warranted

[42, 93–95]
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Table 1  (continued)

Factors Impact Description References

 Age*  + - Some speculation has suggested that the develop-
ing gastrointestinal tract and immune system of 
youth athletes (≤ 18 years) may result in greater 
EIGS marker responses and Ex-GIS compared 
with well-trained and exercise-experienced 
adults. However, current evidence suggests any 
age-related differences are modest in nature

- Despite active older adults (≥ 40 years) present-
ing differences in gut bacterial composition (i.e., 
fecal profile) compared with younger active 
adults (≤ 30 years), only modest differences have 
been reported in EIGS integrity and/or systemic 
biomarkers, and Ex-GIS, between these two age 
populations

- The full extent of exertional or exertional-heat 
stress on EIGS integrity/systemic and functional 
outcomes and Ex-GIS in developing youth ath-
letes and older masters athletes is still unknown 
and warrants exploration

[93, 96–98]

 Fitness status  + - Higher-trained individuals, and individuals 
with the ability to cope with greater exertional 
or exertional-heat stress loads (i.e., duration, 
intensity, and heat), are at lower risk of EIGS 
compared with lower-trained individuals at the 
same absolute load. However, the ability to cope 
inevitably exposes higher-trained individuals to 
these higher exertional or exertional-heat stress 
loads and subsequently poses greater rela-
tive EIGS and Ex-GIS risk

- Higher-trained individuals have a greater ability 
to cope with feeding and/or drinking during exer-
cise (i.e., greater feeding tolerance) and the same 
absolute intake (i.e., volume, concentration, type, 
and/or texture); therefore, they present lower risk 
of Ex-GIS. However, the ability to better cope 
with feeding during exercise inevitably pushes 
higher trained individuals to attempt greater 
feeding volumes, and subsequently poses greater 
relative Ex-GIS risk

[15, 16, 20, 65, 66, 99]

 Gastrointestinal and/or circulating microbial and/or 
short chain fatty acid composition*

 + - The bacterial composition of the gastrointes-
tinal tract (i.e., commensal versus pathogenic 
bacteria), and subsequent levels of short chain 
fatty acids (SCFAs; e.g., acetate, butyrate, and/or 
propionate) in the lumen and/or circulation may 
impact the magnitude to which gastrointestinal 
integrity and systemic responses are perturbed, 
and Ex-GIS are instigated, in response to exer-
tional or exertional-heat stress

[29, 33, 93]
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attenuates stress hormone responses and potential rises in 
systemic inflammatory cytokines; [73] thus, it may play a 
role in mitigating EIGS. On the contrary, excessive carbohy-
drate ingestion and the type of carbohydrate ingested during 
exercise may adversely affect the function of the gastrointes-
tinal tract (e.g., delayed gastric emptying and/or malabsorp-
tion) and lead to Ex-GIS, subsequently impacting exercise 
performance (Sect. 9 and supplementary file 1).

The majority of research to date suggests that carbohy-
drate ingestion before and/or during exercise can minimize 
or prevent perturbations to gastrointestinal integrity [73, 
114–116]. For example, carbohydrate doses of 15.0–22.5 g 
every 15–30 min (20–90 g/h) during cycling or running 

exercise of 1–2 h duration, with or without heat exposure 
(32–35 °C and 27–70% relative humidity (RH)), has attenu-
ated the rise in plasma intestinal fatty acid binding protein 
(I-FABP; a surrogate biomarker indicative of intestinal 
epithelial cell injury) concentration and small intestine per-
meability (i.e., via dual-sugars test for lactulose to rham-
nose (L:R) ratio) compared with ingestion of water alone 
[73, 114–117]. Two studies did not observe a reduction in 
I-FABP with carbohydrate intake of 27 g/h during 60 min 
running (70% VȮ2max, 30 °C) and 108 g/h during 3 h cycling 
[118, 119]. However, these studies failed to show any sub-
stantial increase in I-FABP compared with the control, 
suggesting that the lack of effect may be due to insufficient 

Table 1  (continued)

Factors Impact Description References

 Individual characteristics* +++ - The feeding tolerance to food and/or fluid intake 
volume (e.g., mL/h), concentration (e.g., 6% 
versus > 10% carbohydrate solution), type (e.g., 
macronutrient profile and/or singular versus 
multiple transportable carbohydrates), and texture 
(e.g., solid versus liquid) may increase the risk of 
EIGS and Ex-GIS (Supplementary file 1)

- Individuals presenting gastrointestinal structural 
or function diseases or disorders may be predis-
posed to greater incidence and severity of EIGS 
and Ex-GIS

- Individuals with recurrent Ex-GIS with or 
without etiological and/or pathophysiological 
confirmation and/or clinical diagnosis are likely 
to present more incidence and severity of EIGS 
and Ex-GIS

[12, 41–43, 64, 66, 100, 101]

 Psychological state* ? - It has been proposed that a pre-exercise state of 
anxiety is linked to Ex-GIS on the basis of field 
exploratory observations and/or survey/ques-
tionnaire research designs. Such experimental 
approaches lack the rigors of laboratory and con-
founder-control experimental protocols, as previ-
ously described in pre-exercise mental prompts 
and physiological response to exercise [102]. 
To date, only one study has explored the role of 
pre-exercise anxiety state using a sport anxiety 
questionnaire of EIGS integrity, systemic, and/
or functional markers, and subsequent Ex-GIS, 
using controlled experimental procedures [106]. 
Somatic trait anxiety scores were not correlated 
with Ex-GIS in both exercise trial occasions (i.e., 
pre- and post- intervention)

[103–105]

Impact on magnitude of response in EIGS markers and Ex-GIS include: unknown: ?; minimal: + ; modest:++; extensive:+++; and further 
research warranted since current literature provides only extrapolation of study outcomes and speculation: *. Comments and impact outcomes 
are a general representation of reference literature. The high variability in intra- and inter-individual responses in EIGS markers and Ex-GIS 
in response to exertional and exertional-heat stress models, and feeding tolerance (i.e., volume, concentration, type, and texture) intake during 
exercise, is acknowledged. aClinical significance: above established minimal detectable change, and/or aligned with impacting exercise output, 
severe Ex-GIS, and/or warranting medical management. The role of dietary intake and hydration status as potential intrinsic exacerbation factors 
is covered in Sects. 5 and 7, respectively
ASL, above sea level; EIGS, exercise-induced gastrointestinal syndrome; Ex-GIS, exercise-associated gastrointestinal symptoms; h, hours; HIIT, 
high intensity interval training; NSAIDs, non-steroidal anti-inflammatory drugs; SCFA, short chain fatty acids; VO2max, maximal oxygen uptake
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thermophysiological impact rather than carbohydrate inges-
tion [67]. Moreover, another study that showed a reduction 
in I-FABP with carbohydrate intake compared with water 
failed to observe differences in splanchnic perfusion (i.e., 
gap between gastric and arterial  pCO2) by gastric tonom-
etry [115], potentially owing to the lack of sensitivity of 
this method to detect difference in perfusion at the level 
of the intestinal villi. In the aforementioned studies, there 
has been no difference observed in markers of endotoxemia 
(i.e., lipopolysaccharide (LPS) and lipopolysaccharide bind-
ing protein (LBP)). However, Snipe et al. [73] observed 
an increased endogenous endotoxin core antibody (Endo-
CAb IgM) concentration with carbohydrate ingestion and 
depressed concentrations with water. This suggests potential 
activation of EndoCAb, which is associated with systemic 
appearance of pathogenic agents, was overused in the water 
trial, but not on the carbohydrate trial, irrespective of the 
post-exercise LPS concentration (i.e., via limulus amebo-
cyte lysate gram-negative bacterial endotoxin determina-
tion). Only one study has explored systemic inflammatory 
responses in conjunction with other EIGS markers with 
carbohydrate intake and found attenuation of interleukin 
(IL)-6 compared with water intake, but no differences in 
the exertional-heat stress induced increases in proinflamma-
tory (i.e., tumor necrosis factor alpha (TNFα) and IL-1β) or 
anti-inflammatory (i.e., IL-10 and IL-1ra) cytokines between 
the carbohydrate and water control trials [73]. Together, the 
current research shows good evidence that ingestion of mod-
erate (20–60 g/h) and/or high (> 60 g/h) amounts of carbo-
hydrates during exercise is an effective strategy to attenu-
ate disturbances to gastrointestinal integrity and systemic 
responses. However, carbohydrate ingestion tolerance will 
dictate intake impact on gastrointestinal functional responses 
and Ex-GIS incidence and severity (Sect. 9 and supplemen-
tary file 1).

Grade of Evidence: I

4.2  Glutamine

The ingestion of protein (i.e., containing a variety of amino 
acids) and/or specific amino acids (and derivatives) may play 
a role in preventing EIGS through the provision of energy 
substrate to intestinal epithelial cells, regulation of intestinal 
barrier structure and function, and intestinal immune func-
tion [120]. The most well-researched singular amino acid 
to date for EIGS prevention or management is glutamine, 
on the basis of its provision as a primary fuel source for 
epithelial enterocytes [121]. Several studies have demon-
strated that acute (0.25–0.9 g/kg fat-free mass (FFM) con-
sumed 2 h before exercise) and prolonged (0.9 g/kgFFM/day 

for 7 days and 3 g L-glutamine with 0.69 g L-cysteine for 
5 days) glutamine supplementation attenuated the modest 
rise in exercise-associated small intestine permeability in 
response to 60 min running at 65–75% V ̇O 2max in 25–30 °C 
and 12–60% RH [122–125]. However, the studies failed to 
show any beneficial effects on luminal to systemic patho-
genic translocation (e.g., bacterial endotoxin) and systemic 
inflammatory cytokine responses (e.g., TNFα). A dose 
response study demonstrated small reductions in plasma 
I-FABP concentration with higher (0.5 and 0.9 g/kgFFM), 
but not lower (0.25 g/kgFFM), acute glutamine supplemen-
tation compared with a non-nutritive placebo [122]. These 
findings contrast with other studies that have observed small, 
but significant reductions, in plasma I-FABP concentrations 
pre-exercise on the second day of exercise in the heat with 
low glutamine doses provided 1 h before exercise (0.15 g/
kgBM) and post-exercise with prolonged (3 g/day L-glu-
tamine with 0.69 g/day L-cysteine for 5 days) supplementa-
tion [123, 126]. It should be noted that values present in all 
studies for gastrointestinal integrity disturbance through the 
experimental procedure timeline were minor and of little 
clinical relevance [33, 67]. In contrast, several recent studies 
have shown no benefit to EIGS prevention and management 
with glutamine ingested before exercise. For example, 0.9 g/
kgFFM L-glutamine ingested 60 min before a 20 km cycling 
time trial (~ 33 min) in 35 °C and 51% RH did not attenuate 
the post-exercise modest rise in plasma I-FABP, IL-6, or 
TNFα concentrations, and responses were not different to 
the non-nutritive placebo [127]. Similarly, ingestion of 0.3 g/
kgFFM L-glutamine 60 min before 80 min treadmill walking 
at 6 km/h with 6% gradient in 35 °C and 30% RH and run to 
exhaustion (~ 22 min) at lactate threshold speed in 40 °C and 
40% RH did not substantially attenuate disturbances to gas-
trointestinal integrity [128, 129]. Methodological limitations 
have been raised in these studies, questioning the results 
validity into real-world practice [67]. The majority of stud-
ies have not reported Ex-GIS with L-glutamine ingestion 
[122, 127–129]. However, a dose–response study showed 
increased Ex-GIS with glutamine ingestion at 0.9 compared 
with 0.6 and 0.3 g/kgFFM, which were more pronounced 
during the 2 h following ingestion [130]. Overall, there are 
conflicting findings on the effect of glutamine on EIGS, 
with any beneficial effects reported linked to magnitude of 
response being small and of no clinical relevance.

Grade of Evidence: III

4.3  Arginine and Citrulline

L-arginine and L-citrulline (i.e., L-arginine precursor) 
may enhance nitric oxide production at the intestinal villi 
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microvascular compartment, with a proposed subsequent 
enhancement in splanchnic perfusion that would support 
the maintenance of gastrointestinal epithelial integrity dur-
ing exercise [131, 132]. Laboratory-controlled research 
with L-arginine and EIGS outcomes is lacking. However, 
ingestion of 30 g/day L-arginine for 14-days before a mara-
thon did not have any effect on small intestine permeability, 
fecal occult bleeding, or Ex-GIS compared with equivalent 
supplementation with glycine [132]. Although, it should be 
noted that small intestine permeability, assessed by urinary 
dual-sugar (i.e., lactulose and mannitol) probe was not sig-
nificantly elevated post-marathon compared with pre-race. 
Whilst this study did not observe differences in Ex-GIS, a 
review of arginine side effects suggests that GIS, particularly 
diarrhea, may occur with L-arginine intake with single doses 
of > 9 g or daily doses of > 30 g/day [133]. Indeed, a small 
increase in Ex-GIS (i.e., nausea and fullness) with the addi-
tion of L-arginine to a carbohydrate electrolyte solution has 
been observed during prolonged (2.5 h) submaximal (50% 
peak power) cycling exercise [134].

L-citrulline may enhance L-arginine-derived nitric oxide 
production, as the ingestion of 10 g of L-citrulline 30 min 
before 60 min cycling at 70% maximum workload has been 
shown to modestly attenuate splanchnic hypoperfusion and 
attenuate the rise in plasma I-FABP concentration, but with 
no effect on gastric or small intestine permeability [131]. It 
is also noteworthy to report the attenuated hypoperfusion 
and epithelial injury on L-citrulline supplement interven-
tion increased to similar values as placebo immediately 
post-exercise. Therefore, it is not clear whether the acute 
attenuation during exercise was due to mechanistic effects of 
the L-citrulline or simply just having nutrients (e.g., amino 
acid derivative) along the gastrointestinal tract, as per the 
mechanistic alignment with carbohydrate feeding before and 
during exercise (Sect. 4.1).

Grade of Evidence: II to III

4.4  Amino Acid Combinations

In response to the lack of clarity on the impact of singu-
lar amino acids or derivatives on biomarkers representa-
tive of EIGS, recent studies have investigated the impact of 
amino acid combinations on EIGS biomarkers. First, colla-
gen peptides (10 g/day for 7 days and 45 min pre-exercise) 
did not influence a cluster of intestinal epithelial integrity 
biomarkers and inflammatory cytokines compared with a 
placebo in response to 70 min running at 70–90% V ̇O2max 
in 22 °C [135]. The application of a multiple amino acid 
(i.e., 4.5–6.4 g/L: valine, aspartic acid, serine, threonine, and 
tyrosine, with or without isoleucine) beverage intervention 
for 7 days, immediately pre-exercise, and during 2 h running 
at 60% V ̇O 2max in ~ 35 °C attenuated intestinal epithelial 

cell injury, perturbations to bacterial and endotoxin profiles, 
and systemic inflammatory responses, but not circulatory 
bacterial DNA presence and/or alterations to systemic bacte-
rial profile compared with the water control trial [136, 137]. 
Furthermore, the amino acid content within the beverage 
provisions did not substantially exacerbate Ex-GIS incidence 
and severity in response to the exertional-heat stress com-
pared with water. It was reported that these beneficial effects 
may be due to the 7-day supplementation period promot-
ing amino acid delivery before the stress exposure, subse-
quently improving the robustness and stability of the intesti-
nal enterocyte cell membrane and/or tight-junction structure 
and function [108, 111, 112, 120, 138]. Additionally, intake 
during exercise may have supported villi microvascular per-
fusion via the nitric oxide pathway [109].

Grade of Evidence: II

4.5  Whole Protein

The ingestion of whole protein, which is more commonly 
consumed in foods during prolonged steady state exercise 
(e.g., ultra-endurance) [15, 16], has also been previously 
investigated for the prevention and management of EIGS. 
Whey protein hydrolysate (i.e., 14.8 g protein/serve) con-
sumed before and every 20 min during 2 h running at 60% 
V ̇O 2max in 35 °C and 27% RH attenuated plasma I-FABP 
concentration and small intestine permeability, and subse-
quently resulted in a more beneficial bacterial endotoxin pro-
file, although these differences in plasma endotoxin concen-
tration were not significant [73, 117]. It was speculated that 
these beneficial outcomes were potentially due to increased 
heat shock protein expression and/or stabilization of tight-
junction protein complexes. While whole protein may be 
beneficial to EIGS outcomes linked to the circulatory–gas-
trointestinal pathway, such high intakes increased Ex-GIS 
compared with ad libitum water [73], which has feeding 
tolerance and performance implications [17, 42]. Although 
large doses of protein during exercise may induce and/or 
exacerbate Ex-GIS, smaller doses (i.e., 3 g every 15 min) co-
ingested with glucose appear to be tolerable [139]. However, 
the impact of lower protein doses during exercise on EIGS 
markers still warrants investigation.

Grade of Evidence: II

5  Dietary Components and/or Interventions

5.1  Gluten‑Free

Adherence to a gluten-free diet is prevalent amongst non-
celiac athletes, with the primary reason of self-diagnosis of 
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gluten sensitivity symptom (i.e., gastrointestinal origin) or 
non-symptom related benefits (i.e., improves overall health 
and/or ergogenic effect) [140]. A gluten-free diet restricts 
gluten, a storage form composite of gliadins and glutenins 
commonly found in wheat, rye, barley, and triticale. Unlike 
celiac disease, at present there is no established clinical 
diagnostic biomarker (i.e., allergic or autoimmune response) 
for non-celiac gluten sensitivity [141, 142]. Nevertheless, 
non-celiac athletes have reported symptomatic improve-
ments at resting and during exercise after implementing 
a gluten-free diet. Such symptomatic improvements may 
be due to the subsequent adjunct reduction of fermentable 
oligo-, di-, and mono-saccharides and polyols (FODMAPs), 
specifically fructans and galactooligosaccharides [143–146]. 
Other possible reasons are a change in dietary habits per se. 
For example, Lis et al. [140] reported that athletes increased 
their fruit, vegetable, and gluten-free wholegrain consump-
tion when they switched to a gluten-free diet. To date, there 
is only one study that investigated the effects of a gluten-free 
diet versus a gluten-containing diet in non-celiac athletes 
on markers of EIGS and Ex-GIS. Non-celiac competitive 
cyclists found no overall effect of 7 days gluten-free versus 
gluten-containing diet on intestinal epithelial injury, sys-
temic inflammatory cytokines, and Ex-GIS in response to 
an exertional stress experimental model [147]. At present, 
there is no evidence supporting a gluten-free diet in non-
celiac athletes in the prevention and management of EIGS 
and Ex-GIS.

Grade of Evidence: III

5.2  Fermentable Oligo‑, Di‑, and Mono‑Saccharides 
and Polyols (FODMAP)

A low FODMAP diet is a well-recognized dietary interven-
tion for managing diseases of gut–brain interaction (DGBI), 
namely irritable bowel syndrome (IBS)) [148–151]. Athletes 
who experience Ex-GIS often report similar symptom types 
as those with IBS; and commonly include flatulence, lower 
abdominal bloating and pain, and urge to defecate [3]. Many 
athletes often implement a low FODMAP diet pre-exercise 
as an effective strategy to reduce Ex-GIS [10, 11, 13, 152]. 
FODMAPs are rapidly fermentable short-chain carbohy-
drates, which are synonymous with increases in intestinal 
luminal gas, water, and metabolic by-products (e.g., short-
chain fatty acids (SCFA)) [153, 154]. Collectively these 
biological changes result in luminal distension leading to 
lower-GIS symptoms in individuals with heightened vis-
ceral sensitivity [155]. Conversely, a low FODMAP diet 
is reported to reduce microbial diversity and total bacterial 
abundance [149], which may be counter productive to EIGS 

management. This is postulated to be due to diminished 
luminal content, fermentation, and SCFA production [29, 
33]. Therefore, it is plausible that a lowered dietary intake 
of FODMAPs may support the management of Ex-GIS, but 
may negatively influence the pathophysiology of EIGS in 
susceptible athletes.

Owing to the increased energy requirements of athletes, 
the typical FODMAP dietary intake can be up to 81 g/day 
[144] compared with a typical westernized (i.e., Austral-
ian) diet of 24 g/day [153]. When adopting a low FODMAP 
diet (i.e., < 8 g/day of FODMAP), for either 6 days [11, 
13, 152] or a short-term (i.e., 24–48 h) dietary interven-
tion (i.e., ≤ 5 g/day) before exercise, [82, 156] a reduction 
in Ex-GIS severity before, during, and after exercise has 
been reported in response to exertional experimental models. 
Of interest, a 24-h low FODMAP diet before a substantial 
exposure to exertional-heat stress (i.e., 2 h running at 60% 
V ̇O2max in ~ 35 °C) showed greater intestinal injury along 
with a trend for a greater magnitude of bacterial endotoxin 
translocation, but did not impact systemic inflammatory 
responses compared with a high FODMAP diet. It has been 
proposed that the potential EIGS protective effects of a high 
FODMAP diet align with those mechanisms described with 
carbohydrate feeding before and during exercise in Sect. 4.1. 
In addition, they align with the increased SCFA concen-
trations observed in plasma and feces after high FODMAP 
diet adherence [28]. As discussed, there is evidence sup-
porting the role of a short-term (i.e., 24–48 h) low FOD-
MAP diet before exercise in reducing the severity of Ex-GIS, 
and there is also some evidence for a high FODMAP diet 
attenuating EIGS pathophysiology in athletes undertaking 
prolonged endurance-type exercise. Therefore, if implement-
ing a short-term low FODMAP diet for the management of 
Ex-GIS severity, consideration must be given to other pos-
sible protective dietary influences on EIGS pathophysiology; 
namely, carbohydrate loading and/or carbohydrate feeding 
during exercise within tolerance levels.

Grade of Evidence: I

5.3  Low Carbohydrate High Fat (Ketogenic Targeted 
Diets)

Maximizing fat as a substrate for endurance exercise, via a 
ketogenic low-carbohydrate high-fat (LCHF) diet, originated 
in the early 1980s and has since been thoroughly investi-
gated, primarily in respect to fuel kinetics and exercise per-
formance [157]. For athletes undertaking prolonged endur-
ance-based exercise, it is theorized that a LCHF diet may 
facilitate extended durations of exercise performance with-
out the need for frequent ingestion of carbohydrate-based 
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fuels, which seems a positive outcome in respect to lowering 
the gastrointestinal burden during exercise, and subsequently 
favoring the abolishment of Ex-GIS. However, there is cur-
rently a scarcity of research focusing on gastrointestinal 
responses to the application of LCHF dietary interventions. 
Although enhancing the ability for endogenous fat oxida-
tion at the expense of not having to or limiting the need for 
exogenous carbohydrate intake during exercise seems prom-
ising, several concerning aspects can be raised. Following 
dietary lipid consumption, such as a high-fat meal, circulat-
ing bacterial endotoxins (i.e., LPS) concentrations have been 
observed to increase in human experimental models [158], 
linking high-fat diets with increased bacterial endotoxin 
entry from the intestinal lumen into systemic circulation. In 
addition, an increased circulating concentration of I-FABP 
is also commonly reported in diets aimed at increasing lipid 
intake and oxidation [159]. Although I-FABP is indicative 
of intestinal epithelial cell damage, its levels are generally 
proportionally linked to the rate of cellular fatty-acid metab-
olism [160].

In an athletic population, an increase in plasma I-FABP 
concentration was observed following an acute 6  days 
LCHF diet (i.e., < 50 g/day carbohydrate, energy availabil-
ity = 40 kcal/kgFFM/day) at rest and in response to pro-
longed strenuous exercise (i.e., 25 km race walk) in elite 
race walkers compared with a high-carbohydrate diet (i.e., 
65% carbohydrate, energy availability = 40 kcal/kgFFM/
day) [161]. In addition, the proposed compromised epithe-
lial barrier before and during exercise was further supported 
by increased concentrations of soluble CD14 (sCD14) and 
lipopolysaccharide binding protein (LBP), both surrogate 
biomarkers indicative of luminal to systemic bacterial endo-
toxin translocation, in the LCHF group versus the high car-
bohydrate group. This likely influenced systemic inflamma-
tory responses [162]. Despite evidence of increased injury 
and compromise to the intestinal epithelial barrier in athletes 
following a LCHF diet, incidence of Ex-GIS was observed, 
but did not significantly differ compared with the high car-
bohydrate diet. It is important to highlight that the higher 
FODMAP content of the high carbohydrate diet may have 
inadvertently exacerbated Ex-GIS incidence and severity via 
malabsorption and bacterial fermentation (as per Sect. 5.2), 
and subsequently masked potential effects of LCHF on Ex-
GIS via the observed intestinal epithelial perturbations. In 
addition, from a professional practice perspective, follow-
ing 32 weeks on a LCHF diet, a world-class long-distance 
triathlete experienced the worst-ever performance outcomes 
following half-ironman and ironman competitions. He expe-
rienced negative subjective well-being, and his usual gastro-
intestinal disturbances were not alleviated [14]. On the basis 
of the current evidence to date, LCHF dietary interventions 

do not support the prevention or management of EIGS and 
Ex-GIS.

Grade of Evidence: II

5.4  Low Energy Availability

It is well-established that in medical conditions associated 
with acute or chronic periods of compromised nutritional 
intake (e.g., anorexia nervosa), gastrointestinal derangement 
and subsequent symptoms (e.g., gastro-esophageal and/or 
intestinal symptoms associated with disturbances to gastric 
motility, gastric emptying, and intestinal transit) are com-
mon manifestations [163, 164]. More recently, the explora-
tion of athletes adhering to unmatched dietary and train-
ing regimes, synonymous with low energy intake, and/or 
high training and competition energy outputs has led to the 
greater knowledge and understanding of low energy avail-
ability (LEA), and the development of relative energy defi-
ciency in sport (REDs) and its clinical consequences [165]. 
Clinical cases and exploratory research have revealed the 
multisystem impact of chronic LEA, including gastrointes-
tinal disturbances and symptomatic outcomes potentially 
based on underlying neuroendocrine (e.g., altered and abnor-
mal stress hormone responses) pathophysiology [166]. On 
the basis of these reports, it is plausible that individuals in a 
state of LEA and/or presenting diagnostic criteria for REDs 
may be more prone to EIGS and Ex-GIS as a result of the 
perturbed neuroendocrine–gastrointestinal pathway.

To date, only one study has investigated the effects of a 
short-term (i.e., 6 days) LEA intervention on gastrointesti-
nal integrity biomarkers and Ex-GIS in elite race walkers 
[161]. Acute LEA (i.e., 65% carbohydrate, energy availabil-
ity = 15 kcal/kgFFM/day) did not result in differing intestinal 
epithelial injury, bacterial endotoxin profile perturbations, or 
Ex-GIS compared with a high carbohydrate (i.e., 65% carbo-
hydrate, energy availability = 40 kcal/kgFFM/day) diet over 
the dietary intervention period, in response to a 25 km race 
walk in temperate ambient conditions. Food and fluid were 
provided to mimic a race feeding regimen during exercise. 
It is possible that the short duration intervention may have 
resulted in these null effects, as longer-term LEA (i.e., time-
line that impacts lean body mass and resting metabolic rate) 
results in more pronounced perturbations to physiological 
systems [165]. In addition, the provision of any carbohydrate 
dose during exercise may have also contributed to the lack of 
group differences [64, 73, 113–115]. Therefore, at this stage, 
it may be suggested that short-term LEA does not exacerbate 
EIGS or Ex-GIS; however, it is unknown if chronic LEA, 
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leading to REDs, impacts how an individual gastrointestinal 
tract responds to exercise stress.

Grade of Evidence: III

5.5  Low Fiber (and/or Residue)

It is well recognized that manipulating (i.e., increasing, 
reducing, or altering type) the fiber (e.g., insoluble: lignin 
and cellulose; and soluble: arabinoxylan, beta-glucan, guar 
gum, inulin, and psyllium) and/or other residues (e.g., 
resistant starches such as amylose) of dietary intake plays 
a key role in symptomatic management of DGBI (e.g., gas-
trointestinal functional disorders—IBS) and inflammatory 
diseases of the gastrointestinal tract (e.g., inflammatory 
bowel conditions such as Crohn’s diseases and ulcerative 
colitis) [167–172]. Considering the neuroendocrine–gas-
trointestinal and circulatory–gastrointestinal pathways of 
EIGS presents similar pathophysiological manifestations 
as these disease states, respectively; it seems logical that 
manipulating the intake of dietary residues (i.e., insoluble 
and soluble fibers, and resistant starches) before exercise 
may influence EIGS and subsequent Ex-GIS outcomes. 
From a theoretical perspective, the consumption of dietary 
residues before and during exercise may promote both 
increased gastric and intestinal content that may lead to a 
direct (i.e., in situ content) or an indirect (i.e., gas produc-
tion and water translocation aligned with bacterial fer-
mentation of soluble fibers and resistant starches) increase 
in luminal pressure leading to intestinal hypersensitivity, 
local dysmotility, and/or ileal brake mechanisms, contrib-
uting to Ex-GIS [43, 55, 57, 58]. Nevertheless, considering 
the fermentable capacity of soluble fibers and resistant 
starches by commensal bacteria along the gastrointestinal 
lumen, effects may mimic those reported in research of 
dietary FODMAP content (see Sect. 5.2) and/or prebiotic 
supplementation (see Sect. 6.2) on EIGS and Ex-GIS out-
comes, whether it be exacerbating Ex-GIS severity and/or 
providing a beneficial effect on gastrointestinal integrity.

To date, only one retrospective field-based observa-
tional study has reported on the relationship between die-
tary fiber intake and Ex-GIS occurrence during competi-
tion in endurance athletes (i.e., long-course triathlon) [6]. 
The results were limited to those triathletes that presented 
with “intestinal cramps” also consumed fiber-rich foods 
in the pre-event meal. Despite these limited observational 
field research findings, it is surprising that a recent exper-
imental survey (n = 277) found that endurance athletes 
(15.2%) self-reported following a low fiber diet in the man-
agement of Ex-GIS, which was the highest reported man-
agement strategy [9, 10]. In addition, the cohort reported 
lowering dietary fiber intake leading into competition was 
the most successful strategy in their perceived reduction in 

Ex-GIS. Current sports nutrition recommendations caution 
athletes to be wary of high-fiber foods prior to competition 
owing to the possibility of increasing the risk of develop-
ing Ex-GIS [173]. It is unclear where such therapeutic 
information and adherence is coming from, but specula-
tion may possibly lie with unquestioned social acceptance 
stemming from clinical research in DGBI (i.e., functional 
diseases/disorders of the gastrointestinal tract) manage-
ment [167, 168, 170, 171] and/or broad-spectrum sports 
nutrition recommendations. Nevertheless, low-residue 
intake, using low-fiber and elemental-based dietary com-
ponents, formed part of EIGS and Ex-GIS management in 
a recent case series on endurance and ultra-endurance ath-
letes experiencing severe Ex-GIS [12]. Outcomes from the 
individually tailored therapeutic interventions suggested 
including low-fiber and residue foods and beverages within 
the dietary regime of certain case athletes reduced Ex-GIS 
incidence and severity in subsequent competitive events, 
leading to these athletes reporting performance improve-
ments (e.g., event completions and victories). It is worth 
highlighting that other therapeutic-focused interventions 
formed part of the overall management plan within the 
case series (e.g., gut training, low FODMAP diet, meas-
ured and planned carbohydrate intake during exercise, and 
euhydration without fluid overload, among others), and 
likely also contributed to the positive outcomes. Owing 
to anecdotal evidence in professional practice, it is specu-
lated that adherence to low-fiber and/or residue diets may 
lower the predisposition to Ex-GIS [11]. However, consid-
ering that there is no experimental evidence on this topic, 
well-conducted randomized controlled trials are needed 
to provide full insight into the impact of dietary fiber on 
EIGS and Ex-GIS outcomes.

Grade of Evidence: IV

6  Dietary and Nutritional Supplements

Various dietary and nutritional supplements have been 
explored in the context of attempting to ameliorate the 
pathophysiological pathways of EIGS, namely the circu-
latory–gastrointestinal pathway (i.e., intestinal epithelial 
cell and tight-junction injury and/or dysfunction, lumen to 
circulation pathogenic translocation, and systemic immune 
responses), and subsequently Ex-GIS. These include pro-
posed antioxidants (i.e., ascorbic acid, tocopherol, and 
capsaicin); biotics (i.e., pre-, pro-, and syn-biotics), bovine 
colostrum, curcumin, anthocyanin, and nitrate.
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6.1  Antioxidants

Oxidative stress may contribute to the exacerbation of 
exercise-associated intestinal epithelial injury and subse-
quent local inflammatory responses [174, 175]. As such, 
the increased activity of intestinal epithelium reactive oxy-
gen species, during exercise and/or in the recovery period 
after exercise (i.e., splanchnic reperfusion), may facilitate 
epithelial cell injury and tight-junction protein rupture or 
dysfunction, leading to enhanced translocation of pathogenic 
agents into systemic circulation [3, 37, 138]. It has, there-
fore, been proposed that supplementing with nutrients that 
present antioxidative or anti-inflammatory properties before 
exercise may ameliorate the associated gastrointestinal dis-
turbances. To date, supplements containing antioxidative 
or anti-inflammatory properties, including ascorbic acid, 
tocopherol, and capsaicin have been investigated.

Using a test–retest model, an acute dose of L-ascorbic 
acid (1000 mg) 2 h before an incremental cycling test to 
exhaustion reduced circulating gram-negative endotoxin 
concentration compared with a control trial 8 weeks prior 
[176]. Given the lack of crossover, no placebo control, and 
extensive time between trials, it is unclear if the modestly 
reduced post-exercise endotoxin levels are directly related to 
acute ascorbic acid ingestion. Another investigation deter-
mined the impact of 2 weeks tocopherol or soy lecithin pla-
cebo supplementation on intestinal permeability, fecal blood 
loss, and GIS following a marathon [177]. There was no 
significant change in intestinal permeability with tocoph-
erol supplementation in response to the marathon. Addition-
ally, no significant difference in heme-positive fecal samples 
was observed (tocopherol: 10% versus placebo: 20%). While 
abdominal cramping and pain were significantly reduced 
with tocopherol supplementation, heme-positive fecal sam-
ples were unrelated to Ex-GIS.

It has also been proposed that an intervention involving 
the administration of an antioxidant rich compound, capsai-
cin, may be effective in preventing and/or managing gastro-
intestinal epithelial injury [178]. Capsaicin is a proposed 
antioxidant and anti-inflammatory compound found within 
hot peppers and has been shown to increase blood perfu-
sion in the gastrointestinal epithelium, albeit within animal 
models [178]. Thus, an increase in blood perfusion from 
capsaicin consumption has been hypothesized to ameliorate 
gastrointestinal epithelial injury in humans. A randomized 
control trial undertaken to assess the effect of capsaicin sup-
plementation on sprinting performance and IL-6 response 
implemented an intervention where participants received 
25.8  mg of capsaicin immediately prior to performing 
15 × 30 m sprints at 35 s intervals at maximum effort [179]. 
It was determined that participants experienced increased 
Ex-GIS with supplementation; however, IL-6 response was 
unchanged pre- to post-exercise [179]. Taken together, and 

considering the limited studies in the area that do not meet 
the minimal best practice recommendations, [2] there is no 
clear evidence to suggest a period of antioxidant supple-
mentation before an exercise bout prevents or can be used 
to manage EIGS and/or Ex-GIS.

Grade of Evidence: III to V

6.2  Biotics (Pre‑, Pro‑, and Syn‑biotics)

It is a common belief among athletes and athlete support 
practitioners that a period of biotic supplementation, in 
the form of prebiotics (i.e., non-digestible material that 
can be fermented by bacteria in the lower gastrointestinal 
tract), probiotics (i.e., live bacteria which survives transit to 
colonize the lower gastrointestinal tract), or a combination 
referred to as synbiotics, will confer some beneficial effects 
to the gastrointestinal tract, particularly in response to exer-
cise, when the gastrointestinal tract is compromised [180]. 
The mechanisms by which biotics may infer a beneficial 
effect on EIGS are associated with increasing the relative 
abundance of commensal bacterial along the gastrointesti-
nal tract. This β-change may subsequently increase bacterial 
fermentation activity, leading to enhanced concentrations 
of luminal and/or plasma SCFA (e.g., acetate, butyrate, and 
propionate) [148, 181–183], newly termed post-biotics. Both 
fecal and plasma SCFA concentrations have been linked to 
protecting gastrointestinal integrity against exertional and 
exertional-heat stress [29, 33, 93]; although direct mechanis-
tic explanation warrant further exploration and clarification.

A recent systematic literature review was undertaken to 
provide clarity on the impact of short or long-term biotic 
(i.e., pre-, pro-, syn-biotic) supplementation on markers of 
EIGS and Ex-GIS in response to exertional or exertional-
heat stress [180]. However, no study that investigated the 
impact of prebiotic supplementation on EIGS and Ex-GIS 
was identified within the SLR. Recently, an 8-week prebiotic 
supplementation intervention (i.e., 16 g/day of a fructoo-
ligosaccharides, galactooligosaccharides, resistant starch, 
and dietary fiber formulation) prior to a 3 h exertional-heat 
stress experimental protocol resulted in a noticeable reduc-
tion in intestinal epithelial injury and luminal to systemic 
bacterial endotoxin translocation. However, it had no impact 
on attenuating systemic inflammatory response and did not 
influence gastrointestinal functional responses [184]. Addi-
tionally, the prebiotic supplementation did not further exac-
erbate Ex-GIS severity compared with the non-prebiotic-
containing and low FODMAP placebo. It is important to 
note that the observed beneficial outcomes on ameliorating 
intestinal epithelial injury and bacterial endotoxin transloca-
tion with prebiotic supplementation were modest in nature, 
and overall exertional-heat stress associated gastrointestinal 
integrity perturbation were lower than previously reported 
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[67]. This is likely attributed to the attenuating effects of 
carbohydrate feeding, as described in Sect. 4.1, which was 
provided in the first 2 h of the protocol.

Within the systematic literature review, probiotic and 
synbiotic supplementation interventions included single or 
multiple species/strains: B. animalis, B. bifidum, B. breve, 
B. lactis, B. longum, B. subtilis, E. faecium, L. acidophilus, 
L. brevis, L. casei, L. fermentum, L. helveticus, L. lactis, L. 
paracasei, L. plantarum, L. rhamnosus, L. salivarius, and/
or S. thermophilus, with or without fructooligosaccharides 
(55.8 mg/dose) or inulin (2.3 g/dose). Bacterial doses ranged 
between ×  108 to ×  1011 colony forming units, with supple-
mentation period ranging from 7 days to 3 months. Exer-
cise protocols varied from an incremental cycling test to 
exhaustion, to an ultra-endurance triathlon event, as well as a 
military training protocol. Probiotic or synbiotic supplemen-
tation did not present any substantial beneficial effect com-
pared with placebo or control on surrogate markers of intes-
tinal epithelial injury. Inconsistent outcomes were observed 
with assessment markers of intestinal permeability with pro-
biotic or synbiotic supplementation; with higher, lower, and 
no difference in outcomes between supplementation and pla-
cebo were reported. Of note, the reported beneficial effects 
of synbiotic supplementation on intestinal permeability 
was as a result of using the erroneous zonulin biomarker to 
quantify permeability [185–188]. No probiotic or synbiotic 
supplementation intervention reduced markers of exercise-
associated endotoxemia compared with the study’s respec-
tive placebo or control. However, one intervention (seven 
days L. casei) reported a substantial increase in gram-neg-
ative bacterial endotoxin plasma concentration in response 
to 2 h steady-state treadmill running (60% V ̇O2max) in hot 
ambient conditions (34.0 °C, 32% RH) compared with a 
modest reduction in the placebo group [189]. The increased 
endotoxemia was speculated to be associated with a greater 
bacterial luminal load as a result of the 7 days L. casei sup-
plementation dose (i.e., more bacterial endotoxin in the 
lumen available to translocate across the exercise-associated 
compromised epithelial barrier). There was no consistency 
in the impact of probiotic or synbiotic supplementation on 
systemic inflammatory responses, with no substantial dif-
ferences reported in included studies. Regarding Ex-GIS, 
four out of the five studies within the SLR presented data 
indicative of no effect on Ex-GIS incidents and/or severity. 
One study reported lower Ex-GIS severity in the probiotic 
supplement group (i.e., 4 weeks, > 25 billion CFU/day from 
L. acidophilus CUL60, L. acidophilus CUL21, B. bifidum 
CUL20, B. animalis subsp. Lactis CUL34) in response to 
a simulated marathon. However, at closer inspection of the 
data and considering the methodological issues, it can be 
argued that the placebo group outperformed the probiotic 

supplementation group in regards to incidence of Ex-GIS 
and GIS in recovery from exercise. No study to date has 
assessed the impact of biotics on markers of gastrointestinal 
function. It was not surprising that no substantial differences 
were observed for EIGS markers, considering probiotic and 
synbiotic supplementation did not result in any changes in 
fecal bacterial composition (i.e., α-diversity and/or relative 
abundance), with only the supplemented strain or species 
showing increases in relative abundance. These increases, 
however, did not translate into increases in SCFA. The SLR 
concluded that probiotic supplementation with the strain 
or species studied does not substantially influence intestinal 
injury and permeability, subsequent systemic endotoxin or 
inflammatory cytokine responses, or GIS in response to exer-
cise. As reported in the risk of bias assessment, many studies 
lacked adequate exertional and/or heat stress, or appropri-
ate spectrum of biomarkers, to make definitive conclusions. 
Synbiotic supplementation appears to closely resemble the 
effects of probiotic, rather than prebiotic supplements, owing 
to the generally very small quantity of prebiotic ingredients 
included within the study intervention formulation.

Grade of Evidence: I to II

6.3  Bovine Colostrum

Bovine colostrum has been proposed to support the gas-
trointestinal system via promotion of villus development 
and mucosal thickness throughout the gastrointestinal tract 
[190]. As reported in animal experimental models, evidence 
suggests that bovine colostrum protects against intestinal 
hyperpermeability associated with non-steroidal anti-inflam-
matory drugs (NSAIDS) or hyperthermia [191, 192]. It is 
therefore plausible that bovine colostrum supplementation 
may contribute towards a management strategy for EIGS. 
Several randomized controlled trials have investigated the 
effect of acute and prolonged bovine colostrum supplemen-
tation on markers of EIGS, with conflicting findings reported 
in regards to intestinal epithelial injury and permeability 
outcomes in response to exercise. A wide variety of exer-
tional stress protocols have been used, ranging from 20 min 
running at high intensity (up to 80% V ̇O2max) to 1.5 h com-
bined cycling and running, and within diverse environmen-
tal conditions (i.e., ambient temperature ranging from 22 
to 40 °C) [193–200]. Supplementation protocols included 
ingestion of bovine colostrum for 14 days at 20 g/day with 
or without zinc carnosine, [193–196] 8 weeks at 60 g/day, 
[199] and 7 days at 1.7 g/kgBM, [198] before the respective 
exercise protocol. The proposed protective effects of bovine 
colostrum were assessed via urinary L:R ratio for intesti-
nal permeability, plasma I-FABP concentrations pre- to 
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post-exercise, and exercise-induced systemic inflammatory 
response (i.e., cytokine profile). Research outcomes appear 
inconsistent, with some studies reporting modest positive 
effect with 14 days of supplementation at 20 g/day supple-
mentation on mitigating L/R and/or the rise in I-FABP from 
pre- to post-exercise, compared with placebo [193–196]. 
However, other studies, using more substantial exercise 
models with or without the addition of heat exposure (e.g., 
1.5 h cycling and running and 45 min exercise in 40 °C) 
demonstrated no beneficial effects of supplementation on 
markers of intestinal permeability or systemic inflamma-
tory response [197–200]. Previous arguments in support of 
bovine colostrum in protecting the gastrointestinal tract (i.e., 
intestinal epithelial injury and permeability) in response to 
exercise are acknowledged [201]. However, several sup-
plement intervention studies, with closer adherence to best 
practice recommendations for research methodologies, [67] 
have shown no beneficial outcomes compared with respec-
tive placebo or control [197–200]. In addition, a systematic 
literature review with meta-analysis that included explora-
tion of measures related to EIGS (i.e., circulating immu-
noglobulins and leukocytes) reported none to fairly low 
impact of bovine colostrum supplementation intervention 
on these biomarkers [202]. Taken together, the current evi-
dence suggests there is no strong and consistent evidence to 
recommend acute or prolonged supplementation with bovine 
colostrum to attenuate disturbances to the gastrointestinal 
integrity and/or systemic inflammatory responses associated 
with EIGS.

Grade of Evidence: II–III

6.4  Curcumin

Curcumin, the primary compound found in turmeric, is of 
interest owing to its anti-inflammatory properties and pro-
posed function in strengthening intestinal endothelial tight 
junctions, demonstrated both in vitro and in vivo [203–205]. 
It also appears to attenuate proinflammatory LPS signaling 
pathways, moderating disturbance to gastrointestinal epithe-
lial lining and resulting in reduced bacterial translocation. 
This potentially reduces systemic inflammatory responses 
[204, 205]. To date, only one study has investigated the 
potential role of curcumin in moderating markers synon-
ymous with EIGS. It was observed that participants who 
supplemented with 500 mg/day of curcumin for 3 days had 
a significantly smaller increase in plasma I-FABP (abso-
lute difference ~ 366 pg/mL) and IL-1ra (absolute differ-
ence ~ 8 pg/mL) after 60 min of moderate-intensity running 
in 37 °C ambient temperature compared with those who 

supplemented with placebo [206]. Unfortunately limitations, 
including insufficient exercise stress to induce substantial 
elevations in relevant biomarkers, confirmed by a rise in 
I-FABP under the minimal detectable change (MDC), [33] 
make it challenging to conclude if differences were of clini-
cal and practical relevance. Therefore, more methodologi-
cally robust studies are required to unveil the preventative or 
mitigating potential of curcumin supplementation on EIGS. 
Given that limited research is available, it is currently not 
recommended as a first-line action for athlete application as 
a strategy for reducing EIGS.

Grade of Evidence: III

6.5  Anthocyanins

Anthocyanin, a bioactive flavonoid polyphenol, has been 
proposed to attenuate nuclear factor-kappa B (NF-κβ)-
mediated inflammatory responses, including targeted 
effects on protecting gastrointestinal barrier integrity in 
human experimental models [207–210]. Moreover, inges-
tion (240 mg) of blackcurrant extract that contains a sub-
stantial anthocyanin dose (e.g., cyanidin-3-O-glucoside, 
cyanidin-3-O-rutinoside, delphinidin-3–100 O-glucoside, 
and delphinidin-3-O-rutinoside), [211] before exertional 
stress (i.e., 30 min rowing at 80% V ̇O2max), was reported to 
mitigate oxidative stress (e.g., plasma carbonyls), and inhibit 
LPS-stimulated cytokine secretion (i.e., TNFα and IL-6) and 
NF-κβ activation, compared with placebo [212]. It is there-
fore plausible that such supplementation before exercise may 
provide some attenuating effects on markers respective of 
exercise-associated gastrointestinal integrity perturbations. 
A recent study investigated the effects of 7 days of anthocya-
nin-rich blackcurrant extract administration (600 mg/day) on 
gastrointestinal integrity markers in response to exertional-
heat stress (i.e., 60 min running at 70% V ̇O2max in 34 °C 
and 40% RH ambient conditions) [213]. Although, the sup-
plementation intervention led to a significant reduction in 
intestinal epithelial injury (i.e., plasma I-FABP concentra-
tion) after exertional-heat stress compared with placebo, no 
differences were observed for small intestinal permeability 
(i.e., 4 h urinary L:R ratio), bacterial endotoxin translocation 
(i.e., sCD14 and LBP), or an array of systemic inflammatory 
responses biomarkers (i.e., IL-6, IL-10, and IL-1ra). Similar 
to other nutrition supplement studies attempting to manage 
exercise-associated perturbation to gastrointestinal integrity, 
it is important to note that the indication of overall intesti-
nal epithelial injury, bacterial endotoxin translocation, and 
inflammatory cytokine biomarker values, in both the antho-
cyanin and placebo trials, were modest in nature. In addition, 



 R. J. S. Costa et al.

they were under the MDC previously proposed to warrant 
practical and clinical significance; which was likely associ-
ated with the modest exertional-heat stress model adopted 
[33, 67]. Taken together, it appears that the positive effect 
of acute intake of anthocyanin on in vitro pathogen chal-
lenge and inflammatory responses are not supported by a 
more prolonged supplementation period and its impact on 
in vivo biomarkers within human trials. In view of the cur-
rent limited research available and the need for more robust 
experimental designs (e.g., more prolonged exertional-heat 
stress models to test supplementation hypothesis and ade-
quate confounder control), it is currently not recommended 
as a first-line action for athlete application as a strategy for 
reducing EIGS.

Grade of Evidence: III

6.6  Nitrate

Gastrointestinal perfusion is dependent on macro- and 
micro-vascular activity throughout the splanchnic vas-
culature network, in which nitric oxide is a key regula-
tor, inducing vasodilation [109, 214]. It can be proposed 
that increasing local availability of nitric oxide through 
nitrate supplementation may play a role in preventing and/
or attenuating exercise-associated splanchnic hypoper-
fusion, and subsequent local ischemia. To date, only one 
study has investigated the effects of a nitrate-containing 
beverage (800 mg) on markers of splanchnic perfusion and 
ischemia, epithelial integrity, and Ex-GIS compared with 
carbohydrate (20 g sucrose) and water trials, in response to 
60 min cycling at 70% Wmax [115]. Participants were pro-
vided with a supplement dose 15 min pre-exercise and half-
way through a 60 min cycle at 70% Wmax. Despite a clear 
increase in plasma nitrate and nitrite, supplementation did 
not improve splanchnic perfusion, epithelial ischemic injury, 
or bacterial endotoxin translocation. Compared with water, 
nitrate supplementation resulted in a 50% increase in intes-
tinal epithelial injury (i.e., plasma I-FABP concentration), 
whereas sucrose ameliorated intestinal epithelial injury. The 
percentage change in plasma I-FABP concentration pre- to 
post-exercise with a nitrate (299%) beverage was consider-
ably larger compared with sucrose (179%). Ex-GIS were 
similar between groups. It appears that nitrate supplementa-
tion does not dampen, and may even exacerbate, intestinal 
epithelial injury during moderate duration exercise (≤ 1 h) 
when compared with water. However, it is important to note 
that the exercise model used within this study was insuf-
ficient to warrant substantial gastrointestinal perturbations 
and associated Ex-GIS of any relevance, [33] and thus no 
ideal experimental design has been undertaken to appropri-
ately test nitrate supplement intervention in regard to EIGS 
mitigation or exacerbation [67].

Grade of Evidence: III

7  Hydration

The ingestion of water, via an array of fluid types, during 
prolonged exercise (e.g., ≥ 1 h), especially when performed 
in hot (≥ 35 °C) ambient conditions, is important to maintain 
euhydration and avoid adverse physiological consequences 
of hypohydration, which may lead to exercise performance 
decrements [101, 215]. Current water replacement guidance 
for sport and exercise modalities are substantially affected by 
fluid shifts (e.g., endurance and ultra-endurance), and they 
suggest fluid intake should be individually tailored using 
either ad libitum or planned fluid intake strategy to avoid 
adverse consequences associated with both hypohydration 
and overhydration (i.e., exercise-associated hyponatremia) 
[101, 173, 216, 217]. Considering the naturally large intra- 
and inter-individual variation in sweat rates in response to 
exercise, there is a potential risk for both under- and over-
hydration to impact the gastrointestinal tract leading to GIS 
[218–220]. For example, fluid intake above individual gas-
tric tolerance levels will increase intragastric pressure, caus-
ing gastric distension and contributing to the development of 
upper-GIS symptoms (e.g., upper abdominal bloating and/or 
pain, belching, urge to regurgitate or regurgitation) [41–43]. 
In contrast, hypohydration may exacerbate EIGS through 
reductions in plasma volume that enhance splanchnic hypop-
erfusion and increases in sympathetic drive that may sup-
press gastrointestinal functional responses [41]. Thus, the 
maintenance of euhydration in response to exercise would 
seem a plausible strategy to prevent or ameliorate EIGS and 
Ex-GIS.

7.1  Pre‑Exercise Hydration

Commencing exercise at 3.0% body mass loss via pre-
exercise sauna exposure slowed gastric emptying during 
90 min cycling at 70% Wmax compared with starting exer-
cise euhydrated [221]. Orocecal transit time (OCTT) and 
post-exercise small intestine permeability were similar 
between pre-exercise euhydration and hypohydration where 
fluid was ingested during exercise, although prior hypohy-
dration resulted in greater Ex-GIS (i.e., nausea and upper 
abdominal pain) [221]. Moreover, pre-exercise hypohydra-
tion induced by limiting fluid intake to 0.5 L/day prior to 
1 h cycling at 70% Wmax, with no fluid intake during exer-
cise, resulted in modestly higher intestinal epithelial injury 
(i.e., I-FABP: + 300 pg/mL, no statistical analysis presented) 
compared with pre-exercise euhydration achieved by habit-
ual fluid intake [222]. On the basis of these findings, and 
considering the difficulties in consuming large volumes of 
fluid during certain exercise activities [173, 216, 217], it is 
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recommended that individuals commence exercise activities 
in the euhydrated state. However, caution is warranted, as 
excessive pre-exercise fluid ingestion in the attempt to obtain 
euhydration may promote Ex-GIS, likely associated with 
increased gastrointestinal load. For example, fluid ingestion 
(1134 mL) immediately pre-exercise significantly increased 
the severity of exercise-related transient abdominal pain dur-
ing the first 5 min of running compared with no fluid inges-
tion [223]. In addition, although the impact of hyperhydra-
tion status on markers of EIGS and Ex-GIS is unknown and 
warrants exploration, some of the strategies used to promote 
hyperhydration (e.g., glycerol supplementation and sodium 
intake) have been reported to instigate GIS (supplementary 
file 2) [224].

Grade of Evidence: II

7.2  Hydration During Exercise

In a recent study, an increase in post-exercise plasma 
I-FABP concentration was accompanied by varying mag-
nitudes of increased systemic inflammatory cytokines 
with fluid restriction during 2 h running at 70% V ̇O2max 
(3.1 ± 0.7% body mass loss and POsmol > 300 mOsmol/kg) 
in temperate conditions when compared with programmed 
fluid ingestion rates that maintained euhydration (0.6 ± 0.6% 
body mass loss and POsmol < 300 mOsmol/kg) [41]. Hypohy-
dration resulted in higher incidence and severity (82% and 
240 mean summative accumulation during exercise, respec-
tively) of total Ex-GIS compared with euhydration (64% 
and 176 mean summative accumulation during exercise, 
respectively). However, it is important to highlight that no 
significant difference was observed between the hypohydra-
tion and euhydration trials for Ex-GIS variables (i.e., trend at 
p = 0.058 and p = 0.068 for lower-GIS and lower abdominal 
pain, respectively). This can possibly be attributed to the 
large individual variation common to GIS reporting and/
or that participant numbers were underpowered for such a 
subjective variable. Moreover, a separate study focused on 
ad libitum water intake during exercise (i.e., 2 h running at 
60% V ̇O2max in temperate ambient conditions) to maintain 
euhydration. Although Ex-GIS incidence was similar (70%), 
symptom severity was much lower (58 mean summative 
accumulation during exercise), possibly suggesting that fluid 
intake behavior may impact Ex-GIS outcomes (i.e., force-
ful intake via programming versus ad libitum intake within 
comfort) [71]. Nevertheless, carbohydrate malabsorption, 
as determined by breath  H2, of the high-mixed carbohydrate 
meal given 2 h before exercise was pronounced with hypo-
hydration, but not with euhydration; this likely explains the 
trend towards greater lower-GIS in the hypohydration trial 
compared with euhydration trial [41].

In another study, 1 h running at 70% V ̇O2max without 
fluid provisions significantly increased intestinal per-
meability compared with pre-exercise values; this was 
not significantly dampened by the provision of a carbo-
hydrate beverage or a no-carbohydrate placebo bever-
age [225]. However, exercise-induced body mass loss 
was only 1.5%, likely linked to the modest exertional 
stress model used, which is not indicative of exercise-
associated dehydration. Fluid provision during exercise 
resulted in greater feelings of fullness, but other GIS 
types were not affected. The optimal timing and volume 
of fluid provisions during exercise to reduce EIGS and 
Ex-GIS remains to be determined, but it is likely to be 
individualized [12]. Additionally, the effectiveness of 
fluid provision to reduce perturbations to gastrointestinal 
integrity may be dependent upon exercise duration or the 
extent of exercise-induced hypohydration. Considering 
hypohydration and excessive fluid intakes may contrib-
ute to EIGS and/or Ex-GIS, individuals should aim to 
establish a balance between individual tolerance levels 
to fluid intake during exercise and adequate fluid intake 
during prolonged exercise (> 1 h) to aid the maintenance 
of euhydration throughout.

Grade of Evidence: II

8  Heat‑Mitigating Strategies

The rise in core body temperature during exercise as a result 
of skeletal muscle function and metabolism, exacerbated 
further by hot and/or humid conditions, is directly positively 
correlated with increased perturbations to gastrointestinal 
integrity, systemic responses, and Ex-GIS [83]. A recent 
meta-data analysis from n = 132 exertional and exertional-
heat stress trials suggested that maximal core body tempera-
ture accounted for 16.4%, 24.9%, 42.4%, and 12.4% of the 
predictive variance in the magnitude of epithelial injury, 
systemic endotoxemia and inflammatory response, and total-
GIS, respectively [83]. Moreover, core body temperatures 
of ≥ 39.5 °C consistently elicit intestinal epithelial injury, 
bacterial endotoxin translocation, systemic inflammatory 
responses, and Ex-GIS over minimal detectable change 
synonymous with clinical relevance [33, 83]. Heat mitiga-
tion strategies, such as heat acclimation/acclimatization, pre- 
(before exercise) and per- (during exercise) cooling, using 
internal (e.g., cold beverages or ice slurry) and external 
strategies (e.g., ice-vest, cold water immersion, or cooling 
showers), and fluid ingestion (covered in the hydration sec-
tion) may attenuate the rise in core body temperature during 
exercise in the heat and therefore may minimize EIGS and 
Ex-GIS [226].
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8.1  Heat Acclimation/Acclimatization

Heat acclimation/acclimatization (e.g., prolonged and 
repeated exposure to heat stress) appears to be an effective 
extrinsic heat mitigation strategy [226]. However, research 
to date is not supportive of its efficacy at mitigating EIGS. 
Intestine permeability was not different in response to a 
45 min run at 50% V ̇O2max in 46 °C (20% RH) following 
7-day (100 min exertional-heat stress) heat acclimation 
[227]. Permeability was not increased from rest and was 
measured by lactulose ingestion and excretion only, there-
fore making it difficult to interpret small intestine perme-
ability outcomes. This study, however, showed a reduction 
in IL-6 and IL-10 cytokines that coincided with reduced 
thermoregulatory and cardiovascular strain. Further stud-
ies have also demonstrated that 5–10 days of heat accli-
mation (i.e., running in 41.4 °C, until a + 2 °C core body 
temperature increase and 60 min cycling at 50% V ̇O2peak 
in 35 °C and 50% RH or 40 °C and 25% RH) have been 
insufficient at attenuating I-FABP, gastric emptying rate, 
LPS, or the cytokine profile in response to heat stress or 
hypoxic  (FiO2 = 0.14, 40 min cycle at 50% V ̇O2peak) exercise 
[228–230]. Considering the proposed benefits of heat accli-
mation/acclimatization at attenuating cardiovascular and 
thermoregulatory strain during exercise in the heat [226], 
further research with heat acclimation regimens of more 
prolonged exposure (e.g., > 10 days) and sufficient adaptive 
stimulus (e.g., ≥ 90 min/exposure) are required to elucidate if 
this is an effective strategy for attenuating EIGS and Ex-GIS.

Grade of Evidence: III

8.2  Internal Cooling

Internal cooling methods include the ingestion of cold fluids 
or ice slurry before (pre-cooling) and/or during (per-cooling) 
exercise. Internal cooling can lower pre-exercise core body 
temperature (e.g., when ingested prior to exercise) and cre-
ate a heat sink that enables greater heat storage capacity, 
and subsequently, improved exercise performance in the heat 
[226]. Therefore, internal cooling methods may attenuate 
EIGS through directly lowering peak core body temperature 
and/or delaying the rise in core body temperature during 
exercise and heat stress load [83] with respect to exercise 
intensity and duration, ambient conditions of exercise adher-
ence, and other thermoregulatory modifiers (e.g., air flow, 
clothing, and/or equipment). Internal per-cooling research 
has shown a suppressed rise in core body temperature (mean 
reduction of 0.3–0.4 °C) with water bolus ingestion with 
0 °C and 7 °C water temperature compared with 22 °C water 
temperature given every 15 min during 2 h running at 60% 
VȮ2max in 35 °C (25% RH). This resulted in modestly attenu-
ated I-FABP and lower incidence (i.e., 67% versus 83%) and 

severity (i.e., 129 versus 235 summative accumulation) of 
upper-GIS symptoms; however, they did not reach statistical 
significance (i.e., trend at p = 0.066 and p = 0.087), respec-
tively [231]. Additionally, no difference in cytokine profile 
was reported. These modest benefits with lower drink tem-
peratures on intestinal injury and/or Ex-GIS (i.e., incidence 
and severity) are likely attributed to the modest suppressed 
rise in core body temperature; it can be speculated that it 
could potentially have been more beneficial if greater differ-
ence in core body temperature were observed [71, 83]. Fur-
ther research has shown that ingestion of 617 g of a sports 
drink ice slurry during the cycle leg of a simulated Olym-
pic distance triathlon in 32–34 °C (20–30% RH) attenuated 
intragastric body temperature and was well-tolerated, but 
no other markers of EIGS were reported [232]. One recent 
study reported no difference in markers representative of 
disturbed gastrointestinal integrity (i.e., I-FABP and LPS) 
with the frequent (i.e., pre-exercise and every 15 min) provi-
sions of a carbohydrate–electrolyte ice slurry and respective 
carbohydrate–electrolyte beverage at ambient temperature 
during 45 min running at 60% V ̇O2peak that was followed 
by a second run until volitional exhaustion at 70% V ̇O2peak 
[233]. The research protocol of this study provided carbo-
hydrates during exercise, which is aligned with attenuating 
exercise-associated disturbances to gastrointestinal integrity, 
as previously discussed in Sect. 4.1. Therefore, it is not sur-
prising that no intervention outcomes were observed, since 
the study overall negated its primary research focus owing 
to this erroneous protocol oversight (i.e., carbohydrate provi-
sions before and during exercise) in assessing the impact of 
internal per-cooling on markers of gastrointestinal integrity 
[67]. To date, internal cooling with cold water and ice slurry 
during exercise appears to be well-tolerated and contributes 
to suppressing the rise in core body temperature, which 
has positive associations and can predict the magnitude of 
EIGS and Ex-GIS [83]. Indeed, additional research using 
more robust experimental designs and control, ensuring that 
greater difference in core temperatures are achieved, and 
employing a wide array of EIGS markers is warranted.

Grade of Evidence: III

8.3  External Cooling

External cooling methods consist of the application of a 
cold medium such as ice vests/packs, cold towels, or cold-
water immersion. These methods can reduce pre-exercise 
core body temperature and increase the core to skin tem-
perature gradient [226]. Similarly to internal cooling, exter-
nal cooling strategies may attenuate EIGS through directly 
lowering peak core body temperature and/or delaying the 
rise in core body temperature during exercise and heat 
stress load. Research on the gastrointestinal responses to 
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external cooling methods is limited to systemic inflamma-
tory cytokine responses, with one pre-cooling study dem-
onstrating a small attenuation of IL-6 and IL-10 responses 
with 60 min cold water (20 ºC) immersion before 90 min 
of running at 65% V ̇O2max in 32 ºC (47% RH) [234]. While 
another study demonstrated no difference in IL-6 with appli-
cation of an ice vest and cold towel before 30-min intermit-
tent sprint exercise in the heat [235]. Further exploration 
into external pre- and per-cooling methods in isolation and 
in combination with internal cooling methods is warranted 
and may provide a more thorough insight into how cooling 
strategies may directly or indirectly impact markers of gas-
trointestinal integrity or function, systemic responses, and 
subsequent Ex-GIS. In addition, despite extensive research 
into the impact of cold (i.e., ≤ 0 °C) exposure, with and with-
out exercise, on many physiological variables [236–239], the 
direct impact of external extreme cold stimulus and/or states 
of hypothermia on the gastrointestinal tract is still relatively 
unknown and warrants exploration.

Grade of Evidence: III

9  Gut Training

The idea of a highly adaptable gastrointestinal tract was first 
proposed in the 1990s [240]. Training the gut through con-
stant exposure to nutrition around exercise is proposed to 
improve its function and thus an individual’s tolerance to 
feeding during exercise, subsequently reducing the risk of 
Ex-GIS [241]. With the first few proof-of-concept studies in 
athletes only published in recent years, gut training remains 
an understudied topic.

9.1  Repetitive Feeding Challenge

The various approaches to gut training target the gastroin-
testinal tract’s adaptive potential that may occur with this 
strategy, and its relevance in managing EIGS and/or Ex-GIS 
have been explored through a SLR [241]. First, increasing 
the stomach’s capacity and tolerance to larger gastric content 
could reduce the sensation of fullness. The ability for gastric 
adaptation to food intake volume is observed anecdotally 
or in non-exercise settings (e.g., competitive speed eating 
contests and eating disorders) [242–244]. Gut comfort and/
or Ex-GIS improved among runners through daily repeti-
tive ingestion of nutrients (90 g/h 2:1 glucose:fructose 10% 
w/v) and a high fat supplement (33 g fat, 9 g protein, and 9 g 
CHO per hour) during exercise for 1–2 weeks [42, 43, 106], 
and repeated ingestion of sweat rate-matched fluids [245]. 

Second, it is proposed that gut training can increase gastric 
emptying. Despite the existing evidence on nutrient-specific 
changes in gastric emptying in non-athletic human popula-
tions [246–248], this has yet to be proven within an exer-
cise model. Third, a higher carbohydrate intake both during 
exercise and/or overall daily intake can increase intestinal 
absorptive capacity. Preliminary evidence in animal models 
showed nutrient-specific upregulation of intestinal transport 
proteins through taste-transduction pathways (e.g., type 1 
taste G protein-coupled receptors (GPCRs), α-gustductin) 
[249–251].

Additionally, the increase in nutrient absorption, gas-
tric emptying, and gastrointestinal motility may also be 
improved through the inhibition of the ileal break mecha-
nism [55, 252, 253]. This is only indirectly supported by 
existing gut-training studies looking at breath  H2 concentra-
tions, [42, 43, 65] and carbohydrate availability and oxida-
tion [42, 254]. Specifically, carbohydrate malabsorption to a 
90 g/h 2:1 glucose:fructose gut-challenge was reduced after 
gut training (i.e., 2 weeks of daily repeated feeding-chal-
lenge), but not on matched placebo [42, 43]. These findings 
were speculated to be caused by improved intestinal carbo-
hydrate absorption, as supported by higher blood glucose 
concentration during exercise post-gut training, but not on 
matched placebo. This increased carbohydrate availability 
seen in Costa et al., [42] was not observed by increasing 
daily dietary carbohydrate intake for 28 days [254]. Moreo-
ver, carbohydrate malabsorption was not observed to any 
substantial relevant level (i.e., breath  H2: 5 ppm before gut 
training and 4 ppm post-gut training) in response to a for-
mulated 87 g/h glucose feeding challenge during exercise 
[106, 255]. This suggests that fructose may be the prime 
culprit in the malabsorption observed in the initial trial of 
Costa et al. [42], irrespective of co-ingestion with glucose, 
and subsequent improved fructose absorption in the post-gut 
training trial (also see supplementary file 1, carbohydrate 
type). From a professional practical perspective, such out-
comes have been observed in athlete support intervention 
(i.e., case study). In these, higher carbohydrate doses with 
the inclusion of fructose (25 g) result in greater carbohydrate 
malabsorption (10 ppm breath  H2) versus lower total carbo-
hydrate and fructose (12.5 g) dose (6 ppm breath  H2) [64]. 
Lastly, the impact of a repetitive feeding challenge on intes-
tinal epithelial integrity (i.e., plasma I-FABP concentration) 
has been explored, but no effects have been observed. There 
was a substantial amount of individual variation within stud-
ies for intestinal epithelial integrity markers, likely associ-
ated with differences in nutrient (e.g., carbohydrate) content 
and processing along the gastrointestinal tract during the 
experimental procedures [42, 65], as discussed in Sect. 4.1. 
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Overall, the potential adaptations to gastrointestinal accom-
modation, motility, and absorption could lead to less Ex-GIS 
and better tolerance of nutrition during exercise, and subse-
quent enhanced exercise performance outcomes, as previ-
ously observed [42, 43]. To date, there is some evidence to 
support repetitive gut-challenge protocols in the prevention 
and management of EIGS and Ex-GIS [12, 241]. However, 
it appears to mainly benefit carbohydrate malabsorption 
and associated Ex-GIS, with more advanced gastrointesti-
nal functional measures still warranting investigation and no 
impact on gastrointestinal integrity evident.

It is also important to highlight that intermittent fasting is 
now a common practice in the sporting community with the 
aim of modifying body composition without performance 
decrements [256]. Considering the potential physiological 
and biochemical adaptations associated with gut training 
are at the expense of substantial and constant nutrient pro-
visions, it is unknown whether such fasting practices and 
subsequent reductions in nutrient exposure are counterpro-
ductive in regard to gastrointestinal functional responses, 
Ex-GIS, and their performance implications. Nevertheless, 
from a gastrointestinal and professional practice perspective, 
it appears that overall carbohydrate intake tolerance in the 
general active population equates to a liquid form at ≤ 1.0 g/
kgBM/h in 6–10% w/v with a simple glucose formulation 
[42, 54, 66, 73, 117]. Greater carbohydrate volumes and 
concentrations and/or altered forms (e.g., other and/or mul-
tiple carbohydrate forms, semisolid to solid textures, and/or 
inclusion of other substances such as caffeine) appear to be 
at the discretion of individual tolerance and/or gut training 
to improve formulation specific tolerance (see supplemen-
tary file 1).

Grade of Evidence: I

9.2  Non‑caloric Sweeteners

Similar to the mechanisms proposed for repetitive feeding 
challenge, consumption of non-caloric sweeteners may play 
a role in enhancing intestinal glucose uptake through the 
upregulation of active (i.e., SGLT1) and passive (GLUT5) 
transporters at the enterocyte apical surface, with or without 
upregulating GLUT2 at the basolateral surface, although this 
has primarily been observed in animal models [250, 257]. As 
such, enhancing glucose absorption and reducing the over-
all nutrient residue along the gastrointestinal tract may be 
linked to reducing Ex-GIS. Only one study to date has inves-
tigated the effects of sucralose supplementation (1 mM every 

15 min for 2 h) prior to 2 h cycling at 48% V̇O2peak [258]. 
No difference in overall Ex-GIS was observed in response 
to a carbohydrate challenge (1.2 g/kg/h maltodextrin) during 
exercise between the sucralose and control trials. While the 
exercise stress was insufficient to warrant any substantial 
gastrointestinal disturbance [67], it is important to note that 
GIS were only measured post-exercise retrospectively.

Grade of Evidence: III

9.3  Fluid Tolerance Training

Considering the plasticity of the stomach chamber to vol-
ume, repeated exposures to ingesting large fluid volumes 
(e.g. > 800 mL/h) may effectively improve stomach empty-
ing rate and subsequent comfort. Ingesting a 4% w/v carbo-
hydrate–electrolyte beverage every 10 min during running to 
match sweat losses (830 mL/h) increased stomach fullness 
from 2 (2.0: comfortable) to 2.3 (3: moderately uncomfort-
able), when compared with ingesting the beverage ad libi-
tum (338 mL/h) [245]. A total of five repeated trials (every 
7–11 days) of 90 min running at 65% V ̇O2max with volumes 
to match sweat loss significantly improved stomach comfort. 
Gastric emptying assessed on the first and fifth run remained 
unchanged, indicating that the improvement may be related 
to sensory factors and tolerance (e.g., desensitization) in 
coping with increased intragastric pressure.

Grade of Evidence: III

10  Translation to Practice

Considering that intervention research shows large indi-
vidual variation in assessment markers synonymous with 
EIGS and factors exacerbating Ex-GIS in athletes [3, 67, 
259], there is no one standard approach and therapeutic 
intervention for EIGS and Ex-GIS prevention or manage-
ment. This means practitioners should be cautioned against 
providing generalized prevention and management strategies 
of EIGS and EX-GIS, as each individual athlete case is dif-
ferent and unique. To determine the most effective strategy 
in prevention and management, an individualized assess-
ment to establish the underlying causes and exacerbators 
of EIGS and Ex-GIS is of vital importance. Supplementary 
file 3 covers practical aspects of the management of EIGS 
and Ex-GIS in sports and exercise clinical practice, elite 
sports performance, and field based competitive events. 
Context acknowledges and highlights individualization in 
the prevention and management pathway [12, 75], as well 
as other underlying factors from an individual athlete per-
spective and sports-specific training or competition aspects, 
which may promote exacerbation of EIGS and subsequent 

Fig. 2  Schematic flow illustration of the professional practice guid-
ance for the prevention or management of exercise-induced gastroin-
testinal syndrome (EIGS) and aligned exercise-associated gastrointes-
tinal symptoms (Ex-GIS) [12, 67, 75]

◂
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Ex-GIS. These can include predisposition, established 
diseases/disorders, or other underlying health influencing 
behaviors that may alter gastrointestinal integrity and/or 
functional response to exercise [165]. It can include train-
ing or competition aspects relating to pathogen exposure and 
contamination (i.e., environmental, population contact, and/
or equipment cross-contamination) that may induce acute or 
chronic gastrointestinal-associated illness or infection [260].

11  Summary

From historical to more recent evidence, it is now estab-
lished that exercise stress causes an array of asymptomatic 
and symptomatic gastrointestinal integrity and functional 
disturbances, which may lead to health-impacting systemic 
responses and outcomes. Furthermore, such gastrointes-
tinal disturbances are linked with rapid onset or delayed, 
and acute or prolonged, gastrointestinal symptoms, which 
have profound performance-impairment implications (i.e., 
reduced workload, cessation of exercise, or withdrawal 
from activity). From a professional practice perspective, it 
is therefore not surprising that athletes and athlete support 
practitioners are exploring effective ways to prevent and 
manage exercise-associated gastrointestinal perturbations 
and aligned symptoms. On the basis of the current avail-
able evidence from exercise gastroenterology research that 
generally meets a minimum level of quality of methodolo-
gies for best-practice experimental design, Table 3 presents 
a summary of prevention and management strategies and 
their impact on parameters of EIGS and Ex-GIS. On the 
basis of the efficacy of presented strategies, Fig. 2 presents 
a professional practice guidance schematic in the prevention 
and management of EIGS and Ex-GIS.

In short, the first-line actions consist of: (i) preparing 
the gastrointestinal tract for exercise; (ii) limiting gastro-
intestinal integrity, functional perturbation, and systemic 
responses during exercise; and (iii) restoring gastrointes-
tinal patency post-exercise to support recovery nutrition. 
First-line actions also include avoiding factors and strate-
gies reported to exacerbate or have no impact on EIGS 
and Ex-GIS. For those athletes experiencing recurrent 
Ex-GIS episodes, second-line action include undertaking 
a gastrointestinal assessment during exercise, as described 
in supplementary file 3 entitled Translation to practice: 
Assessment and intervention procedures for clinical prac-
tice—Supporting the individual athlete. This process 
would take into consideration individualized data and find-
ings from testing procedures into EIGS and Ex-GIS causal 
factors and align with relevant prevention and management 
strategies that have proven effective in research settings. 
Adopting and adhering to such assessment and interven-
tion procedures requires a multidisciplinary approach. 

Therefore, understanding one’s scope of practice and 
appropriate local and/or external referral pathways is a 
fundamental part of competent and effective practice. In 
addition, it is recommended that professional practitioners 
supporting athletes with gastrointestinal issues undertake 
ongoing education and training to gain or update knowl-
edge and understanding of how the gastrointestinal tract 
responds to exercise, thus enabling the provisions of effec-
tive and competent practice.
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