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Abstract
Background: Exercise is a well-known strategy for the prevention and treatment 
of cardiovascular diseases; however, the potential additional benefits of hypoxic 
exercise on cardiovascular function in comparison to normoxic exercise are still 
unknown. This study aimed to synthesize the hypoxic exercise protocols of ap-
plication and to comparatively determine the effects of hypoxic versus normoxic 
exercise on cardiovascular function (i.e. haemoglobin concentrations, arterial 
oxygen saturation %, maximal heart rate, blood pressure at rest and blood lactate 
levels) in people without cardiovascular diseases.
Methods: We systematically searched five databases, from inception to September 
2023, and selected randomized controlled trials (RCTs) comparing the effects of 
chronic hypoxic exercise versus normoxic exercise on cardiovascular function 
in people without cardiovascular diseases. A random effects meta-analysis with 
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1   |   BACKGROUND

Regular physical activity (PA) is widely established as a cor-
nerstone in the prevention of cardiovascular disease (CVD)1 
and CVD-related mortality.2 An increase in PA levels is 
noted among the first-line strategies to reduce CVD risk and 
burden,3 conferring additional benefits such as reduced all-
cause mortality.4 Indeed, the World Health Organization has 
strongly recommended regular PA for all adults, highlight-
ing further benefits on CVD risk5 in a dose-dependent man-
ner,6,7 such as those reported in endothelial function, blood 
lipid profile, inflammatory processes, and thrombosis.8

Hypoxic exposure and hypoxic exercise have emerged 
as novel preventive and therapeutic approaches to reduce 
CVD risk.9 Hypoxic exposure or intermittent hypoxia refers 
to the periodic and alternating cycles of hypoxia and nor-
moxia, a phenomenon that induces significant and transi-
tory reduction of arterial oxygen saturation (SaO2) during 
both resting and exercise conditions.10 Both modalities can 
stimulate specific biological signal cascades that promote 
physiological adaptations11 and acute responses on human 
metabolism (i.e. appetite suppression, increased metabolic 
rate and serotonin level, decreased leptin levels) which in 
turn affect the cardiovascular system (e.g. increased resting 
and maximal heart rate [HRmax], increased peripheral va-
sodilatation, normalized blood pressure [BP]).12 Moreover, 
hypoxic exercise could provide additional benefits on skele-
tal muscle capillarization and vascular dilator function, thus 

improving vascular health,13 and being helpful for people 
with CVDs or at risk.14,15 The physiological mechanisms un-
derlying these benefits are related to the hypoxia-inducible 
factors (HIFs) pathway.

The HIFs (i.e. HIF-1 and HIF-2) are key transcription 
factors that control the hypoxia-induced genes, which reg-
ulate the cellular response to reduced levels of oxygen.16 
Specifically, HIF-1, which includes the subunits HIF-1 
alpha and HIF-1 beta, is involved in the cascade of adap-
tations to hypoxic exercise able to exert positive effects on 
angiogenesis,17,18 and resting BP.19 During intermittent 
hypoxia, HIF-1 is responsible for cardiac protection and 
for the coordinated induction of multiple angiogenic fac-
tors related to the vascular response.20 Importantly, when 
physical exercise is performed under hypoxic conditions, 
an increase in blood flow to the involved muscles is pro-
duced, aiming to compensate for the reduced arterial O2 
content and to maintain relatively constant O2 delivery to 
the active muscle (i.e. ‘compensatory vasodilatation’)21; 
this phenomenon implies a subsequent reduction in BP 
that may be larger than that produced by exercise alone. 
Furthermore, hypoxic exercise could induce specific mus-
cular adaptations including an increased (i) oxidative 
enzyme activity, (ii) mitochondrial density, (iii) capillary-
to-fibre ratio and (iv) fibre cross-sectional area,22 all of 
which are modulated via the HIF-1 alpha signalling cas-
cade, which is not activated to the same extent in normoxic 
training or by passive hypoxic exposure.15 Additionally, 
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both the Dersimonian-Laird and the Hartung-Knapp-Sidik-Jonkman methods 
was conducted to estimate the pooled standardized mean differences (SMDs) and 
their 95% confidence intervals (95% CIs) of the hypoxic exercise effectiveness on 
each of the included outcomes related to cardiovascular function. We performed 
meta-regression models—considering total sample size, age, BMI, length of in-
tervention and FiO2 percentages—to determine their influence on the estimated 
effect. Subgroup analyses based on age, gender, type of exercise and health status 
of participants were conducted.
Results: A total of 31 RCTs involving 910 individuals were included. None of 
the pooled SMDs comparing hypoxic versus normoxic exercise were statistically 
significant. Subgroup analyses were only significant for lactate in people under 
30 years of age and healthy and/or athletic individuals (.59; 95% CI .11, 1.06).
Conclusions: Our data suggest that there were no additive benefits of perform-
ing hypoxic exercise on the cardiovascular function parameters explored for up 
to 7 weeks when compared to normoxic exercise in people without cardiovascular 
disease, except for a moderate increase in blood lactate levels in young healthy 
and/or athletic individuals.
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hypoxic conditions exacerbate the intensity of the exercise 
which in turn induces a peak peripheral lactate during 
and post-exercise that may confer several benefits on mi-
tochondrial biogenesis in skeletal muscle,23,24 and initi-
ates a signalling cascade that leads to increased expression 
of vascular endothelial growth factor A, a protein that pro-
motes cerebral angiogenesis.25 Furthermore, lactate has 
been related to enhanced cardiac function, with increased 
left ventricular ejection.26

In this context, a systematic review concluded that 
chronic exposure to intermittent hypoxia—hyperoxia 
seems to be a promising non-pharmacological strategy not 
only to enhance physical performance but also to reduce 
blood glucose levels and BP in older patients with meta-
bolic, CVD or cognitive impairment.11 However, despite 
the promising benefits of hypoxic exercise on increasing 
lipid metabolism in the short term or vascular health 
and autonomic balance,27 it is still relatively unknown 
whether hypoxic exercise may confer additional benefits 
compared to normoxic exercise on cardiovascular func-
tion. Moreover, controversial findings have been reported 
in some trials so far.28–32

Thus, a systematic review to synthesize and a meta-
analysis to determine the effects of prolonged hypoxic 
exercise (>3 weeks) compared to normoxic exercise on 
cardiovascular function seem to be necessary to draw 
a solid conclusion and to help clinicians in decision-
making when considering hypoxic exercise as a preven-
tive or therapeutic intervention for cardiovascular health. 
Therefore, the aim of the present review was twofold: (i) 
to synthesize the current protocols of application, and (ii) 
to comparatively determine the effects of hypoxic versus 
normoxic exercise on cardiovascular function measures 
(Haemoglobin [Hb] concentrations, SaO2%, HRmax, BP 
at rest and blood lactate levels) in the adult population.

2   |   METHODS

The Cochrane Collaboration Handbook33 and the 
Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses34 guided the present study. The 
protocol was registered in the PROSPERO database 
(CRD42022342165).

2.1  |  Data sources and searches

Two reviewers (RF-R and SR-G) independently searched 
the MEDLINE (via PubMed), Cochrane Library, Embase 
(via Scopus), Web of Science (WoS) and SportDiscus (via 
EBSCOhost) databases, from inception to September 2023. 
Databases were reviewed to identify randomized clinical 

trials (RCTs) aimed at determining the effectiveness of 
hypoxic exercise on cardiovascular function in adults. No 
language restrictions were applied. The Mendeley desktop 
find and merge duplicates tool was used to search for 
duplicates, and a third reviewer peer-reviewed the search 
process (VM-V). Further details of the search strategy 
employed for each database are available in Table S1.

2.2  |  Study selection

The search criteria according to the PICOs strategy were 
as follows: (i) Participants: adults (18 y and older); (ii) 
Intervention: hypoxic exercise; (iii) Comparison: normoxic 
exercise; (iv) Outcomes/results: parameters of cardiovas-
cular function such as Hb concentrations, SaO2%, HRmax, 
BP at rest and maximal blood lactate levels; and (v) Study 
design: RCTs. The exclusion criteria were as follows: stud-
ies that combined hypoxic exercise with other interven-
tions such as heat combined with hypoxic training vs. room 
temperature combined with normoxic exercise or training 
combined with sleeping at altitude. We also excluded those 
studies assessing the acute effect of a single hypoxic train-
ing session. The inter-rater agreement between authors for 
the independent study selection process had a kappa coef-
ficient of −.04 (p = .71).

2.3  |  Data extraction

Two authors (RF-R and AT-C) independently extracted 
the following information from each study included: (1) 
first author name and publication year; (2) country; (3) 
sample characteristics (i.e. sample size, percentage of fe-
males, health status or PA level, mean for age, and body 
mass index (BMI)); (4) intervention characteristics (i.e. 
hypoxic training regime, length, and frequency of the in-
tervention); and (5) outcomes: parameters of cardiovascu-
lar function. Pre-post intervention data at rest or after a 
maximal exercise test were extracted for all included stud-
ies. In some of them,35–38 data were obtained from graphs 
by reading them after adapting scales on the value axes 
using the Microsoft PowerPoint software. The inter-rater 
agreement between authors had a kappa coefficient of 
−.05 (p = .79). A third researcher (SR-G) independently 
appraised the accuracy of the extracted information.

2.4  |  Risk of bias assessment and 
GRADE report

Two researchers (RF-R and AT-C) independently as-
sessed the risk of bias of the included studies using the 
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Cochrane Collaboration's tool for assessing risk of bias 
(RoB2).39 Any disagreement was resolved by consensus 
or by discussion with a third reviewer (VM-V). The RoB2 
tool evaluates the risk of bias according to five domains: 
(i) randomization process, (ii) deviations from intended 
interventions, (iii) missing outcome data, (iv) measure-
ment of the outcome and (v) selection of the reported 
result. Overall bias was scored as (i) ‘low risk of bias’ 
if the study was classified as ‘low risk’ in all domains, 
(ii) ‘some concerns’ if at least one domain was scored 
as ‘some concerns’ and (iii) ‘high risk’ if there was at 
least one domain rated as ‘high risk’ or several domains 
as ‘some concerns’ that affect the validity of the results.

The ‘Grades of Recommendations, Assessment, 
Development, and Evaluation’ (GRADE) tool was used to 
determine the certainty of the evidence of the present sys-
tematic review.40 Each outcome was rated as having high-, 
moderate, low- or very low-quality evidence based on the 
design of the studies, risk of bias, inconsistency, indirect 
evidence, imprecision and publication bias. Accordingly, 
the score was downgraded one when serious risk of bias, 
as well as when inconsistency (I2 > 50%), indirect evi-
dence, imprecision (wide confidence intervals) and pub-
lication bias were reported.

2.5  |  Data synthesis

Random effect models were used to estimate the pooled 
standardized mean differences (SMDs) and their 95% 
confidence intervals (95% CIs) of the effectiveness of 
hypoxic exercise on each of the included outcomes 
related to cardiovascular function (i.e. SaO2%, Hb 
concentrations, HRmax, BP at rest and maximal blood 
lactate levels).41 We only conducted a meta-analysis 
when at least five studies reported the estimated 
effect for the same outcome.42 When outcomes were 
assessed at resting or through a maximal test, both 
measurements were registered considering their clinical 
interest; however, we only analysed data at resting or 
after a maximal test when studies reported the outcome 
mostly in this way; concretely, it occurred with BP that 
was mostly reported at resting, or blood lactate levels 
that were mostly reported after a maximal test. We only 
analysed the effect of hypoxic intervention versus the 
same training regime under normoxia, but not versus 
the control condition (e.g. non-exercise, waitlist).

According to the Cochrane Handbook recommenda-
tions, we extracted the pre-post mean, standard devia-
tion (SD) and sample size of each arm trial. For those 
studies that did not report these data, we collected the 
mean difference and SE or SD of the change. For RCTs 
with a crossover design, we followed the conservative 

approach proposed by the Cochrane Handbook; thus, 
we took all measurements from intervention and con-
trol periods and analysed them as if the study's design 
had been a parallel-group trial. When studies applied 
more than one test for reporting an outcome, a com-
bined estimate of them was calculated. Moreover, when 
studies were inversely scaled (i.e. lower values indi-
cating worse outcomes), the mean in each group was 
multiplied by −1.

Statistical heterogeneity between studies was ex-
amined using the I2 statistic. I2 values of 0%–40% were 
assumed to indicate ‘not important’ heterogeneity, 30%–
60% represented ‘moderate’ heterogeneity, 50%–90% 
represented ‘substantial’ heterogeneity and 75%–100% 
represented ‘considerable’ heterogeneity. We accord-
ingly considered their corresponding p-values and 95% 
CIs.43 To assess the robustness of summary estimates 
and to detect whether any single study accounts for a 
large proportion of heterogeneity, sensitivity analyses 
were performed, and influence graphs were generated 
by removing the included studies one by one from the 
analyses. Likewise, other subgroup analyses were con-
ducted (i.e. by age [<30 y vs. ≥30 y], gender [males vs. 
mixed gender or females], health status [healthy and/
or athletes vs. individuals with comorbidities and/or 
sedentariness] and exercise modality) when data were 
available. In the case of few studies for the subgroups, a 
sensitivity analysis was conducted to determine whether 
these variables showed an influence on our estimates. 
Meta-regression models—considering total sample size, 
age, BMI, length of the intervention and FiO2 percent-
ages—were conducted to determine their influence 
on the estimated effect. As suggested during the peer-
review process, random-effects models were estimated 
with robust variance estimation using the Hartung-
Knapp-Sidik-Jonkman, which provide more robust 
variance estimates in the meta-analyses and the meta-
regression models.44–46 Finally, we evaluated publica-
tion bias through visual inspection of funnel plots and 
Egger's regression asymmetry test to assess small study 
effects.47 All statistical analyses were performed using 
StataSE v. 15 (StataCorp, College Station, TX, USA).

3   |   RESULTS

3.1  |  Literature search

A total of 8452 studies were identified through the sys-
tematic searches, of which 4113 duplicated records were 
removed (Figure  1). Finally, after the full-text review of 
the 91 studies assessed for eligibility, 31 studies were in-
cluded in the systematic review and 29 provided data for 
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the meta-analysis.32,35–38,48–71 The reasons for exclusion 
after the full-text reading are available in Table S2.

3.2  |  Study characteristics

The main characteristics of the included studies are 
available in Table  1. All of them were RCTs—two pre-
senting a crossover design38,58 —and were published 
between 2000 and 2023. The country of origin of the 
studies was heterogeneous: (i) seven were conducted in 
Germany,32,49,51,53,56,57,59 (ii) three in Poland,35,64,65 in 
Spain38,52,69 and in Taiwan,61,62,71 (iii) two in Australia,54,67 
France,66,70 and the UK,37,50 and (iv) one each in Brazil,72 
Thailand,48 Korea,55 Wales,68 Netherlands,60 Slovenia36 
and China.63 The total number of participants included 
among the studies ranged from 12 to 73. A total of 910 par-
ticipants were considered for the final analysis, of which 
209 were sedentary and 156 were athletes or well/moder-
ately trained participants (although the PA level was not 
usually reported); the remaining participants were catego-
rized as obesity/overweight status (n = 359) according to 
their BMI (≥25 kg/m2). There was a fraction of participants 
who presented comorbidities at baseline such as type 1 
diabetes (1.9%),64 metabolic syndrome (2.8%),56 sleep ap-
noea syndrome (3.2%)52 and COVID-19 convalescents72; 
otherwise, they were categorized as ‘healthy’ Most studies 
were conducted only in males, except for 11 studies that 
included both males and females32,49,51,53,54,57,59,60,67,70 and 

two that included only females55,69; another did not report 
gender.72 The age range for the included participants was 
between 18.4 and 81.1 years old.

3.3  |  Intervention

The hypoxic training protocols varied across the in-
cluded studies, with most studies conducting hypoxic 
training at normobaric conditions (Table 2). The fraction 
of inspired oxygen (FiO2) during training ranged from 
12.0% to 17.2%, although some studies used 80%–85% of 
SaO2%59 or 3000 m above the sea38 as hypoxic conditions. 
Additionally, the number of sessions per week ranged 
from 2 to 5 sessions/week (3 sessions/week was the most 
usual frequency used), the session duration ranged from 
30 to 90 min (60 min was the most usual session vol-
ume), and the intervention length ranged between 2 and 
32 weeks (mean: 6.7 weeks).

3.4  |  Cardiovascular function parameters

Most studies assessed the effect of hypoxic train-
ing on SaO2%,35,37,50,61,70,72 blood lactate lev-
els32,38,49,50,56,63,66,68,70,72 and HR35,37,38,48–52,56,57,59–62,64,70–72 
through maximal tests. In contrast, systolic blood pres-
sure (SBP), diastolic blood pressure (DBP)32,51,53–56,66–70 
and Hb56,60,61,63–65 were usually assessed at rest. Other 

F I G U R E  1   Flow diagram of studies 
through the review (PRISMA 2020).

Records identified from*:
PubMed (n = 2673)
Cochrane Library (n = 448)
EMBASE (n = 2259)
WoS (n = 2723)
SPORTDiscus (n = 349)

Records removed before screening:
Duplicate records removed (n =4113)
Records marked as ineligible by automation tools (n = 0)
Records removed for other reasons (n = 0)

Records screened
(n = 4339)

Records excluded
By researchers after title-abstract 
review (n = 4248)

Reports sought for retrieval
(n = 91)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 91)

Reports excluded (n = 60):
Reason 1 study design (n = 22)
Reason 2 non-data for the outcome of interest (n = 15)
Reason 3 passive hypoxia (n= 6)
Reason 4 acute effects (n = 14)
Reason 5 duplicate sample (n = 3)

Studies included in review
(n = 31)

Identification of studies via databases and registers
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cardiovascular function parameters (i.e. maximal oxygen 
consumption, haematocrit, arterial stiffness or vascular 
endothelial function) were not sufficiently reported.

3.5  |  Meta-analysis

There were no significant differences in the changes 
observed after hypoxic exercise vs. normoxic exercise in 
the explored cardiovascular function parameters; thus, 
no added benefits of hypoxic exercise. Concretely, we 
obtained .11 (95% CI: −.15 to .36; I2 = 0%; n = 9 studies) 
for Hb concentrations (Figure  2), .00 (95% CI: −.27 to 
.27; I2 = 0%; n = 7 studies) for SaO2% (Figure  2), −.10 
(95% CI: −.25 to .06; I2 = 0%; n = 18 studies) for HRmax 
(Figure  3), −.01 (95% CI: −.21 to .20; I2 = 0%; n = 13 
studies) for SBP at rest (Figure  4), −.05 (95% CI: −.25 
to .16; I2 = 0%; n = 13 studies) for DBP at rest (Figure 4) 
and .27 (95% CI: −.01 to  .54; I2 = 27%; n = 9 studies) 
for maximal blood lactate levels (Figure  5). Robust 
variance estimation for random effects meta-analyses 
did not show any differences compared to our original 
estimates: .11 (95% CI: −.13 to  .34; I2 = 0%; n = 9 studies) 
for Hb concentrations, .00 (95% CI: −.29 to  .29; I2 = 0%; 

n = 7 studies) for SaO2%, −.10 (95% CI: −.22 to .02; 
I2 = 0%; n = 18 studies) for HRmax, −.01 (95% CI: −.18 
to .17; I2 = 0%; n = 13 studies) for SBP at rest, −.05 (95% 
CI: −.27 to .18; I2 = 0%; n = 13 studies) for DBP at rest 
and .27 (95% CI: −.06 to .34; I2 = 27%; n = 9 studies) for 
maximal blood lactate levels.

3.6  |  Subgroup and sensitivity 
analyses, meta-regression models, and 
publication bias

The subgroup analyses performed according to age, 
gender, health status, and exercise modality are avail-
able in Table  3. There was a significant difference in 
blood lactate levels when comparing hypoxic vs. nor-
moxic exercise in people under 30 y old and healthy/
athlete individuals (.59; 95% CI .11, 1.06) in favour of 
hypoxic exercise.

The sensitivity analyses indicated that, in general, there 
was no change in the direction or significance of the over-
all effect of hypoxic training on the analysed outcomes 
when any of the included studies were omitted or when 
only considering those applying hypoxia at normobaric 

Variable Application for the hypoxic interventiona

Hypoxic conditions (normobaric or 
hypobaric)

Most studies were conducting exercise on 
normobaric conditions (88.4%) with only two 
studies at hypobaric conditions (Álvarez-
Herms et al. 2016; and Jung et. al 2020; and 
one study do not report the hypoxic condition 
[Trujiens et al. 2003]

Intensity of the hypoxia: level of 
hypoxemia, typically reported as 
fraction of inspired oxygen (FiO2) and 
less frequently as oxygen saturation of 
the blood (SaO2) or as training above 
the sea level

FiO2: 12.2% and 17.2% (most frequently 15%)

Duration of the hypoxic session From 20 to 120 min (most frequently 60 min/
session)

Number of hypoxic sessions per week From 2 to 5 sessions/week (most frequently 3 
sessions/week)

Hypoxic intervention length From 2 and 32 weeks (mean: 6.8 weeks)

Type of exercise and intensity in 
training in hypoxic interventions

Resistance, anaerobic or aerobic training 
(most frequently aerobic training with 
workloads between 50%–80% VO2max or 
HRmax)

Abbreviations: FiO2, fraction of inspired oxygen; HRmax, maximal heart rate; SaO2, oxygen saturation; 
VO2max, maximal oxygen consumption.
aIt should be noted that the variables shown are those mainly reported for hypoxia training interventions 
and may serve as a reference for future studies in this field. However, at present, no specific 
recommendations on the most appropriate dose to improve cardiovascular risk in the adult population 
can be given as there is insufficient evidence to determine solid conclusions.

T A B L E  2   Overview of the general 
variables for the application of hypoxic 
training interventions.
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10 of 19  |      FERNÁNDEZ-RODRÍGUEZ et al.

conditions. The global effect estimator of hypoxic exer-
cise also remained nonsignificant on blood lactate levels 
when any of the included studies were removed, except 
for those published by Chobanyan-Jürgens et al.,49 Klug 
et al.56 and Wang et al. 201863 (Table S3). Meta-regression 
models revealed no significant role of age, body mass 
index, length of intervention (weeks), total sample size 
and different hypoxic exposure levels on the effects of 
hypoxic training on the cardiovascular function param-
eters analysed (Table S4A). Meta-regression models with 
robust variance estimation showed statistically signifi-
cant differences on Hb for age (coef: −.02; p = .05), BMI 
(coef: −.06; p = .03) and FiO2 percentages (coef: −.23; 
p = .02); on DBP for age (coef: .02; p = .04), and on blood 
lactate levels for weight (coef: −.02; p = .03) (Table S4B). 

Finally, publication bias was detected in HRmax (p > .05) 
(Table S5 and Figure S1).

3.7  |  Risk of bias assessment and 
GRADE report

The overall risk of bias assessment showed that 19 out of 
31 studies (61.3%) presented some concerns, and 12 out 
of 31 (38.7%) were classified as low risk. Further details 
according to the score of each item for the risk of bias are 
available in Figure S2.

The overall certainty of evidence was set as ‘low or 
very low’ with not importance, mainly due to serious in-
directness and imprecision. Further details related to the 

F I G U R E  2   Meta-analysis of the standardized mean difference for the effect of hypoxic exercise versus normoxic exercise on 
haemoglobin and oxygen saturation. SMDs: Pooled standardized mean differences through a random effects model and their 95% confidence 
intervals (95% CIs).

Overall, DL (I2 = 0.0%, p = 0.765)

Wrobel et al. 2021

Wang et al. 2018

Wang et al. 2010

Truijens et al. 2003

Torpel et al. 2020

Teległów et al. 2022

Klug et al. 2018

Debevec et al. 2010

Alvarez-Herms et al. 2016

Reference

8

19

24

8

39

14

12

9

10

0.11 (-0.15, 0.36)

-0.02 (-1.00, 0.96)

-0.08 (-1.03, 0.88)

0.28 (-0.28, 0.85)

0.25 (-0.73, 1.23)

-0.03 (-0.51, 0.46)

0.05 (-1.00, 1.10)

-0.31 (-1.13, 0.51)

0.97 (-0.01, 1.96)

0.12 (-0.68, 0.92)

SMD (95% CI)

6

4

4

5

5

3

6

4

4

Length Sample

-1 -0.5 0 0.5 1 1.5 2

Reference Length Sample SMD (95% CI)

Overall, DL (I2 = 0.0%, p = 0.598) 0.00 (-0.27, 0.27)0.00 (-0.27, 0.27)

Chacaroun et al. 2020 8 12 -0.37 (-1.19, 0.46)-0.37 (-1.19, 0.46)

Hollis et al. 2014 8 5 0.66 (-0.29, 1.61)0.66 (-0.29, 1.61)

Debevec et al. 2010 4 9 -0.13 (-1.06, 0.79)-0.13 (-1.06, 0.79)

Allsopp et al. 2020 8 10 0.49 (-0.40, 1.38)0.49 (-0.40, 1.38)

Wang et al. 2010 4 24

Czuba et al. 2019 3 7 -0.41 (-1.47, 0.65)-0.41 (-1.47, 0.65)

Galvin et al. 2013 4 15 0.07 (-0.64, 0.79)0.07 (-0.64, 0.79)

0-1 -0.5 0 0.5 1 1.5 2

Favours normoxic Favours hypoxic

Haemoglobin(A)

Oxygen Saturation(B)

-0.07 (-0.47, 0.33)
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summary of findings are available in the Table S6. No rele-
vant change was observed in the sensitivity analyses.

4   |   DISCUSSION

This review was aimed at synthesizing and determining 
the effects of chronic hypoxic exercise versus normoxic 
exercise on some cardiovascular functions in people with-
out cardiovascular disease. Our data suggest that hypoxic 
exercise does not confer additional benefits on cardiovas-
cular function parameters (i.e. Hb concentrations at rest, 
SaO2%, HRmax, BP at rest and maximal blood lactate lev-
els) when compared to normoxic exercise in people without 
cardiovascular disease. Subgroup analyses considering age 
and health status showed a significant increase in maximal 
blood lactate levels in young healthy individuals and/or 
athletes under 30 years compared to adults ≥30 years with 
comorbidities and/or sedentariness. Our results were con-
sistent and persisted when exploring potential confounding 
variables such as gender, BMI or length of the intervention. 
According to our systematic review, the most prescribed 

protocol of hypoxic training was based on the following 
characteristics: (i) FiO2: 15%, (ii) time and frequency: 60 min 
and 3 sessions per week, (iii) length: 6 weeks.

Our findings indicated that hypoxic exercise does not 
lead to higher benefits on the explored cardiovascular 
function parameters when compared to normoxic exer-
cise in people without cardiovascular disease. These find-
ings do not concur with the results from a previous review 
which reported significant improvements in skeletal mus-
cle capillarization and vasodilation function after hypoxic 
exercise.13 Although our review is focused on different car-
diovascular parameters, the study by Montero et al. had a 
smaller sample size (n = 331 individuals from 21 controlled 
studies) and included nonrandomized trials—factors that 
could increase the heterogeneity—, which could explain 
the discrepancy with the present results (n = 910 individ-
uals from 31 RCTs). Further, as previously reported in a 
meta-analysis,73 the cardiovascular adaptation and benefits 
may be significantly influenced by the length of the hypoxic 
exercise intervention, with arterial stiffness only improving 
in long-term interventions (i.e. ≥12 weeks). A compari-
son of the main methodological differences between our 

F I G U R E  3   Meta-analysis of the standardized mean difference for the effect of hypoxic exercise versus normoxic exercise on heart rate. 
SMDs: Pooled standardized mean differences through a random-effects model and their 95% confidence intervals (95% CIs).

Heart Rate (HR)

Overall, DL  (I2 = 0.0%, p = 0.950)

Hollis et al. 2014

Czuba et al. 2019

Torpel et al. 2020

Chacaroun et al. 2020

Wang et al. 2010

Wrobel et al. 2021

González-Muniesa et al. 2015

Alvarez-Herms et al. 2016

Chinapong et al. 2021

Chen et al. 2018

Chobanyan-Jürgens et al. 2019

Klug et al. 2018

Truijens et al. 2003

Wang et al. 2014

Galvin et al. 2013

Debevec et al. 2010

Pramsohler et al. 2017

Gatterer et al. 2015

Reference

8

3

5

8

4

6

13

4

6

4

8

6

5

5

4

4

3

32

Length

5

7

39

12

24

8

14

12

7

15

14

12

8

20

15

9

19

16

Sample

-0.47 (-1.40, 0.47)

0.05 (-1.00, 1.10)

-0.01 (-0.48, 0.45)

0.27 (-0.55, 1.09)

-0.36 (-0.69, -0.03)

0.16 (-0.82, 1.14)

-0.08 (-0.62, 0.47)

0.19 (-0.61, 0.99)

0.22 (-0.83, 1.27)

0.13 (-0.59, 0.84)

-0.14 (-0.89, 0.60)

-0.36 (-0.98, 0.25)

-0.13 (-1.11, 0.85)

0.08 (-0.54, 0.70)

0.22 (-0.50, 0.94)

-0.52 (-1.46, 0.41)

-0.10 (-0.77, 0.57)

0.16 (-0.55, 0.87)

SMD (95% CI)

-0.47 (-1.40, 0.47)

0.05 (-1.00, 1.10)

-0.01 (-0.48, 0.45)

0.27 (-0.55, 1.09)

-0.36 (-0.69, -0.03)

0.16 (-0.82, 1.14)

-0.08 (-0.62, 0.47)

0.19 (-0.61, 0.99)

0.22 (-0.83, 1.27)

0.13 (-0.59, 0.84)

-0.14 (-0.89, 0.60)

-0.36 (-0.98, 0.25)

-0.13 (-1.11, 0.85)

0.08 (-0.54, 0.70)

0.22 (-0.50, 0.94)

-0.52 (-1.46, 0.41)

-0.10 (-0.77, 0.57)

0.16 (-0.55, 0.87)

SMD (95% CI)

0-1 -0.5 0 0.5 1 1.5

Favours hypoxic Favours normoxic

-0.10 (-0.25, 0.06)
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meta-analysis and those completed previously is shown 
in Table S7. Briefly, our meta-analysis included only indi-
viduals without cardiovascular disease, whereas Montero 
et  al.73 recruited prehypertensive individuals and consid-
ered longer duration of the interventions (13.5 weeks). 
Furthermore, Montero and Lundby et  al. 2016 included 
similar population and intervention characteristics, but 

they were focused on skeletal muscle capillarization and 
vascular dilator function, showing statistically significant 
differences after hypoxic exercise that should be consid-
ered.13 The average length of our included studies was 
6.7 weeks, with only 4 out 31 studies with a duration of 
≥12 weeks,51,52,55,69 precisely those which showed some sig-
nificant improvements on DBP, flow-mediated dilatation, 

F I G U R E  4   Meta-analysis of the standardized mean difference for the effect of hypoxic exercise versus normoxic exercise on systolic 
and diastolic blood pressure. SMDs: Pooled standardized mean differences through a random effects model and their 95% confidence 
intervals (95% CIs).

Diastolic Blood Pressure (DBP)(A)

Systolic Blood Pressure (SBP)(B)

Overall, DL (I2 = 0.0%, p = 0.449)

Wiesner et al. 2010

Shi et al. 2013

Klug et al. 2018

Jung et al. 2020

Hobbins et al. 2021

Hein et al. 2020

González-Muniesa et al. 2015

Ghaith et al. 2022

Gatterer et al. 2015

Chacaroun et al. 2020

Camacho-Cardenosa et al. 2018

Bailey et al. 2000

Allsopp et al. 2020

Reference

4

4

6

12

2

8

13

8

32

8

12

4

8

24

14

12

10

8

12

14

31

16

12

28

18

10

-0.05 (-0.25, 0.16)

-0.15 (-0.74, 0.44)

-0.06 (-0.80, 0.68)

1.10 (0.22, 1.97)

-0.37 (-1.22, 0.47)

0.00 (-1.01, 1.01)

-0.12 (-0.90, 0.67)

-0.51 (-1.25, 0.23)

-0.17 (-0.88, 0.53)

0.20 (-0.56, 0.96)

-0.17 (-0.99, 0.65)

0.12 (-0.38, 0.62)

-0.50 (-1.21, 0.21)

0.28 (-0.60, 1.16)

SMD (95% CI)Length Sample

-1 -0.5 0 0.5 1 1.5 2
Favours normoxicFavours hypoxic

Overall, DL (I2 = 0.0%, p = 0.836)

Wiesner et al. 2010

Shi et al. 2013

Klug et al. 2018

Jung et al. 2020

Hobbins et al. 2021

Hein et al. 2020

González-Muniesa et al. 2015

Ghaith et al. 2022

Gatterer et al. 2015

Chacaroun et al. 2020

Camacho-Cardenosa et al. 2018

Bailey et al. 2000

Allsopp et al. 2020

Reference

4

4

6

12

2

8

13

8

32

8

12

4

8

24

14

12

10

8

12

14

31

16

12

28

18

10

-0.01 (-0.21, 0.20)

0.06 (-0.53, 0.64)

0.30 (-0.44, 1.05)

0.78 (-0.07, 1.63)

-0.46 (-1.31, 0.39)

0.28 (-0.74, 1.30)

-0.01 (-0.80, 0.77)

-0.24 (-1.01, 0.53)

-0.05 (-0.76, 0.65)

0.11 (-0.64, 0.87)

-0.24 (-1.06, 0.58)

-0.25 (-0.75, 0.26)

0.14 (-0.56, 0.84)

-0.16 (-1.04, 0.71)

SMD (95% CI)Length Sample

-1 -0.5 0 0.5 1 1.5
Favours hypoxic Favours normoxic
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erythrocyte deformability and aggregation,55 time to exer-
tion,52 SBP51 and abdominal fat.69 Particularly, the vascu-
lar adaptation that appears to be enhanced after hypoxic 
training may be related to the ‘compensatory’ increase in 
blood flow to the exercising muscle. Nevertheless, the spe-
cific mechanisms underlying these benefits remain to be 
elucidated. The increase in skeletal muscle capillarization 
could be potentially due to enhanced angiogenesis capacity. 
Finally, the training level of participants could play a key 
role in the adaptations and additional benefits of hypoxic 
exercise.13 Therefore, further long-term RCTs should be 
conducted, including a complete picture of cardiovascular 
parameters. Moreover, they should clarify whether a hy-
poxic exercise intervention may provide additional benefits 
when compared to normoxic training.

The specific protocol of the hypoxic exercise programs 
may also have an impact on cardiovascular adaptations 
and responses. For instance, when exercise was performed 
at moderate hypoxic levels (i.e. ~1500–3000 m), BP was 
maintained or improved.74 Conversely, high hypoxic levels 
(i.e. >5000 m) significantly increased BP.74 Furthermore, 
exercise training under mild intermittent hypoxic condi-
tions (i.e. 2000 m simulated altitude) resulted in more ef-
ficient stimuli for reducing arterial stiffness and inducing 
a vascular functional adaptation response (i.e. increased 
flow-mediated dilation) compared to similar normoxic 
training.75 Therefore, this fact should be considered as a 
potential modulator of the hypoxic exercise-related effects 
on cardiovascular health. Despite this, our meta-regression 
models based on the hypoxic intensity (% FiO2) did not in-
fluence our results. Nevertheless, hypoxic intensity should 

be further explored considering safe doses as higher in-
tensities might be related to greater changes in the cardio-
vascular parameters explored in our review. Additionally, 
the type of exercise (resistance vs. endurance) may impact 
CV responses. Our main analysis combined resistance and 
endurance training, but these exercise modalities possess 
different targeted effects and may impact cardiovascular 
function differently; this could be a limitation. However, 
our subgroup analyses based on exercise modalities did 
not find any significant difference (except for increased 
blood lactate levels after resistance exercise modality). 
Despite this, we should be cautious due to the scarcity of 
studies included in our review that conducted resistance 
training under hypoxic conditions. For instance, some au-
thors support that resistance training under hypoxia may 
induce muscle changes and physiological adaptations that 
would improve anaerobic performance by increasing mus-
cle buffering capacity and glycolytic enzyme activity.76,77 
Otherwise, endurance training under hypoxia increases 
aerobic capacity by promoting ventilation, lung diffu-
sion capacity or capillary oxygen saturation.35,78 Training 
intensity emerges as a crucial factor, with the lactate 
threshold intensity being a practical option for improving 
aerobic and anaerobic performance. Nevertheless, inten-
sity, duration, number and frequency of hypoxia bouts 
(‘hypoxia dose’) are important variables for hypoxic train-
ing interventions that may elicit beneficial or detrimental 
adaptive responses depending on the population studied. 
Harmonization of hypoxic training protocols and system-
atic assessments are essential to draw more solid conclu-
sions on this topic.

F I G U R E  5   Meta-analysis of the standardized mean difference for the effect of hypoxic exercise versus normoxic exercise on blood 
lactate levels. SMDs: Pooled standardized mean differences through a random effects model and their 95% confidence intervals (95% CIs).

Blood Lactate Levels

Overall, DL (I2 = 27.0%, p = 0.204)

Wiesner et al. 2010

Wang et al. 2018

Klug et al. 2018

Ghaith et al. 2022

Galvin et al. 2013

Chobanyan-Jürgens et al. 2018

Chacaroun et al. 2020

Bailey et al. 2000

Álvarez-Herms et al. 2016

Reference

4

4

6

8

4

8

8

4

4

24

19

12

31

15

14

12

18

12

0.27 (-0.01, 0.54)

0.08 (-0.50, 0.67)

-0.05 (-1.00, 0.90)

-0.19 (-0.80, 0.42)

0.11 (-0.59, 0.82)

0.33 (-0.39, 1.05)

0.01 (-0.50, 0.53)

0.62 (-0.21, 1.46)

0.89 (0.16, 1.63)

1.08 (0.23, 1.94)

SMD (95% CI)Length Sample

-1 -0.5 0 0.5 1 1.5 2

Favours normoxic Favours hypoxic
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T A B L E  3   Subgroup analyses of hypoxic exercise by age, gender or health status.

Age Gender Health Status

<30 years old ≥30 years old Males Mixed
Healthy/
athletes

Comorbidities/
sedentariness

Haemoglobin

n 6 3 7 2 6 3

SMD (95% CI) .26 (−.08, .60) −.09 (−.47, .29) .15 (−.16, .46) .03 (−.41, .46) .13 (−.19, .45) .07 (−.35, .49)

Sat O2

n 5 2 5 2 5 2

SMD (95% CI) −.01 (−.30, .29) .04 (−.80, .89) −.01 (−.30, .29) .04 (−.80, .89) .15 (−.24, .55) −.12 (−.49, .24)

HR

n 10 8 11 6 7 10

SMD (95% CI) −.14 (−.35, .07) −.04 (−.27, .18) −.14 (−.33, .04) .00 (−.27, .28) −.03 (−.30, .25) −.13 (−.32, .06)

SBP

n 3 10 3 9 2 11

SMD (95% CI) .04 (−.40, .47) −.02 (−.25, .21) .08 (−.35, .50) −.10 (−.34, .15) .22 (−.30, .73) −.05 (−.27, .17)

DBP

n 3 10 3 9 2 11

SMD (95% CI) −.31 (−.75, .13) .03 (−.21, .26) −.36 (−.78, .06) −.03 (−.27, .21) −.29 (−.80, .22) −.001 (−.23, .22)

Blood lactate levels

n 4 4 5 4 4 5

SMD (95% CI) .59 (.11, 1.06) .07 (−.21, .35) .39 (−.10, .89) .14 (−.17, .45) .59 (.11, 1.06) .07 (−.21, .35)

Exercise modality

Resistance Aerobic High intensity Combined Pilates

Haemoglobin

n 2 4 2 1 –

SMD (95% CI) .01 (−.40 to .43) .23 (−.24 to .69) .08 (−.60 to .76) −.02 (−1.00 to .96) –

Sat O2

n 1 4 2 – –

SMD (95% CI) .49 (−.40 to 1.38) −.04 (−.35 to .20) .00 (−.27 to .27) – –

HR

n 3 10 3 2 –

SMD (95% CI) .06 (−.31 to .44) −.18 (−.38 to .02) .09 (−.42 to .49) −.02 (−.50 to .46) –

SBP

n 1 9 1 1 1

SMD (95% CI) −.16 (−1.03 to .72) .13 (−.12 to .38) −.25 (−.75 to .26) −.24 (−1.01 to .53) −.46 (−1.31 to .39)

DBP

n 1 9 1 1 1

SMD (95% CI) .28 (−.60 to 1.16) −.03 (−.30 to .24) .12 (−.38 to .62) −.51 (−1.25 to .23) −.37 (−1.22 to .48)

Blood lactate levels

n 1 6 2 – –

SMD (95% CI) 1.08 (.23 to 1.94) .19 (−.11 to .50) .19 (−.38 to .77) – –

Note: SMD in bold: statistically significant.
Abbreviations: CI, Confidence interval; DBP, diastolic blood pressure; SaO2, arterial oxygen saturation; SBP, systolic blood pressure; SMD, standardized mean 
difference.
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Our results revealed the lack of age and gender influ-
ence in cardiovascular adaptations to hypoxia, and we 
were unable to explore the influence of ethnicity, a point 
that did not concur with previous studies.79,80 According 
to ethnicity, it has been suggested that hypoxic exercise 
results in higher levels of arterial oxygen saturation in 
African–American versus Caucasian males after hypoxic 
exercise in arterial and cerebral oxygenation,80 which 
might be explained by the decreased serum transferrin 
saturation in African–Americans. However, the social 
context associated with ethnicity (i.e. healthcare access, 
food security, family income or occupation) needs to be 
carefully considered, and these data were not available.81 
Moreover, implicit bias might play a role, since there were 
598 African–American men and women and more than 
12,000 age-matched white controls.81 Conversely, when 
exploring age, we only observed a significant increase in 
maximal blood lactate levels for young adults (<30 years), 
but we should consider that they also had a healthy and/or 
athletic status. Accordingly, some authors have reported 
fewer cardiovascular adaptations and responses in older 
people after chronic hypoxic exposure.82 In fact, those au-
thors showed that hypoxic exercise resulted in a decreased 
cardiac response and lower maximal O2 consumption, 
together with a decline in muscle mass and power with 
aging.82 Furthermore, a greater exercise-induced desatura-
tion in young and trained adults has been suggested when 
compared to older adults and less trained individuals.82

Previous studies have reported positive effects of hy-
poxic exercise interventions in people with chronic condi-
tions83–88; therefore, the participant's health status should 
be a factor to take into consideration. For instance, notori-
ous BP and HR benefits were pointed out in patients with 
clinical conditions—including individuals with coronary 
heart disease and chronic obstructive pulmonary disease89 
or hypertension74—compared with their healthy counter-
parts. Importantly, our data did not show significant differ-
ences between the health statuses for Hb concentrations 
at rest, SaO2%, HRmax or BP at rest; however, a subgroup 
analysis indicated a moderately greater level of maximal 
blood lactate in healthy individuals and/or athletes com-
pared to people with comorbidities and/or sedentariness. 
These controversial findings could be related to the ceil-
ing effect of exercise interventions in healthy and highly 
trained participants, which suggests there is no ‘room’ for 
improvements when the outcomes are at optimal levels.90

It is worth noting that the moderate increase in maxi-
mal blood lactate levels in healthy individuals and athletes 
shown by our data could suggest an improved oxidative 
capacity of cells and mitochondrial function induced by 
chronic hypoxic exercise interventions.91 Moreover, blood 
lactate is considered an exerkine with important metabolic 
functions, such as fuelling muscles and participating in the 

liver (Cori's cycle), together with effects on other tissues (e.g. 
central nervous system).92,93 Moreover, hypertension status 
was responsible for attenuating the association between 
blood lactate levels and the risk of diabetes94 and carotid 
atherosclerosis,95 showing a higher resting blood lactate 
level in patients with carotid atherosclerosis independent 
of traditional cardiovascular risk factors. Therefore, lactate 
could play an important role in cardiovascular health and 
cardiometabolic risk.96 However, we should be cautious re-
garding this point as greater blood lactate levels could be 
observed in cardiac patients when performing incremental 
exercise (sign of bad prognosis)97 or highly trained individ-
uals. Therefore, further long-term trials with standardized 
hypoxic training protocols are thus needed to explore the 
effects of hypoxic exercise on blood lactate levels and other 
exerkines to elucidate their potential role in cardiovascular, 
metabolic, immune and neurological health.

This review has limitations that should be noted. First, 
the heterogeneity among the included population as well 
as exercise protocols, mainly related to work rates, may 
explain some of the controversial results found. In fact, 
most studies were conducted in healthy, trained and young 
participants; therefore, the baseline levels of cardiovascu-
lar function-related parameters of such populations could 
make it difficult to show additional benefits of hypoxic 
exercise interventions (‘ceiling effect’). Additionally, more 
sensitive cardiac function parameters should be evaluated 
in further trials such as left ventricular ejection fraction, 
stroke volume and cardiac output. Our findings should 
thus be taken cautiously when extrapolating to other spe-
cific populations (i.e. people with cardiovascular diseases). 
Second, the small sample size in the included RCTs (from 
12 to 73 individuals) in addition to the short-term hypoxic 
exercise programs (<12 weeks for 27 out of 31 studies) 
could mask some potential long-term benefits of hypoxic 
exercise on cardiovascular function. Third, the certainty 
of the evidence was rated as low or very low. This was 
mainly explained by (i) the wide confidence intervals that 
include or are close to the null effect, (ii) the heterogeneity 
of the baseline characteristics of the participants included 
in the primary studies and (iii) the risk of bias. In partic-
ular, the randomization process (e.g. lack of information 
about the randomized allocation sequence and concerns 
about the concealment of the concealed allocation se-
quence until participants were assigned to interventions) 
and deviations from intended interventions (e.g. carers or 
people delivering the intervention were mostly aware of the 
assigned intervention) were sources of bias for the included 
trials. Despite this, our systematic review and meta-analysis 
provide a comprehensive synthesis of current evidence and 
did not exclude studies based on the quality assessment (a 
posteriori), and no trials were identified as having a high 
risk of bias. Fourth, the detrimental or beneficial adaptive 
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responses of hypoxic training may depend mostly on the hy-
poxic dose, individual predisposition (population of study), 
physical activity, medication and type of exercise.78 The 
ambiguity of the terminology used in hypoxic research and 
the lack of information in some studies regarding crucial 
variables (i.e. exposure type, frequency [single vs. repeated, 
acute vs. chronic], hypoxia intensity and duration, time of 
day and arousal state [wake/day vs. night/sleep], exercise 
protocols, carbon dioxide levels, population, physical activ-
ity and nutritional status and intention [pathophysiology 
vs. beneficial])98 difficult to extrapolate solid conclusions 
about the sports and clinical applications of hypoxic train-
ing; thus, future research should take this carefully.

5   |   CONCLUSION

In summary, the present data suggest that there are no 
additive benefits of performing exercise under hypoxic 
conditions on the cardiovascular function parameters 
explored (Hb concentrations, SaO2%, HRmax, BP at rest 
and maximal blood lactate levels) when compared to 
normoxic exercise for up to a mean of 7 weeks in people 
without cardiovascular disease, except for a moderate 
increase in blood lactate levels in young healthy and/or 
athletic individuals. Thus, our findings could be useful 
to exercise physiologists, especially those working with 
athletes. Although hypoxic exercise could improve other 
cardiovascular and metabolic parameters related to CVDs, 
there is an urgent need for clinical trials with standardized 
hypoxic training protocols aimed at exploring the optimal 
dosing of hypoxia during training and whether hypoxic 
exercise may act through other pathways related to car-
diovascular health in the long term in participants with 
chronic conditions and poor health status.
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