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ABSTRACT
Proteins are degraded and amino acids are metabolized in different quantities during endurance exercise. However, a clear con-
sensus on protein oxidation during exercise has yet to be established. The main objective was to calculate estimates of protein 
oxidation during endurance exercise using available data. Additionally, we aimed to investigate the effects of exercise intensity, 
duration, and volume on protein oxidation. We systematically searched for research studies published in English in the online 
databases PubMed and Google Scholar in March 2023. The inclusion criteria were: (1) measurement of protein metabolism with 
nitrogen excretion, leucine oxidation, or indicator amino acid utilization method; (2) inclusion of an endurance exercise condition 
and a control condition without exercise; (3) inclusion of a description of the endurance exercise protocol (duration, intensity); and 
(4) inclusion of healthy participants over the age of 18. Endurance exercises were defined as exercise periods of at least 60 min' 
duration of running, cycling, or cross-country skiing. We included 30 articles (n = 286 participants). Protein oxidation increased 
by 1.02 ± 0.06 mg∙kg−1∙min−1 (95% CI [0.91, 1.14]) during endurance exercise, from the level of 0.81 ± 0.38 mg∙kg−1∙min−1 meas-
ured without exercise. Protein contributed 3.28% ± 0.15% (95% CI [2.97, 3.58]) of the total energy expenditure during exercise. 
Protein oxidation normalized by exercise duration significantly increased with exercise intensity. This review is the first to ag-
gregate data on protein oxidation during endurance exercise, measured using different methods. Endurance exercise consistently 
increased protein oxidation, with protein metabolism more than doubling during exercise compared to rest. Protein oxidation 
increased with exercise intensity, but neither exercise duration nor volume augmented the rate of protein oxidation.

1   |   Introduction

The view on protein as an energy source has changed dra-
matically over time. Justus von Liebig proposed in 1842 that 
protein served as the “only true nutrient providing both the 
machinery of the body and the fuel for its work” [1]. However, 
subsequent studies soon discredited Liebig's theory [2]. Since 
then, exercise physiologists, using indirect calorimetry, nitro-
gen excretion, and isotopic markers, have identified the distri-
bution of substrate utilization during exercise [3, 4]. At rest, 

energy demand typically amounts to around 1.2 kcal∙min−1, 
with oxygen uptake at 0.25 L∙min−1, resulting in the oxidation 
of approximately 0.20 g carbohydrates (CHO) and 0.05 g fat 
in a 70 kg individual [5–7]. During exercise, energy demand 
escalates, and oxygen uptake rapidly reaches 4 L∙min−1 in 
well-trained males [5, 8], elevating CHO oxidation rates to 
2–3 g∙min−1. Protein metabolism is often omitted from calcu-
lations of substrate oxidation during exercise, despite evidence 
indicating its involvement during exercise [9, 10]. Proteins 
contain energy and constitute approximately 10%–20% of the 
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daily energy intake [11, 12]. The question remains: does pro-
tein oxidation also increase during exercise? There is indirect 
support for protein oxidation, since protein requirement is in-
creased after an exhaustive endurance exercise and meeting 
this requirement improves the recovery of performance [5]. 
This could indicate that protein oxidation was increased and 
that protein was possibly used as an energy source. However, 
protein oxidation is not without consequences, as the body's 
ability to store amino acids is limited, and most proteins serve 
critical functional roles. Consequently, understanding protein 
metabolism during endurance exercise is crucial in sports 
physiology. It provides insights into how the body utilizes var-
ious energy sources during prolonged physical activity and 
how it affects muscle recovery, adaptation, and overall athletic 
performance. A comprehensive understanding of protein me-
tabolism can inform effective dietary strategies, optimizing 
protein intake for enhanced endurance and recovery.

Exercise physiologists have established that the relative contri-
butions of CHO and fats to energy production are contingent 
upon exercise intensity [3, 4, 13, 14]. As exercise intensity rises, 
CHO's contribution to energy supply increases while fat use di-
minishes. Consequently, CHO becomes the predominant energy 
source during moderate and high-intensity exercise, primarily 
derived from glycogen stores. However, glycogen stores are lim-
ited [15]. In addition, exercise performed with depleted glycogen 
stores heightens protein breakdown [9, 16]. These findings sug-
gest that increased protein oxidation compensates for the energy 
deficit resulting from reduced CHO metabolism. Consequently, 
prolonged exercise, which depletes CHO stores, particularly 
glycogen, may exacerbate protein oxidation. Exercise intensity 
could further modulate protein metabolism by altering the rela-
tive contributions of energy substrates. Some data indicate that 
protein oxidation increases with exercise intensity, as shown by 
the positive correlation between leucine oxidation as a percent-
age of the leucine flux and the work rate during 30-min exer-
cise bouts [17]. Finally, research indicates that increased energy 
expenditure during exercise could increase protein oxidation 
[18, 19]. In this review, exercise volume was defined as the total 
volume of oxygen consumed during exercise, thereby equating it 
with energy expenditure during exercise. To date, questions on 
the effects of exercise intensity, duration, and volume on protein 
oxidation remain unanswered.

Studying protein metabolism poses significant challenges 
[20]. Due to the many challenges involved, only a handful of 
studies have explored protein metabolism during endurance 
exercise, with disparities in the results [9, 21]. For example, 
measurements obtained from nitrogen excretion suffer from 
poor time resolution: urine is usually collected over 24 h, 
making it difficult to discern differences over shorter periods. 
Additionally, estimating protein intake from food presents 
considerable challenges [22]. Stable isotope techniques offer 
high resolution. While stable isotopes facilitate measure-
ments over shorter periods, the large intracellular amino acid 
pools present a challenge, and the presence of 20 amino acids 
in proteins complicates this method. Variations in metabolic 
pathways between amino acids and their differential distribu-
tion across tissues further hinder the generalization of results 
measured from a single amino acid to whole-body protein 
metabolism.

Finally, protein metabolism during endurance exercise has 
seldom been the primary focus of previous studies, making 
it difficult to obtain a comprehensive overview of the results. 
As far as we are aware, no meta-analysis has been conducted 
to estimate protein oxidation during endurance exercise. 
Nevertheless, data on protein metabolism during exercise can 
be found in various published studies, although these data 
have not yet been used to assess protein oxidation. The princi-
pal objective of this review was to compile published findings 
and use available data to quantify protein oxidation during 
endurance exercise in healthy adults. Lemon et  al. [23] con-
ducted a review 40 years ago on protein metabolism and exer-
cise, discussing the effects of exercise duration and intensity 
on amino acid oxidation during endurance exercise. However, 
they lacked sufficient data to draw definitive conclusions and 
did not discuss the effect of exercise volume. As a result, a 
secondary objective of this review was to determine the im-
pact of exercise intensity, duration, and volume on protein 
metabolism.

2   |   Methods to Study Protein Metabolism During 
Exercise

Several methods are used to quantify protein metabolism. We 
briefly describe the methods used to study protein metabolism 
during exercise and discuss their limitations and advantages.

2.1   |   Measuring Nitrogen Excretion

This method for quantifying the contribution of proteins to 
total energy expenditure during endurance exercise is based 
on one chemical property: amino acids have an amino group 
in their chemical structure that is excreted and measured. All 
amino acids contain at least one nitrogen atom, and nitrogen 
excretion from amino acid metabolism is quantitatively the 
largest part of nitrogen excretion [20]. Thus, monitoring ni-
trogen excretion gives a good overview of the metabolism of 
amino acids.

Nitrogen excretion can be measured with the Kjeldahl method 
[24]. Most nitrogen is excreted in the urine, but nitrogen is also 
secreted in sweat, feces, hair, and skin loss [25]. Nitrogen excre-
tion has been quantified in these different compartments. The 
total nitrogen excretion can be estimated with some correction 
factors [26–28]: ≈78% of the nitrogen is excreted in the urine, 
≈13% in feces, ≈7% in sweat, and ≈2% in miscellaneous losses 
(Figure 1). We used these correction factors in this review when 
nitrogen excretion was not measured in all of these compart-
ments. This results in:

In some studies, only nitrogen intake and balance are reported, 
but not nitrogen excretion. However, nitrogen excretion can be 

Total nitrogen excretion (g) =
Urinary nitrogen excretion (g)

0.78

Total nitrogen excretion (g)

=
Urinary nitrogen excretion (g)+Sweat nitrogen excretion (g)

0.85
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derived from nitrogen balance and nitrogen intake measure-
ments when both are reported:

The calculated nitrogen excretion, derived from nitrogen bal-
ance and nitrogen intake, was then used in the same manner 
as measured nitrogen in other studies. When necessary, correc-
tions were applied to obtain nitrogen excretion in all compart-
ments using the same correction factors as measured nitrogen 
in other studies.

Not all the studies measured the total nitrogen excretion 
in urine. Often only the urinary urea excretion is reported. 
However, it has been established that urinary urea excretion 
accounts for ≈85% of urinary nitrogen excretion [29], with vari-
ations between 80% and 90% [5, 8, 29] depending on nutritional 
intake and activity levels. This variation is not well described, 
so in this review we use the average proportion of 85% as a cor-
rection factor:

2.2   |   Measuring Leucine Oxidation by Stable 
Isotopes

Other methods do not use nitrogen exchanges to quantify the 
contribution of proteins to energy supply during exercise: they 
are based on the quantification of an amino acid of interest. By 
relating the quantified results to the relative proportion of this 
amino acid in the body, it is possible to estimate the overall me-
tabolism of amino acids.

Such methods have some limitations. Indeed, the 20 amino 
acids usually found in proteins are metabolized differentially, 
and through transamination and oxidative deamination, can 
produce several metabolic intermediates. This, together with the 
fact that physical activity can have different effects on individ-
ual amino acids, makes it difficult to generalize the results from 
one amino acid to the whole protein metabolism. Nevertheless, 
this generalization works well for leucine.

Leucine and other amino acids are metabolized in skele-
tal muscles: it is estimated that about 50% of all branched-
chain amino acids are metabolized in skeletal muscle [30]. 
The enzyme branched-chain amino acid aminotransfer-
ase is involved in this process. There are two isoforms of 
branched-chain amino acid aminotransferase: cytosolic and 
mitochondrial isoforms. This enzyme has an important role: 
deleting branched-chain amino acid aminotransferase re-
duces endurance capacity [31]. This happens because leucine 
oxidation increases during exercise to provide energy to the 
body. The human body cannot store amino acids, except in 
limited quantities in the free amino acid pool. To obtain suffi-
cient quantities of amino acids, it must therefore degrade pro-
teins. From the average composition of muscle fibers, it has 
been calculated that 1 g of protein contains 590 μmol leucine 
[32, 33]. This conversion factor comes from the average value 
of the protein leucine content of ≈7.8% in human and other 
mammalian muscles [33]. The mechanism for leucine oxida-
tion involves the branched-chain alpha-keto acid dehydroge-
nase complex, in an irreversible reaction [34]. Therefore, no 
recycling of leucine is possible. Measuring the extra quantity 
of leucine oxidized during exercise compared to rest makes it 
possible to calculate the amount of protein degraded to obtain 
this quantity of leucine:

Nitrogen excretion (g) = Nitrogen intake (g) −Nitrogen balance (g)

Urinary nitrogen excretion (g) =
Urinary urea excretion (g)

0.85

FIGURE 1    |    (A) Distribution of nitrogen between the different metabolites in urine. (B) Contribution of the different compartments to total ni-
trogen excretion.

 16000838, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sm

s.70038 by U
niversidad C

om
plutense D

e M
adrid, W

iley O
nline L

ibrary on [30/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 20 Scandinavian Journal of Medicine & Science in Sports, 2025

This measurement of the extra quantity of leucine oxidized 
during exercise is often carried out with a stable isotope of 
leucine (often L-[1-13C] leucine). The inclusion of isotopes in 
specific molecules (tracers) provides identical molecules to the 
desired one (the tracee), with the same properties and metabo-
lization pathways, except that the tracer can precisely be iden-
tified and quantified [35]. So, by infusing known quantities 
of labeled leucine and assuming a one-compartment model 
based on Steele's equations  [36], the proportion of leucine 
oxidized can be estimated from all excretions/expirations of 
isotope derivatives. Leucine oxidation can be calculated from 
the measured flux from exhaled CO2. While a steady state 
exists at rest, exercise alters numerous physiological param-
eters, including CO2 excretion. Furthermore, bicarbonate in 
the blood can serve as a buffer for some of the CO2 produced. 
In fact, Phillips et al. [37] reported that exercise significantly 
increased the background 13CO2 enrichment in breath com-
pared to rest, and that this background 13CO2 enrichment 
varied during exercise. Exercise also caused a significant in-
crease in bicarbonate retention following notably the buffer-
ing of lactic acid from anaerobic glycolysis. Hence, it becomes 
crucial to correct for background 13CO2 enrichment and bicar-
bonate retention.

The indicator amino acid utilization method is another method-
ology used to measure the oxidation of a specific amino acid (see 
reference [38] for a detailed explanation of this method). We did 
not find any studies using the indicator amino acid utilization 
method that met the inclusion criteria; therefore, no further de-
tails on this methodology are provided (Table 1).

3   |   Materials and Methods

This systematic review was performed following the checklist 
for the Preferred Reporting Items for Systematic reviews and 
Meta-Analyses 2020 (PRISMA) [41].

3.1   |   Inclusion and Exclusion Criteria

Inclusion criteria for articles included in this systematic re-
view were: (1) measurement of protein metabolism with one 
or more of these methods: nitrogen excretion, leucine oxida-
tion, indicator amino acid utilization method (the methods 
are described previously); (2) inclusion of an endurance ex-
ercise condition and a control condition without exercise; (3) 
inclusion of a description of the endurance exercise protocol 
(duration, intensity); and (4) inclusion of healthy participants 
over the age of 18. Endurance exercises were defined as exer-
cise periods of at least 60 min' duration of running, cycling, 
or cross-country skiing. Studies were excluded if they did not 
meet the inclusion criteria.

Only studies with a control condition were included to quan-
tify the effect of exercise. This was done to distinguish amino 
acids' essential basal metabolism contributions and the addi-
tional contributions exerted by exercise. The control condition 
could have been total resting conditions (e.g., urine collection 
during one entire day without physical exercise and another 
whole day with exercise), or the measurement of a parameter 
of interest at rest before exercise (typically the oxidation rate 
of leucine during a steady state at rest). The extra contribution 
during exercise is calculated as the difference between the 
quantity that is oxidized and measured during exercise and 
the quantity that should have been oxidized at rest during the 
same period.

When nitrogen excretion was calculated from nitrogen intake 
and balance, only studies over a period without food intake or 
with the intake of identical diets between interventions were in-
cluded, with the aim of standardization in relation to the digest-
ibility of protein in food [42].

3.2   |   Literature Search

We systematically searched in the online databases PubMed 
(Medline) and Google Scholar for research studies written in 
English in March 2023. We used the search terms: (protein OR 

Protein oxidation rate (g)

=
Leucine oxidation exercise (μmol)−Leucine oxidation rest (μmol)

590

TABLE 1    |    Strengths and weaknesses of the methods used to evaluate protein metabolism during exercise.

Method Strength Weakness

Nitrogen excretion (urine, sweat, 
feces, miscellaneous)

•  Good accuracy
•  Easy to implement

•  Possible to measure over a long period 
(of the order of magnitude of 1 day)

•  Several approximations to estimate the 
total quantity of excreted nitrogen depending 

on the compartments measured
•  Difficult to implement depending on the 

compartments measured
•  The urea pool has a half-life of 8–10 h [39, 

40]. Measurements over short periods are 
then inaccurate

•  Need for a ≈ 3 days equilibration period 
when changing the habitual protein intake

Leucine oxidation •  Possible to measure over a short period 
(of approximately 1 h)

•  Approximation of a steady state necessary 
for the calculations

•  Difficult to implement
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amino acids) AND (oxidation OR metabolism OR contribution 
to energy) AND (endurance exercise OR running OR cycling 
OR cross-country skiing). MC screened articles by titles and 
abstracts to determine initial eligibility. Blinding of authors 
was used to reduce bias during this process. Finally, MC and 
JJ reviewed the full texts of all articles to determine their eli-
gibility for inclusion based on the inclusion criteria. MC and JJ 
performed independent data extraction, and differences were 
discussed until a consensus was reached.

As protein oxidation is often not the primary outcome of studies, 
we identified several articles through cross-reference checks, in 
addition to separate searches on authors with research papers 
already included in the database. We then used their data in the 
present review. A PRISMA flow diagram of the search strategy 
and study selection is shown in Figure 2.

3.3   |   Risk-of-Bias and Publication Bias Assessment

Since the contribution of protein as an energy substrate during 
endurance exercise was seldom the primary focus in the included 
studies, most tools designed for assessing the risk of bias in in-
tervention studies were not directly applicable to this review. A 
modified risk-of-bias tool [43] was used by MC to conduct the 
risk-of-bias assessment in this review, with criteria outlined in 
the Appendix  S1. The quality of articles was evaluated using 
the Grading of Recommendations Assessment, Development, 
and Evaluation (GRADE) system [44], resulting in an overall 
moderate grade of evidence. Given that the aim of this system-
atic review was to map and quantify protein's contribution as 

an energy substrate during endurance exercise, rather than to 
provide recommendations, no decisions based on assessed bias 
were used to exclude articles.

Moreover, since protein oxidation was rarely the primary focus 
in the included studies and since we calculated some of the pro-
tein's contributions, we saw no reason why studies reporting 
lower protein contributions would be less likely to be published 
than those reporting higher contributions. Therefore, it is un-
likely that the included studies were affected by publication bias 
specifically related to ‘protein oxidation outcomes.’

3.4   |   Data Extraction

Data were extracted from the included research studies by MC 
and verified by JJ. Extracted information included the number 
and characteristics of participants, exercise duration, modality, 
and intensity (as a percentage of VO2max), and exercise-related 
energy expenditure. From these data, we estimated the exercise 
volume as the total volume of oxygen consumed during exercise 
(multiplication of the exercise duration by the average oxygen 
consumption). In addition, from the included research studies, 
we also extracted the necessary data about protein metabolism 
(at rest and during exercise) and the method to determine pro-
tein oxidation.

In cases where studies included multiple conditions with the 
same participants, data were aggregated, and the average 
was calculated and used in the present review. Alternatively, 
when studies comprised several conditions with independent 

FIGURE 2    |    PRISMA 2020 flow diagram for new systematic reviews that included searches of databases and other sources.

 16000838, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sm

s.70038 by U
niversidad C

om
plutense D

e M
adrid, W

iley O
nline L

ibrary on [30/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 20 Scandinavian Journal of Medicine & Science in Sports, 2025

participant groups and provided data for each group, the data for 
each condition were used independently.

A conversion factor of 6.25 was used in this review to convert ni-
trogen into protein (1 g of nitrogen measured indicates the pres-
ence of 6.25 g of protein in the measured sample) [45].

An energy equivalent of oxygen of 4.82 kcal per liter of oxy-
gen was chosen in this review. It was based on the reported 
values for the exercise intensity range included in the present 
review [46].

When the raw data were not presented, the study authors 
were contacted to obtain them. If not received, these data 
were extracted from reported figures using WebPlotDigitizer 
(PlotDigitizer, Version 3.1.5, 2023).

If not all variables were reported in the research paper, the re-
ported data were used to derive the missing values via the fol-
lowing formulas or combinations of formulas if possible:

3.5   |   Statistical Analysis

All data are presented as mean ± SD. Protein oxidation was pre-
sented in a normalized format to mitigate the differences be-
tween the protocols of the included studies. Protein oxidation 

was presented relative to participants' body weight and exercise 
duration by dividing the average amount of protein oxidized by 
the average body weight of participants and by the average exer-
cise duration. Standard deviations were extracted or calculated 
for each study to obtain the 95% confidence intervals (CIs) in the 
forest plots.

Data presented in the forest plots were calculated using the 
‘escalc’ command of the ‘metafor’ package in R (Version 4.3.2, 
Vienna, Austria, 2023) [47]. The meta-analysis was completed 
with a random-effects model using the Restricted Maximum 
Likelihood (REML) method [48]. We used I2 and τ2 statistics to 
evaluate heterogeneity. The prediction interval for the mean ef-
fect was calculated from the point estimate of the mean effect, 
its standard error (SE) and the estimated τ2 [49]. The standard 
deviation of the prediction interval was SDPI =

√

�
2 + SE2. The 

lower and upper limits of the 95% prediction intervals were 
mean ± t 1−0.05

2
,df × SDPI, with t 1−0.05

2
,df  the t-value for a two-sided 

95% interval at df degrees of freedom.

The influence of exercise intensity, duration, and volume on the 
quantity of protein oxidized and the protein's contribution to en-
ergy supply during endurance exercise were investigated through 
meta-regressions [50]. Meta-regressions were performed with a 
random-effects model using the ‘regplot’ command in R. The 
REML method was used. The average regression line as well as 
the 95% CI are represented in each figure. All figures were pro-
duced in R (Version 4.3.2, Vienna, Austria, 2023).

4   |   Results

This review focused on two parameters to study protein metab-
olism during exercise: the quantity of protein oxidized and the 
protein's contribution to energy supply during endurance exer-
cise. As the data in the present review came from several studies 
with different participant characteristics and exercise durations, 
we present the quantity of protein oxidized during exercise nor-
malized by the participants' body weight and exercise duration 
(quantity of protein oxidized in mg∙kg−1∙min−1). These parame-
ters can be studied as a function of exercise intensity, duration, 
and volume.

The literature search yielded 1875 articles, of which 47 po-
tentially met the inclusion criteria based on title and abstract 
screening. After full-text screening, 30 studies were confirmed 
to meet the inclusion criteria and were included (n = 286 par-
ticipants). The average exercise duration of the included studies 
was 112 ± 72 min (range [60, 360]) and the average intensity was 
54% ± 10% of VO2max (range [29, 73]). The studies included and 
their characteristics are presented in Table 2.

We did not find any studies using the indicator amino acid utili-
zation method that met the inclusion criteria.

4.1   |   Additional Quantity of Protein Oxidized 
During Exercise

One objective of this systematic review was to comprehensively 
assess and quantify the protein oxidized during endurance 

Total nitrogen excretion (g) =
Urinary nitrogen excretion (g)

0.78

Urinary nitrogen excretion (g) =
Urinary urea excretion (g)

0.85

Total nitrogen excretion (g)

=
Urinary nitrogen excretion (g)+Sweat nitrogen excretion (g)

0.85

Nitrogen excretion (g) = Nitrogen intake (g) −Nitrogen balance (g)

Protein oxidation rate (g) = Total nitrogen excretion (g) × 6.25

Protein oxidation rate (g)

=
Leucine oxidation exercise (μmol)−Leucine oxidation rest (μmol)

590

Energy expenditure from protein oxidation (kcal)

=Protein oxidation rate (g)×4.09

Total oxygen consumption (L)

=Oxygen consumption
(

L ∙min −1
)

×Exercise duration (min )

Total energy expenditure (kcal)

=Total oxygen consumption (L)×4.82

Exercise volume (L) = Total oxygen consumption (L)

Contribution protein to energy supply (%)

=
Energy expenditure from protein oxidation (kcal)

Total energy expenditure (kcal)
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TABLE 2    |    Research papers included.

Research paper n

Body 
weight 

(kg)
Method used to measure 

protein metabolism Modality
Duration 

(min)
Intensity 

(%VO2max)

Rennie et al. 1981a [51] 4 74.3 Nitrogen excretion in urine Running 225 57%

Rennie et al. 1981b [52] 4 74.3 Nitrogen excretion in urine 
and leucine oxidation

Running 120 57%

Tarnopolsky et al. 1990 [53] 6 66.9 Urea excretion in urine Running 93 62%

Tarnopolsky et al. 1995 [54] 7 74.8 Urea excretion in urine Cycling 76 73%

Tarnopolsky et al. 1997 [55] 8 72.9 Urea excretion in urine Cycling 90 64%

Refsum and Strömme, 1974 [56] 22 75.0 Urea excretion in urine Cross-
country 
skiing

310 65%

Broad et al. 2008 [57] 10 75.7 Nitrogen excretion in urine Cycling 90 70%

Lemon et al. 1984 [58] 5 55.5 Nitrogen excretion in sweat Cycling 60 49%

Brouns et al. 1989 [59] 13 73.3 Nitrogen excretion in 
urine and sweat

Cycling 276 61%

Calles-Escandon et al. 1984 [60] 8 65.0 Nitrogen excretion in 
urine and sweat

Cycling 90 47%

Smith et al. 2009 [61] 5 74.0 Nitrogen excretion in 
all compartments

Cycling/
Running

128 58%

Pikosky et al. 2008 [62] 7 73.3 Nitrogen excretion in 
all compartments

Cycling/
Running

83 58%

Todd et al. 1984 [18] Diet A 6 75.1 Nitrogen excretion in 
all compartments

Cycling/
Running

60 50%

Todd et al. 1984 [18] Diet B 6 69.8 Nitrogen excretion in 
all compartments

Cycling/
Running

60 51%

Butterfield and Calloway, 1984 [19] 6 67.8 Nitrogen excretion in 
all compartments

Cycling/
Running

60 53%

Gontzea et al. 1968 [63] 30 68.2 Nitrogen excretion in 
all compartments

Cycling 113 61%

Phillips et al. 1993 [37] 6 64.1 Nitrogen excretion in 
all compartments and 

leucine oxidation

Cycling 90 64%

Lamont et al. 2001a [64] 16 68.9 Leucine oxidation Cycling 60 42%

Lamont et al. 2001b [65] 7 77.4 Leucine oxidation Cycling 60 40%

Lamont et al. 2003 [66] 4 76.0 Leucine oxidation Cycling 60 50%

Lamont et al. 1999 [67] Trained 7 67.7 Leucine oxidation Cycling 60 44%

Lamont et al. 1999 [67] Untrained 7 68.8 Leucine oxidation Cycling 60 48%

McKenzie et al. 2000 [68] 6 78.8 Leucine oxidation Cycling 90 62%

El-khoury et al. 1997 [69] 8 77.5 Leucine oxidation Cycling 90 46%

Bowtell et al. 1998 [70] High 
protein diet

8 74.5 Leucine oxidation Running 120 60%

Bowtell et al. 1998 [70] Low protein 
diet

8 71.9 Leucine oxidation Running 120 60%

(Continues)
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exercise. To achieve this, summary statistics for each study, in-
cluding mean values and 95% CIs, are depicted on the right side 
of Figure 3.

In the studies included in the present review, protein oxida-
tion increased by 1.02 ± 0.06 mg∙kg−1∙min−1 (95% CI [0.91, 
1.14]) during endurance exercise (Figure  3), from the level 
of 0.81 ± 0.38 mg∙kg−1∙min−1 measured without exercise. 
Variation across studies presents considerable heterogeneity 
with an I2 of 99.1% and a τ2 of 0.10. To present the range of 
effects in a way that acknowledges this heterogeneity, we used 
the prediction interval. To account for this heterogeneity, we 
used the prediction interval to present the range of outcomes. 
The prediction interval of the increase in protein oxidation is 
[0.37, 1.67] mg∙kg−1∙min−1.

4.2   |   Protein's Contribution to Total Energy During 
Exercise

Protein contributed 3.28% ± 0.15% (95% CI [2.97, 3.58]) of 
the total energy expenditure during endurance exercise 
(Figure 4). The prediction interval is [1.53, 5.03] %. The I2 is 
98.1%, and τ2 is 0.72. In the included studies, the contribution 
of protein to the total energy expenditure was 22.17% ± 0.60% 
without exercise.

4.3   |   Effect of Exercise Intensity

An increase in exercise intensity was associated with a 
greater quantity of protein oxidized during exercise when 

normalized by body weight and exercise duration (r2 = 0.254; 
p = 0.001) (Figure 5A). Exercise intensity had no effect on the 
protein's contribution to energy supply (r2 = 0.018; p = 0.205) 
(Figure 5B).

4.4   |   Effect of Exercise Duration

Exercise duration had no effect on the quantity of protein oxi-
dized when normalized by body weight and exercise duration 
(r2 = 0; p = 0.505) (Figure  6A). Exercise duration was not as-
sociated with the contribution of the protein to energy supply 
(r2 = 0.020; p = 0.189) (Figure 6B).

4.5   |   Effect of Exercise Volume

Exercise volume had no effect on the quantity of protein oxidized 
when normalized by body weight and exercise duration (r2 = 0.062; 
p = 0.099) (Figure 7A). Exercise volume was not associated with 
the protein's contribution to energy supply (r2 = 0.046; p = 0.102) 
(Figure 7B). The results obtained are summarized in Table 3.

5   |   Discussion

5.1   |   Meta-Analysis of the Protein Oxidation 
During Endurance Exercise

The main finding was that endurance exercise increased pro-
tein oxidation, with an average of 1.02 ± 0.06 mg∙kg−1∙min−1 
(95% CI [0.91, 1.14]) of additional protein being oxidized during 

Research paper n

Body 
weight 

(kg)
Method used to measure 

protein metabolism Modality
Duration 

(min)
Intensity 

(%VO2max)

Bowtell et al. 2000 [71] High 
protein diet

8 74.8 Leucine oxidation Running 120 60%

Bowtell et al. 2000 [71] Low protein 
diet

8 72.8 Leucine oxidation Running 120 60%

Wolfe et al. 1982 [72] 4 69.8 Leucine oxidation Cycling 105 29%

Knapik et al. 1991 [73] 7 79.1 Leucine oxidation Cycling 125 48%

Howarth et al. 2010 [16] 6 80.0 Leucine oxidation Two-leg 
knee 

extensor

120 33%

Koopman et al. 2004 [74] 8 72.4 Leucine oxidation Cycling/
Running

360 50%

Mazzulla et al. 2017 [75] 7 72.4 Leucine oxidation Running 60 69%

Forslund et al. 1999 [76] High 
protein diet

6 80.0 Leucine oxidation Cycling 90 47%

Forslund et al. 1999 [76] Normal 
protein diet

8 78.0 Leucine oxidation Cycling 90 46%

Abbreviation: n, number of participants.

TABLE 2    |    (Continued)
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exercise (Figure  3). This showed that protein metabolism 
more than doubled during exercise, since protein oxidation on 
control days without exercise was 0.81 ± 0.38 mg∙kg−1∙min−1, 
corresponding to a daily protein oxidation of 82 g for a 70 kg 
person. Every study included in the present review demon-
strated an elevation in protein oxidation during endurance 
exercise. However, the energy contribution from protein 

metabolism during endurance exercise was low and covered 
only 3.28% ± 0.15% of the energy expenditure during endur-
ance exercise (Figure 4), with a range of 0.92%–11.56% across 
all included studies. This is in the same order of magnitude as 
previous studies calculating the contribution of protein as an 
energy source during endurance exercise [9, 21, 77]. Oxidation 
of CHO and fat increases much more than protein oxidation 

FIGURE 3    |    Forest plot of the random-effects meta-analysis of the additional quantity of protein oxidized during exercise, normalized by body 
weight and exercise duration (mg∙kg−1∙min−1).

FIGURE 4    |    Forest plot of the random-effects meta-analysis of protein's contribution to energy supply during exercise.
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FIGURE 5    |    Random-effects meta-regressions of the effect of exercise intensity on (A) protein oxidation normalized by body weight and exercise 
duration (mg∙kg−1∙min−1); and (B) protein's contribution to energy supply (%).
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11 of 20

FIGURE 6    |    Random-effects meta-regressions of the effect of exercise duration on (A) protein oxidation normalized by body weight and exercise 
duration (mg∙kg−1∙min−1); and (B) protein's contribution to energy supply (%).
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FIGURE 7    |    Random-effects meta-regressions of the effect of exercise volume on (A) protein oxidation normalized by body weight and exercise 
duration (mg∙kg−1∙min−1); and (B) protein's contribution to energy supply (%).
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during endurance exercise and provides more than 95% of the 
energy [3, 4].

5.2   |   Effect of Exercise Intensity on Protein 
Oxidation

In this review, protein oxidation was positively correlated 
with exercise intensity. However, protein's contribution to en-
ergy supply during exercise remained constant regardless of 
the exercise intensity. Importantly, no human study to date 
has investigated the effect of exercise intensity on protein ox-
idation by performing the same exercise at different intensi-
ties. Nevertheless, rat studies using similar exercises at both 
easy and hard exercise intensities have shown that protein 
oxidation increased with higher exercise intensities, related to 
the increased metabolic rate [78, 79]. From the same data [79], 
it is also possible to calculate that the relative contribution of 
protein to energy supply remained constant, aligning with our 
findings. The studies included in the present meta-analysis 
used exercise intensities ranging from 29% to 73% of VO2max. It 
is well documented in humans that as exercise intensity rises, 
a larger proportion of CHO is used relative to fat, reaching 
over 75% of the energy supply at the higher intensities of the 
included studies [3, 4]. Within the range of exercise intensi-
ties included in this review, both CHO and fat were primarily 
metabolized through the tricarboxylic acid (TCA) cycle [80]. 
Interestingly, our data suggest that protein metabolism also 
increased with rising exercise intensity, but the relative con-
tribution did not significantly increase. While our data do not 
provide any mechanistic insights, they hopefully inspire fur-
ther investigation into the effect of exercise intensity on pro-
tein oxidation directly.

It is well documented that the concentration of the sum of 
the TCA cycle intermediates increases during exercise [81]. 
Although pyruvate is the main contributor to anaplerosis, pro-
tein metabolism also contributes, mainly through the alanine 
aminotransferase reaction [82]. Interestingly, the increase in 
TCA cycle intermediates is augmented with rising exercise in-
tensity [81]. Thus, a higher quantity of protein may be necessary 
to replenish TCA cycle intermediates at higher exercise intensity. 
Lamont et al. [64] also observed that protein oxidation increased 
with energy expenditure during exercise, as leucine oxidation 
was significantly positively correlated with oxygen consumption 
during exercise. This indicates that protein oxidation is related 
to aerobic energy pathways.

Interestingly, studies that reported improved performance 
following protein intake after exhaustive exercise used 

high-intensity exercises (> 70% of VO2max) [5, 8, 83, 84]. The 
improvement in performance was greater the higher the in-
tensity of the exhaustive exercise. This finding aligns with 
our meta-analysis, which showed that high-intensity exercise 
was associated with high protein requirements, as demon-
strated by high protein oxidation during exercise above 70% 
of VO2max. Furthermore, if we calculate protein oxidation 
during the exhaustive exercises in these studies [5, 8] using 
data from the present review (1.97 and 2.03 mg∙kg−1∙min−1 
at 72% and 73% of VO2max respectively) and add it to protein 
oxidation during control days without exercise from the pres-
ent review (≈1.15 g∙kg−1∙d−1), these data accurately predict 
negative nitrogen balances when consuming a carbohydrate 
drink during recovery. Conversely, these data also accurately 
predict positive nitrogen balances when protein intake is in-
creased during recovery [5, 8].

5.3   |   Effect of Exercise Duration on Protein 
Oxidation

Protein oxidation was not correlated with exercise duration. 
This means that the quantity of protein oxidized per unit of 
time did not increase as the exercise period was extended. 
This is surprising because glycogen stores decrease with exer-
cise duration [83, 85, 86] and some studies manipulating gly-
cogen stores observed an increase in protein oxidation when 
glycogen stores were low. When starting exercise with dif-
ferent glycogen levels, protein oxidation during exercise was 
higher (+2130% [16]) when beginning with low glycogen levels 
compared to higher glycogen levels. Only one study found a 
lower protein oxidation (−47%) when starting with low glyco-
gen levels [54]. However, participants cycled 45% longer before 
exhaustion with high glycogen levels, making comparisons of 
the effect of glycogen concentration not straightforward in this 
study. A study by Lemon and Mullin [9], which did not meet 
the inclusion criteria due to the absence of a control condition 
without exercise, also found higher protein oxidation (+89%) 
with low glycogen levels during a 1-h cycle ergometer exercise 
at 61% VO2max following CHO loading and CHO depletion. A 
possible explanation for the discrepancy between our results 
on the effect of exercise duration and the results of studies 
manipulating glycogen stores may be the time point at which 
muscles reach low glycogen levels and the adaptations that 
result. In the studies described above, the muscle glycogen 
stores were manipulated before exercise and were low from 
the start of exercise, whereas in most of the studies included 
in the present review, the muscle glycogen stores were normal 
at the start of the intervention and decreased gradually during 
exercise until possibly becoming depleted. When starting 

TABLE 3    |    Summary of results.

Parameter Exercise intensity Exercise duration Exercise volume

Protein oxidation normalized by body weight 
and exercise duration (mg∙kg−1∙min−1)

Significant effect
(p = 0.001)

No effect
(p = 0.505)

No effect
(p = 0.099)

Protein's contribution to energy supply (%) No effect
(p = 0.205)

No effect
(p = 0.189)

No effect
(p = 0.102)
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exercise with low glycogen stores, the participants had to rely 
on other energy substrates from the start of the exercise, lead-
ing to higher protein oxidation during exercise. Supporting 
this hypothesis are patients with McArdle's disease, who are 
unable to use muscle glycogen as an energy source during ex-
ercise. These patients have a five-to-tenfold larger leg release 
of both ammonia and glutamine during exercise compared 
with healthy individuals [87]. They also have a larger uptake 
of branched-chain amino acids in exercising leg muscles and 
show a more rapid activation of the muscle branched-chain 
2-oxoacid dehydrogenase complex, a key enzyme in the degra-
dation of the branched-chain amino acids [87]. In the included 
studies, glycogen degradation occurred gradually. Glycogen 
degradation depends on the exercise intensity, but low glyco-
gen stores were reached from 1 to 3 h of exercise [83, 85, 86]. 
This means that participants in the included studies could rely 
on glycogen as an energy source at least in the first hours of 
exercise before having to rely on other energy sources. The in-
crease in protein as an energy substrate therefore only occurs 
after the first hours of exercise and in a progressive manner. 
This may potentially explain the discrepancy in the reported 
effect of exercise duration.

Protein oxidation studied with stable isotopes has a high tem-
poral resolution and allows investigation of the rate of protein 
oxidation change during prolonged exercise. Leucine oxida-
tion during exercise was found to be higher than at rest, but it 
remained unchanged throughout exercise periods of 120 min 
[52] and 225 min [51]. This was confirmed by El Khoury et al. 
[69], who found similar levels of leucine oxidation throughout 
a 90-min exercise period and during the repetition of the same 
exercise 6 h later. Our analyses agree with these results, exam-
ining the effect of exercise duration on protein oxidation for 
this method separately. This confirms that protein oxidation 
did not change with exercise duration. Analysis of the nitro-
gen excretion studies also did not indicate an effect of exercise 
duration on protein oxidation. Unfortunately, this cannot be 
confirmed by results from simple studies because nitrogen ex-
cretion has low temporal resolution, making the monitoring 
of changes in nitrogen excretion over time during exercise not 
feasible. Indeed, during exercise, both kidney blood flow and 
urine flow fall [88], leading to a reduction in urea clearance. 
As a result, the excretion of urea is delayed until after exer-
cise [51].

5.4   |   Effect of Exercise Volume on Protein 
Oxidation

In this review, exercise volume was defined as the total volume 
of oxygen consumed during exercise, equating it with energy ex-
penditure during exercise. Protein oxidation was not correlated 
with exercise volume. This outcome is unsurprising as the du-
ration of exercise was the main determinant of the exercise 
volume. The inclusion criteria contributed to this relationship 
between exercise duration and volume by restricting variations 
in exercise intensity, given the minimum exercise duration re-
quirement of 60 min.

Previous studies indicate that energy balance impacts protein 
oxidation [18, 19]. Protein oxidation increased when participants 

were in a negative energy balance during exercise and was un-
changed when the additional energy expended during exercise 
was compensated for by increased energy intake. Further stud-
ies are necessary to determine the effect of energy expenditure 
during exercise on protein oxidation.

5.5   |   Consequences of Protein Oxidation During 
Endurance Exercise

The degree of protein oxidation during endurance exercise, as 
calculated in this review, may have significant consequences. 
For instance, using the linear regression obtained in Figure 5A, 
120 min of endurance exercise at 60% VO2max equates to 
≈180 mg∙kg−1 or ≈12.4 g of protein oxidized for a 70 kg individ-
ual. Considering that the body's protein stores are limited and 
primarily functional, increased protein oxidation during exer-
cise could have negative consequences for prolonged endurance 
exercise or exercises conducted over several consecutive days 
without adequate nutritional intake.

These findings underscore the importance of adequate protein 
intake for endurance athletes. The World Health Organization's 
(WHO) [89] protein recommendations of 0.83 g∙kg−1∙d−1 for 
sedentary adults are lower than our data on the control days 
without exercise, which indicated ≈1.16 g∙kg−1∙d−1 of protein 
oxidized. As protein oxidation increased with endurance exer-
cise, the WHO's protein recommendations appear to be too low 
for endurance athletes, as also mentioned by other authors [37]. 
Data from the present review indicated that ≈1.32 g∙kg−1∙d−1 
of protein were oxidized on the exercise days (in the included 
studies, the average exercise duration during the exercise days 
was 112 ± 72 min and the average intensity was 54% ± 10% of 
VO2max). This estimate is consistent with recommendations for 
endurance athletes to maintain zero balance [5, 8]. This esti-
mate is also consistent with protein intake recommendations 
for endurance athletes of 1.6–1.8 g∙kg−1∙d−1 using nitrogen bal-
ance [27, 90] and 1.65 g∙kg−1∙d−1 using the indicator amino acid 
method [91, 92].

5.6   |   Effect of Carbohydrate Ingestion During 
Exercise on Protein Oxidation

Carbohydrate ingestion during exercise and immediately after-
ward reduced protein oxidation, as measured by both nitrogen 
excretion [52, 59] and leucine oxidation [52, 70, 71]. In these stud-
ies [52, 59, 70, 71], the contribution of protein to total energy was 
reduced due to the higher availability of carbohydrates, which 
have been shown to increase carbohydrate oxidation and thus 
contribute more to the energy supply [85, 93]. While carbohy-
drate intake during exercise typically maintains plasma glucose 
concentration [85, 93], maintaining plasma glucose concentra-
tion during exercise, with or without carbohydrate intake, was 
not associated with reduced protein oxidation in the included 
studies [53, 55, 57, 64, 65, 67, 70, 71, 75].

Another potential mechanism is the increased energy balance 
with carbohydrate intake. Energy balance, defined as the differ-
ence between energy expenditure and energy intake, was posi-
tive when carbohydrates were ingested [52, 59, 70, 71]. In some 
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of the included studies investigating the effect of energy balance 
on protein oxidation, it was demonstrated that protein oxidation 
increased when participants were in a negative energy balance 
due to exercise [18, 19]. However, protein oxidation was no lon-
ger elevated when the extra energy expenditure from exercise 
was compensated for by additional energy intake [18, 19].

Finally, another explanation for the reduction in protein oxida-
tion with carbohydrate supplementation during exercise is that 
carbohydrate intake can suppress the exercise-induced activa-
tion of mitochondrial branched-chain alpha-keto acid dehydro-
genase [94]. Branched-chain alpha-keto acid dehydrogenase is 
the rate-limiting enzyme in BCAA metabolism [34, 95, 96], and 
its activity increases during exercise, enabling greater oxidation 
of BCAAs [97–101]. Reduced activation of branched-chain alpha-
keto acid dehydrogenase could result in lower protein oxidation. 
Further studies are necessary to elucidate the exact mechanisms 
behind the effect of carbohydrate ingestion on protein oxidation.

5.7   |   Methodological Considerations

The present review included studies measuring protein oxi-
dation during exercise with different methods. Some authors 
have previously argued that different methods can yield vary-
ing results in terms of the effect of exercise [102, 103]. However, 
comparing the estimates of protein oxidation derived from each 
method in our data, we did not observe any significant differ-
ences between these estimates. This was confirmed by studies 
using several methods. Phillips et al. [37] found that protein ox-
idation was 1.61 ± 0.55 mg∙kg−1∙min−1 with nitrogen excretion 
in all compartments and 1.44 ± 0.21 mg∙kg−1∙min−1 with leucine 
oxidation, and these were not significantly different. Similarly, 
protein oxidation was not significantly different when calculated 
from data in Rennie et al. [52]. We calculated 1.09 ± 0.71 mg∙k-
g−1∙min−1 with nitrogen excretion in urine corrected for all com-
partments and 1.10 ± 0.33 mg∙kg−1∙min−1 with leucine oxidation. 
Lastly, el-Khoury et al. [69] found that the irreversible protein 
nitrogen loss was not significantly different when it was derived 
from nitrogen excretion in all compartments and from leucine 
oxidation. Only the data on protein oxidation with leucine oxi-
dation from this study are presented in this review because the 
nitrogen excretion data lacked a resting control condition.

5.8   |   Strengths and Limitations

In the present review, the majority of included studies are more 
than 25 years old. However, inclusion criteria guaranteed the 
inclusion of studies with data that still represent high-quality 
evidence based on current scientific standards. Some of the old-
est studies were the ones with the highest control over study 
conditions and longest study duration [18, 19, 63]. These can be 
used as references to verify our estimates. In particular, Gontzea 
et  al. [63] measured nitrogen excretion in all compartments 
under highly controlled conditions. During the study period, all 
feces and urine were collected in 24-h batches for measurement. 
Sweat was collected and analyzed both during rest and exercise 
periods. This was achieved while each participant remained in 
the laboratory for the entire duration of the experiments, which 
lasted between 28 and 32 days and occasionally extended to 

52 days. We found no differences in protein oxidation between 
this study and our estimates of protein oxidation from studies 
reporting nitrogen excretion in some compartments, which we 
converted to encompass all compartments.

This review has some limitations. First, despite our comprehen-
sive search strategy involving a variety of search terms, multi-
ple databases, and manual scanning of reference lists, there is a 
chance that we may have missed some relevant articles. A poten-
tial limitation of our literature search was that it was confined 
to only PubMed and Google Scholar databases. The process of 
conducting a systematic review typically involves searching 
multiple databases, including EMBASE, Cochrane Library, and 
others, to ensure comprehensiveness and reduce bias. By cast-
ing a wider net, we increase the chance of capturing all relevant 
evidence on a given topic. Therefore, by restricting our search to 
only two databases, we may have inadvertently omitted perti-
nent studies, potentially impacting the comprehensiveness and 
unbiased nature of our review. Future reviews should consider 
utilizing multiple databases to ensure a more exhaustive and un-
biased collection of relevant literature. It is also plausible that we 
may have missed some relevant articles given that the quantifi-
cation of protein oxidation during endurance exercise is often 
not a primary outcome of many studies.

Second, our inclusion criteria were specifically designed to focus 
on studies that included an endurance exercise and a control 
condition. Consequently, we excluded studies lacking such a 
control condition (n = 17 studies). As a result, our selection was 
narrowed down, encompassing only studies that allowed for cor-
rection of nitrogen losses by obligatory losses without exercise.

Third, since protein oxidation during endurance exercise was 
rarely a primary outcome in the included studies, experimental 
conditions were neither standardized nor optimized for this out-
come. For example, the included studies had different protein 
and energy intakes, and different metabolic states of the subjects 
(fasting or fed). These differences could account for the consider-
able heterogeneity observed in the study results regarding both 
the quantity of protein oxidized and the protein's contribution 
to energy supply during endurance exercise. Feeding status and 
protein intake directly impact protein oxidation during endur-
ance exercise. For example, protein oxidation during exercise 
was higher in the fed state compared to the fasted state, with an 
increase of 136% on a high-protein diet and 45% on a normal-
protein diet [76]. In another included study, protein oxidation 
during exercise was 66% higher in the fed state compared to the 
fasted state [69]. When comparing results between studies with 
quite similar measurement methods, exercise protocols, and 
participant characteristics, protein oxidation was higher in the 
fed state compared to the fasted state [37, 68], even though the 
study conducted in the fed state involved lower dietary protein 
intake [37]. This review includes studies conducted in both the 
fed and fasted states. However, it is important to note that most 
practitioners do not exercise in a fasted state; they typically focus 
on nutrition before and during exercise. As a result, the findings 
of this review may underestimate protein oxidation in real-world 
conditions where dietary intake occurs before exercising. With 
regard to protein intake, the high-protein diet resulted in an 87% 
higher protein oxidation rate compared to the normal-protein 
diet [76]. Similarly, some studies found that when transitioning 
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from a high to low protein intake, or vice versa, the transition 
impacted protein metabolism and it took ≈3 days before a new 
equilibrium was reached [104, 105]. Most of the included studies 
maintained the protein intake constant before the intervention 
days [18, 19, 37, 73, 51, 54, 55, 60–71, 75, 76], but some modified 
the protein intake for periods of < 3 days before the intervention 
days [53, 57, 59, 74, 77, 106] or did not control for protein intake 
[16, 58, 72, 107]. However, Pacy et al. [108] found that partici-
pants well accustomed to a certain dietary protein intake did 
not exhibit a significant change in the daily protein degradation 
rate at rest, regardless of the absolute value of protein intake. 
Similarly, participants demonstrated an increase in protein oxi-
dation in response to exercise, irrespective of both very low and 
very high protein intakes [109]. Furthermore, correcting with a 
control intervention without exercise, as performed in this re-
view, also reduced the effect of this factor on our conclusions. 
This indicates that differences in the protein intake between 
studies likely did not significantly impact our conclusions. 
Finally, the intensity, nature, and duration of exercise differed 
between studies, which could contribute to the observed hetero-
geneity among studies.

6   |   Perspective

Gaining a comprehensive understanding of protein metabo-
lism during endurance exercise is essential for elucidating the 
complex interactions among various energy sources during pro-
longed physical activity and their subsequent effects on muscle 
recovery and adaptation. Such knowledge can contribute to 
the development of optimal nutritional strategies, ensuring ad-
equate protein intake to enhance endurance performance and 
facilitate effective recovery.

This review represents the first attempt to gather and calculate 
estimates of protein oxidation during endurance exercise using 
available data. Although most of the results of this review are in 
agreement with results found previously, this review also opens 
the door for new studies having as their main objective the study 
of protein oxidation. The finding that neither exercise duration 
nor volume increased protein oxidation seems contradictory to 
studies that manipulated glycogen stores and observed an in-
crease in protein oxidation with lower glycogen levels. Further 
research, comparing the same participants across diverse exer-
cise durations and volumes, is required to establish definitive 
conclusions regarding these relationships. Likewise, further in-
vestigation into the effect of exercise intensity on protein oxida-
tion is necessary to provide mechanistic insights.

7   |   Conclusion

The primary finding was that endurance exercise increases 
protein oxidation, with roughly 1 mg∙kg−1∙min−1 of additional 
protein oxidized during exercise. This signifies that protein me-
tabolism more than doubles during exercise, given that protein 
oxidation without exercise is around 0.8 mg∙kg−1∙min−1. Still, 
the energy contribution from protein metabolism during en-
durance exercise remains modest, constituting approximately 
3.3% of the energy supply. This estimate is consistent across var-
ious measurement methods. Protein oxidation increased with 

exercise intensity, though its relative contribution to energy 
supply did not significantly increase. Interestingly, neither exer-
cise duration nor volume augmented absolute protein oxidation. 
Considering that the body's protein stores are limited and pri-
marily functional, increased protein oxidation during exercise 
could have negative consequences. Therefore, adequate protein 
intake is necessary during endurance exercise.
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