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Abstract 

Background Based on the largely untested premise that it is a restorative hormone that may reverse the detrimental 

impacts of aging, prescription of testosterone (T) has increased in recent decades despite no new clinical indications. 

It is apparent that middle-aged and older men with low-normal serum T levels are considering T supplementation 

as an anti-aging strategy. At the same time, there is evidence that physical activity (PA) is at historical lows in the West-

ern world. In this review, we compare the impacts of T treatment aimed at achieving physiological T concentrations 

in middle-aged and older men, alongside the impacts of ecologically relevant forms of exercise training. The inde-

pendent, and possible combined, effects of T and exercise therapy on physiological outcomes such as aerobic fitness, 

body composition and muscular strength are addressed.

Main Body Our findings suggest that both T treatment and exercise improve lean body mass in healthy older men. 

If improvement in lean body mass is the primary aim, then T treatment could be considered, and the combination 

of T and exercise may be more beneficial than either in isolation. In terms of muscle strength in older age, an exercise 

program is likely to be more beneficial than T treatment (where the dose is aimed at achieving physiological con-

centrations), and the addition of such T treatment does not provide further benefit beyond that of exercise alone. 

For aerobic fitness, T at doses aimed at achieving physiological concentrations has relatively modest impacts, par-

ticularly in comparison to exercise training, and there is limited evidence as to additive effects. Whilst higher doses 

of T, particularly by intramuscular injection, may have larger impacts on lean body mass and strength, this must be 

balanced against potential risks.

Conclusion Knowing the impacts of T treatment and exercise on variables such as body composition, strength 

and aerobic fitness extends our understanding of the relative benefits of physiological and pharmacological inter-

ventions in aging men. Our review suggests that T has impacts on strength, body composition and aerobic fitness 

outcomes that are dependent upon dose, route of administration, and formulation. T treatment aimed at achieving 

physiological T concentrations in middle-aged and older men can improve lean body mass, whilst exercise training 

enhances lean body mass, aerobic fitness and strength. Men who are physically able to exercise safely should be 

encouraged to do so, not only in terms of building lean body mass, strength and aerobic fitness, but for the myriad 

health benefits that exercise training confers.
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Background
Testosterone (T) is the primary male sex hormone 

responsible for sexual development and virilization. It 

plays an important role in maintenance of bone and mus-

cle, libido, and sperm production. As men grow older T 

concentrations can decline, with some studies reporting 

that T levels decrease at a rate of 1–2% per year from the 

third decade of life onwards [1, 2]. Ageing occurs con-

tinuously and defining youth, middle and older ages are 

societal as well as physiological constructs, with some-

what arbitrary thresholds. �e UK Biobank focussed on 

adults aged 40–69 years [3], in keeping with the Euro-

pean Male Ageing Study of men aged 40–70 years [4]; 

whereas studies such as the Health In Men Study (HIMS) 

[5] and the Concord Health and Ageing in Men Pro-

ject (CHAMP) [6] investigated T in men aged 70 years 

and above. �erefore, for the purposes of this review, 

we define young men as aged < 40 years, middle-aged 

men as aged 40–69 years, and older men as aged ≥ 70 

years. Older men, on average, have lower T concentra-

tions compared to younger men [5, 7, 8]. In 394 healthy 

men aged 71–87 years, the 2.5th and 97.5th percentiles 

for T measured using mass spectrometry were 6.4–25.6 

nmol/L, compared to 10.4–30.1 nmol/L in reproductively 

normal men aged 21–35 years [5, 7]. Within any age stra-

tum, there is considerable variation in T values between 

individual men [9]. Evidence of impaired testicular pro-

duction of T is apparent after the age of 70 years [10, 11].

�e age-related decline in T concentrations coincides 

with accumulation of medical comorbidities [12, 13], 

and with reductions in aerobic fitness and strength and 

unfavourable changes in body composition [14–16]. It 

is, however, important to note that T concentrations are 

higher in older men who engage in a healthy lifestyle, 

inclusive of regular exercise [17]. Men with organic dis-

orders of the hypothalamus, pituitary or testes which 

impair the production of T present with symptoms and 

signs of androgen deficiency [18]. Such men typically 

have T concentrations lower than expected in healthy 

men of comparable age, and their symptoms and signs of 

androgen deficiency respond promptly to treatment with 

T. However, older men with T concentrations appropri-

ate for their age but lower than expected for younger 

men, may exhibit non-specific symptoms such as tired-

ness and fatigue, in the absence of hypothalamic, pitui-

tary or testicular disease.

In the USA, T prescriptions increased 11-fold between 

2001 and 2011, largely in middle-aged to older men, in 

the absence of new medical indications [19]. Although 

prescriptions have subsequently decreased [20–22], it is 

nonetheless apparent that some middle-aged and older 

men with low-normal serum T levels are considering 

T supplementation as an anti-aging strategy [23]. At 

the same time, there is evidence that physical activity is 

at historical lows in the Western world [24]. �ere has 

never been a more inactive population than twenty-first 

century humans and some have suggested that, from an 

evolutionary perspective, this unprecedented decline in 

physical activity underlies the contemporary increase 

in chronic diseases [25]. Despite the fact that there is a 

mature evidence-base that exercise training can arrest 

some age-associated changes in body composition, 

strength and cardiovascular function in humans, increas-

ing physical activity remains a population health chal-

lenge, and pharmacological strategies that emulate the 

impacts of exercise present an appealing alternative [26].

�is review summarizes what is currently known about 

the impact of T treatment, exercise and their combina-

tion on body composition, strength and aerobic fitness. 

Although there is a body of literature concerning the 

effects of anabolic androgenic steroid (AAS) abuse, this 

review focuses on (physiological) T treatment, designed 

to increase T levels within the physiological range in 

middle and older aged men. �e papers we review to 

provide the following summary sections are available as 

an online supplement. We also present the consolidated 

outcomes of the recent Testosterone and Exercise (TEX) 

randomised trial [27–29], a 2 × 2 factorial placebo-con-

trolled trial of men aged 50–70 years with low-normal 

serum T levels who were randomized to directly compare 

the combined and independent impacts of T treatment 

(in the physiological range) and supervised center-based 

exercise.

Main Text
Lean Body Mass: The E�ects of Testosterone, Exercise, 

and Their Combination

Building muscle mass is arguably a primary driver for off-

label T use. Lean body mass decreases from middle age at 

a rate of approximately 1% per year [30], with its decline 

associated with decreased independence, reduced qual-

ity of life and, ultimately, frailty and an increased risk of 

mortality [31]. �e anabolic effects of T are well estab-

lished, with mechanisms related to increased muscle pro-

tein synthesis [32, 33], stimulated satellite cell replication 

[34] and inhibition of muscle protein degradation [35, 

36]. Whilst illicit anabolic–androgenic steroid (AAS) use 

is beyond the scope of this review, the anabolic actions 

of T are relevant to middle-to-older aged men who may 

experience muscle loss as they age, with consequent det-

rimental effects on health [31]. Similarly, exercise train-

ing has been shown to stimulate muscle hypertrophy in 

middle and older aged men [37–41], although these stud-

ies also used some dietary manipulations. Taken together, 

this suggests the combination of T treatment and exer-

cise training may confer additive benefits for lean body 
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mass and some studies described below have directly 

addressed this question.

The Impact of Testosterone on Lean Body Mass

Cross-sectional studies have associated higher endog-

enous T levels with higher lean body mass [42–47] and 

the majority of interventional studies in older men have 

reported that T improves lean body mass (Additional 

file  1: Table  S1, mean effect across studies ~ 2.2 kg) [35, 

48–60]. A study by Bhasin et al. [56] demonstrated that 

older men (60–75 years, n = 60) appeared to be as respon-

sive as younger men (19–35 years, n = 61) to the anabolic 

effects of T treatment, assessed using dual energy x-ray 

absorptiometry (DXA) [56]. In older adults (≥ 65 years), 

an ‘umbrella review’ concluded that T administration 

was justified as a pharmacological intervention in men 

with low baseline T levels (6.9–10.4 nmol/L) to improve 

muscle mass [61]. It is pertinent to note that this review 

was not powered to assess any potential cardiovascular 

(CV) or cancer risks of T treatment in men and the use of 

T is still only indicated clinically for men with pathologi-

cal androgen deficiency (disorders of the hypothalamus, 

pituitary or testes) [18, 62]. However, given the exten-

sive evidence of the anabolic effects of T, coupled with 

the known association of low muscle mass and all-cause 

mortality in men [63], these findings may have important 

implications for men with reduced muscle mass resulting 

from their inability to exercise due to disease or disability.

The Impact of Exercise Training on Lean Body Mass

�ere is a plethora of evidence demonstrating that exer-

cise training can increase lean muscle mass across the 

lifespan, and in various disease states [64–70]. Given its 

association with all-cause mortality [31], maintaining or 

improving muscle mass becomes increasingly important 

into middle and older age [71]. Specifically in middle/

older aged men (50–76 years), resistance training studies 

of 12–16 weeks report average lean body mass improve-

ments of ~ 1.3 kg [37–41]. �is result is in line with a 

meta-analysis by Peterson et al. [64] comprising 49 stud-

ies representing 1328 participants who were > 50 years. 

�e authors concluded from their analysis that 20.5 

weeks of resistance exercise training elicits an approxi-

mate 1.1 kg increase in lean body mass among older 

adults. It is important to note that the meta-analysis also 

included women, although sex was not significantly asso-

ciated with the changes reported in lean body mass.

The Impact of Combined Testosterone and Exercise 

Training on Lean Body Mass

A recent meta-analysis by Falqueto et  al. [72] reported 

that the combination of T treatment and exercise training 

(duration 3–52 weeks) resulted in greater improvements 

in lean body mass compared to exercise training alone. 

However, of the 27 included studies (n = 1114) only 

one (n = 24) [73] was performed in healthy adult men, 

with the remainder involving clinical populations such 

as those with heart failure [74, 75], kidney failure [76], 

chronic obstructive pulmonary disease [77, 78], and spi-

nal cord injury [79]. �is highlights the paucity of data 

surrounding the effects of T and exercise training on 

aging in apparently healthy men, without major medical 

comorbidities.

Intervention studies in younger men report an addi-

tive effect on lean body mass when T treatment is com-

bined with exercise training (Additional file 1: Table S2) 

[80–82]. Bhasin et al. [80] reported that, when 10 weeks 

of strength training was combined with higher doses (600 

mg given intramuscularly on a weekly basis) of T in 43 

men aged 19–40 years, lean body mass increased sig-

nificantly (+ 6.1 kg) compared to men in the no-exercise 

groups (T alone: + 3.2 kg; placebo alone: + 0.8 kg). Exer-

cise alone resulted in average lean body mass gains of 1.9 

kg [80]. In men of similar age (n = 21, 19–45 years), Giorgi 

et al. [82] combined a supraphysiological T dose (3.5 mg/

kg bodyweight weekly) with strength training over 12 

weeks and reported significantly greater rectus femoris 

girth in the T + Ex group, compared with placebo. Simi-

larly, a recent study by Pasiakos et al. [81] found that lean 

body mass improvements in young males (25 ± 5 years, 

n = 50) were significantly greater in those who received 

weekly T injections, compared to placebo (T + Ex: + 2.5 

kg; P + Ex: -0.3 kg), after both groups completed 28 days 

of military-relevant exercise with a diet-induced energy 

deficit. �e combination of T + Ex therefore appears to 

be additive for younger men with the magnitude of ben-

efit ranging from ~ 2–5 kg over 10–12 weeks when supra-

physiological doses are employed.

Studies assessing whether the addition of T treat-

ment to an exercise training program in older men pro-

vides greater benefits for lean body mass than placebo 

have reported inconsistent results (Additional file  1: 

Table S2) [83–87]. Sullivan et al. [84] and Kvorning et al. 

[83] reported no additive effect of T + Ex on lean body 

mass following a 12-week resistance training interven-

tion in older hypogonadal men. Further, Katznelson et al. 

[86] reported an absence of body composition change in 

either T treatment or exercise groups, or their combina-

tion, following a 12-week home-based �eraband exer-

cise program. Conversely, in a group of healthy older men 

with low-normal T levels, Hildreth et  al. [85] reported 

that the addition of T treatment to progressive resistance 

exercise training for 12 months led to greater improve-

ments in lean body mass than exercise alone. Similarly, 

Barnouin et  al. [87] reported the addition of T treat-

ment to a lifestyle intervention provided superior lean 
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body mass results to placebo in obese men (n = 83, > 65 

years). Of note, in the Barnouin et al. [87] study, the addi-

tion of T treatment only attenuated the loss of lean body 

mass compared to placebo; lean body mass itself was 

not increased. Only one of the aforementioned studies 

employed a combined resistance and aerobic training 

program, which can be as effective as resistance train-

ing alone for improving lean body mass [88]. However, 

the lifestyle intervention in that study was also inclusive 

of caloric restriction (500–750 kcal/day deficit) which 

undoubtedly affected lean body mass.

In our recent 2 × 2 factorial trial comparing the impacts 

of T and exercise (TEX) [27–29], we randomised 80 men 

aged 50–70 years with waist girth ≥ 95 cm and low-nor-

mal serum T levels to transdermal T, or matching pla-

cebo (P) and to supervised center-based exercise training 

(Ex) or no additional exercise (NEx) [T + Ex group 

mean(95%CI) T levels nmol/L: 12.9(10.7–15.0); T + Nex 

11.0(8.6–13.3); P + Ex 12.3(9.9–14.7); P + Nex 13.0(10.9–

15.2)]. Post-intervention changes in T concentration 

were significant in the T treatment groups [T + Ex group 

15.9(13.8–18.1); T + Nex 14.0(11.7–16.4)], but not in the 

placebo groups [P + Ex 13.2(10.6–15.7); P + Nex 12.1(9.9–

14.3)]. �e exercise intervention involved circuits of eight 

machine-based resistance exercises (leg press, chest 

press, seated calf raise, lat pulldown, leg curl, dual biceps 

curl, abdominal crunch, and triceps extension), alter-

nated with eight aerobic cycling stations. Exercises were 

performed for 45 s, with 15-s intervals to facilitate move-

ment between stations in the circuit. Resistance exercise 

intensity (2 sets of 12–15 reps, progressed to 3 sets at 

week 3) was initially performed at 65%1RM, progressed 

to 80% 1RM by weeks 4–6. Aerobic exercise was initially 

performed at 65% HRmax, progressed to 85%HRmax by 

weeks 4–6 on the cycle ergometer. Transdermal doses of 

T have to allow for limited absorption from normal skin, 

and in the absence of a depot tend to be given daily (46). 

�e dose of T (100 mg applied to the upper body daily) 

was designed to raise T levels from low-normal to mid- 

or high-normal range in these participants, rather than to 

raise levels above the physiological range. We observed 

main effects of T treatment with increased total, leg and 

arm lean body mass (assessed by DXA) [28], thereby 

reinforcing the anabolic effects of T (see Fig. 2). Further-

more, we observed that T alone significantly increased 

leg lean body mass (+ 0.5 kg/2.3%) compared to placebo 

alone (−  0.4  kg/−  1.9%) over 12  weeks [28]. Given that 

muscle mass in the lower extremities is an important 

determinant of mobility status with aging [89, 90], our 

results may have implications for older men unable to 

exercise due to disease or disability. �e 0.7  kg (1.1%) 

increase in total lean body mass in the exercise alone 

group was marginally lower than that reported (1.1  kg) 

in a meta-analysis of resistance exercise training studies 

in 1328 participants > 50 years [64], perhaps reflecting the 

shorter duration of our TEX study (12  weeks). Further-

more, our exercise intervention consisted of both aero-

bic and resistance training, making direct comparisons 

with the above meta-analysis difficult. Our findings are in 

agreement with previous T [35, 48–60] and exercise [37–

41] studies in men as we report significant main effects of 

T (alone) and exercise (alone) to improve total lean body 

mass. Although we did not observe additive effects of T 

treatment and exercise to improve total lean body mass, 

we did observe that the combination had additive effects 

in specific regions (e.g. leg and arm lean body mass). Fur-

thermore, the increase in total lean body mass was larg-

est in men who received both T and exercise training 

[28]. Further studies are needed to examine this question, 

and to determine the effects of longer durations of these 

interventions.

Summary: E�ects of Testosterone, Exercise, and Their 

Combination on Lean Body Mass

�ere is clear evidence that both T treatment and exer-

cise improve lean body mass in healthy older men 

(Fig. 1). If improvement in lean body mass is the primary 

aim, then T supplementation could be considered, and 

the combination of T and exercise may be more benefi-

cial than either in isolation (Figs. 1 and 2). However, the 

effects of T (and exercise) should be reviewed in the over-

all context of cardiovascular risk (see section below: Are 

�ere Cardiovascular Risks Associated With Testosterone 

Fig. 1 Summary of trials which have independently modified T 

levels within the physiological range, or utilised exercise training 

interventions, or combined these interventions. Where a positive 

impact is indicated for T or exercise, there is typically evidence 

that the benefits are dependent on dose, and in the case of T, 

also on route of administration (favouring intramuscular injection). 

Some evidence suggests that additive effects for lean body mass may 

be more apparent in younger men, but that gains in strength may be 

less age-dependent, possibly due to neural benefits. Interpretation 

of this disparate literature should be compared to the results 

of an RCT comparing exercise and T effects, summarised in Fig. 2
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Treatment?). Men who are physically able to exercise 

safely should be encouraged to do so, not only in terms 

of building lean body mass but for the myriad of other 

health benefits exercise training offers [91–93]. Finally, it 

has been reported that increases in skeletal muscle mass 

as a result of T treatment may be dose-dependent [50, 52, 

56, 94, 95]. It is therefore of interest in our TEX study, 

that despite a much lower (physiological) T dose deliv-

ered in older participants, we observed improvements in 

lean body mass.

Muscular Strength: The E�ects of Testosterone, Exercise, 

and Their Combination

Although inter-related, a change in lean body mass is not 

always an indicator of functional (strength) change [96, 

97] (and vice versa), and there are inconsistent reports 

regarding the association of the increase in lean body 

mass following T treatment and changes in muscu-

lar strength and performance [49, 51, 53, 55, 98]. It has 

been reported that a decline in muscular strength is more 

indicative of functional decline than decrease in muscle 

mass [99]. Loss of muscular strength with increasing 

age is associated with decreases in function, the ability 

to conduct activities of daily living, and independence 

[100, 101]. Consequently, low muscle strength also inde-

pendently predicts all-cause mortality in men [102–105], 

making it a pertinent outcome to assess in middle to 

older aged men.

The Impact of Testosterone on Muscular Strength

Data from cross-sectional comparisons suggest that 

lower endogenous T levels may be associated with lower 

levels of muscular strength in younger [106], middle aged 

[107] and older [108] men. However, data from interven-

tional studies in older men are less conclusive, possibly 

due to differences in study duration, or T dose and/or 

route of administration (see Additional file 1: Table S3). 

Some T intervention studies in older men have reported 

no difference in muscular strength between T-treated 

and placebo groups [49, 51, 53, 55, 58, 109–113]. In con-

trast, other studies of T treatment alone (i.e. no exercise 

intervention) have reported improvements in strength 

Fig. 2 Summary of results from the 2 × 2 factorial trial of Testosterone and Exercise (TEX) which directly compared the combined and independent 

impacts of T treatment (in the physiological range) and supervised center-based exercise. Upper: Changes from baseline following the 12 week 

intervention, **P < 0.001, *P < 0.05 for week 12 change from baseline compared with placebo + no exercise group change. Lower: Infographic 

summarising the results from our TEX trial. T + Ex column indicates whether the addition of testosterone (T) to exercise training (Ex) provides 

additive benefit compared to exercise alone. ‘ + ’ indicates improvement, ‘–’ indicates no significant change



Page 6 of 16Green et al. Sports Medicine - Open           (2024) 10:30 

[35, 48, 52, 57, 59, 98, 114, 115]. However, of the studies 

that have reported improvements in muscular strength, 

one did not include a control group [52], three reported 

only hand-grip measurements as a surrogate of strength 

[57, 98, 115], three were limited by small sample sizes 

(n < 12 per group) [35, 59, 114], and another was con-

ducted in older frail men [48]. Furthermore, a meta-

analysis of 1083 males aged 50–78 years across 29 RCTs 

reported only a small effect size of 0.3 for dominant knee 

extension and hand-grip strength [116]. In contrast, a 

more recent meta-analysis of 41 RCTs in middle-aged 

and older men reported a large effect size of 0.9 for total 

body strength following T treatment [117]. �e authors 

also concluded that studies employing intramuscular 

T injection resulted in an 11.2% increase of total body 

strength, in comparison to transdermal preparations, 

which improved strength by 2.1%.

Is an Increase in Strength Following Testosterone 

Treatment Dose-Dependent?

Given that T intervention studies employ a range of 

doses, Bhasin et al. [56] used a long-acting gonadotropin-

releasing hormone agonist to suppress endogenous T 

secretion and assessed responses to five different doses 

of T (ranging from 25 to 600 mg/wk) over five months 

to determine T dose–response relationships in younger 

(19–35 years, n = 61) and older (60–75 years, n = 60) men. 

Dose-dependent increases in leg press strength were elic-

ited in both younger and older men, with no effect of 

age [56]. �ese results highlighted that older men were 

as responsive as younger men (age effect: P = 0.84) to the 

beneficial effects of T on strength (assessed via leg press). 

In addition, the authors concluded the best ‘trade-off’ 

was achieved with a T dose of 125 mg per week given 

intramuscularly when improvements in lean body mass, 

muscle strength and frequency of adverse events were 

taken into consideration. Although perhaps unsurprising, 

it is important to note that, following cessation of T treat-

ment, muscular strength levels may not be maintained 

(unless otherwise targeted) [118], and the rate of strength 

loss may be correlated with the length of the antecedent 

T administration period [82].

The Impact of Exercise on Strength

Low muscle strength is independently associated with 

an increased risk of all-cause mortality, independent 

of muscle mass [119]. However, the effect of resistance 

training on muscular strength in older adults is well 

established [120, 121] and supported by the highest cat-

egory of evidence [122, 123]. A systematic review of 41 

progressive resistance strength training trials in older 

adults (n = 1955) reported a moderate-to-large beneficial 

effect on strength (0.68) [124]. �ese results were later 

reinforced by a Cochrane review of 73 trials compris-

ing 3059 older adults which demonstrated that progres-

sive resistance training has a large effect (0.84) on muscle 

strength [121]. Further, a meta-analysis of 47 studies rep-

resenting 1079 participants reported that older adults 

can achieve substantial muscular strength gains in major 

muscle groups (24–29% improvement across leg press, 

chest press, knee extension and latissimus-pulldown 

exercises) following resistance training [120].

Can Exercise Training Modify Age-Related Decline 

in Strength?

A reduction in size and number of muscle fibres, specifi-

cally in type II (fast-twitch) fibres, underpins age-asso-

ciated strength decreases [125]. �e selective atrophy of 

type II muscle fibres with age decreases the maximum 

relaxation rate [126], which can be ascribed to decreased 

sarcoplasmic reticulum activity and reduced sliding 

speed of actin on myosin [127, 128]. A gradual decrease 

in the number of muscle fibres begins during the 5th 

decade of life with an approximate 50% reduction by 80 

years [129]. However, a slowing of this process is evident 

in those who remain physically active into older age—

e.g. masters athletes [130, 131]. �ere is also evidence 

to show that six months of strength training in elderly 

men can induce lower limb strength increases similar in 

relative terms to men 30 years their junior (40 year old 

increase: 22% vs 70 year old increase: 21%).

Although a portion of the age-related decline in 

strength may be related to muscle mass, there is also evi-

dence to suggest that neural processes play a role. Spe-

cifically, motor unit losses of 47% have been reported in 

older (60–81 years) compared to younger (22–38 years) 

participants [132]. Although some will atrophy, dener-

vated muscle fibres may also be adopted by other surviv-

ing motor neurons, resulting in larger motor units [133]. 

Whether chronic exercise training can delay the decrease 

in motor unit numbers associated with aging remains 

unclear [134, 135].

The Impact of Combined Testosterone Treatment 

and Exercise Training on Strength

Intervention studies combining T treatment and exercise 

have produced heterogenous results in terms of muscular 

strength outcomes, which may be attributed to distinct T 

doses, routes of administration and/or exercise training 

programs (see Additional file 1: Table S4). �e combina-

tion of supraphysiological T doses and resistance exercise 

training has been shown to increase muscular strength 

more than exercise alone following 10–12-week interven-

tions in healthy young men (aged 19–45 years) [80, 82]. 

Specifically, using 600 mg/wk intramuscular injections, 

Bhasin et al. [80] reported increases in 1RM of 38% in the 
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T + Ex group compared to those that performed exercise 

alone (11%). In this study, serum T levels in the T + Ex 

group increased from 14.9 ± 1.3 at baseline to 112.5 ± 10.6 

nmol/L. Similarly, Giorgi et al. [82] administered 3.5 mg/

kg/wk injections (average bodyweight: 83 kg = 290 mg/

wk) and reported increases of 22% and 9% in the T + Ex 

and P + Ex groups respectively (changes in T levels were 

not reported). Collectively these studies suggest the 

addition of supraphysiological T treatment to exercise 

training over 12 weeks improves the benefit of exercise 

alone by ~ 2–threefold. In contrast, another study of men 

aged 18–39 years by Pasiakos et  al. [81] failed to show 

any difference in lower body muscular strength changes 

between T (200 mg/wk) and placebo groups after 28 days 

of military-relevant exercise. �ey observed changes in 

T from 15.5 to 36.2 nmol/L in the T group during this 

time. However, direct comparisons between Pasiakos 

et al. [81] and the earlier studies from Bhasin et al. [80] 

and Giorgi et al. [82] are difficult, as all participants from 

Pasiakos et al. [81] also underwent a severe (55%) energy 

deficit (diet and exercise induced) which likely affected 

muscular strength improvements. It is also important to 

highlight that the exercise training regime implemented 

by Pasiakos et al. was relatively short (28 days) and pri-

marily aerobic-based to “reflect the aerobic-type physi-

cal work that occurs during sustained, strenuous military 

operations”, which may account for the lack of lower body 

muscular strength improvement reported.

Studies combining T treatment and exercise training in 

older men with low-normal baseline T levels have failed 

to show additive muscular strength benefits over 3–12 

months (Additional file  1: Table  S4) [83–85, 87]. Sulli-

van et  al. [84] reported a trend toward greater strength 

improvement in 1RM bench press with T (100 mg injec-

tions) over 12 weeks in 71 men aged 65–93 years but 

these results did not achieve statistical significance. Of 

note, although significantly greater increases in mid-

thigh cross-sectional area were reported for T + Ex, this 

did not translate into greater strength improvements in 

1RM leg press, reinforcing the distinction between lean 

body mass and strength improvements. Kvorning et  al. 

[83] also failed to show any additional benefit of add-

ing 50 mg of transdermal T (gel) to 12 weeks of strength 

training in a smaller study (T + Ex: n = 6, P + Ex: n = 8) 

of men aged 60–78 years. In a 12-month study of 167 

men > 60 years by Hildreth et  al. [85], the addition of T 

to supervised progressive resistance training did not 

significantly affect any 1RM strength measures. Of note 

however, the improvement in upper body strength in 

the non-exercisers was significantly greater in those ran-

domised to T, compared to placebo. In line with these 

results, Barnouin et  al. [87] also failed to show any sig-

nificant 1RM strength differences between T and placebo 

in 83 obese men (> 65 years, body mass index [BMI] > 30 

kg/m2) when both groups also engaged in a lifestyle 

intervention inclusive of caloric restriction and exercise 

training.

All studies in middle-aged and older men have 

employed training programs that were predominantly 

resistance-based. However, interventions that are spe-

cifically designed to target both aerobic and muscu-

lar components of health may be more beneficial than 

either modality in isolation, particularly for improve-

ment in tasks of daily living [88, 136]. Contrary to widely 

held belief, endurance trained older men (70–81 years) 

also have preserved strength characteristics relative to 

body mass [131]. In the TEX study which involved com-

bined resistance and endurance training, we did not 

observe any main effects of T on strength measures [28] 

(Fig.  2). As muscular strength responses to T may be 

dose-dependent [56] and further influenced by route of 

administration [117], we cannot exclude the possibility 

that a higher dose, alternate route of T administration, 

or longer treatment may have yielded different results. 

Conversely, we reported main effects of exercise train-

ing which increased all strength measures [28]. �ese 

findings suggest that the addition of T (targeting physi-

ological levels)  to an exercise program might not pro-

vide further benefit in terms of muscular strength than 

exercise alone. �is indicates that middle and older aged 

men with low T levels are likely to benefit from an exer-

cise program targeted at improving muscular strength, 

which in turn would be expected to slow age-related 

declines in function and preserve ability to conduct activ-

ities of daily living independently [100, 101]. Although 

our results indicated a potential additive effect of T and 

exercise on lean body mass (Fig. 2), this did not translate 

into strength gains, which is in line with some previous 

literature.

Summary: E�ects of Exercise Training and Testosterone 

on Strength in Middle and Older Aged Men

�e likelihood of detecting significant differences in 

strength between T treatment and placebo tends to rise 

only if the dose is > 125 mg/wk (usually delivered via 

intramuscular injection). Studies that have used lower 

doses or different formulations have typically failed to 

report significant T effects. �e literature concerning the 

effects of exercise training on muscular strength in older 

men is more homogeneous; exercise training improves 

muscular strength in healthy middle aged and older men. 

�ere is evidence to suggest that the addition of supra-

physiological T treatment to an exercise training pro-

gram is ~ 2–3 × more beneficial for muscular strength 

than placebo in men. However, it should be empha-

sized that important clinical concerns have been raised 
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regarding the use of supraphysiological T doses in older 

men [56] (see section below: Are �ere Cardiovascular 

Risks Associated With Testosterone Treatment?), and no 

study (including TEX) has replicated this finding using 

doses of T that target the physiological range. For men 

motivated to maintain/build muscle strength into older 

age, an exercise program is likely to be more beneficial 

than exogenous T treatment. �e addition of physiologi-

cal T treatment does not appear to provide any benefit 

beyond that of exercise alone.

Aerobic Capacity: E�ects of Testosterone, Exercise, 

and Their Combination

Exercise capacity provides an index of integrative human 

functional capacity which predicts all-cause and cardio-

vascular mortality [137–139]. Every 1 metabolic equiva-

lent improvement in aerobic fitness is associated with 

15% and 19% lower risk of all-cause and CVD mortality 

respectively [140]. With aging, aerobic fitness tends to 

decline, with decreases of 15–20% reported in men dur-

ing the fifth and sixth decades of life [15].

The Impact of Testosterone Treatment on Aerobic Fitness

Short-term T supplementation has been shown to 

improve total exercise time in men with coronary artery 

disease [141, 142], and also to improve  VO2peak in men 

with heart failure [143]. However, longer-term T studies 

(6–24 months) in men without CVD have reported het-

erogeneous results concerning measures of peak aerobic 

exercise performance (see Additional file  1: Table  S5) 

[111, 112, 144–146]. In a group of 64 mobility-limited, 

older men (65–86 years), Storer et  al. [144] reported a 

significant difference in aerobic capacity between T treat-

ment and placebo groups following six months of 100 mg 

daily transdermal T supplementation. Although the rela-

tive increase in  VO2peak with T treatment was modest 

(0.83 mL/kg/min), the significant between-group differ-

ence was attributed to the greater than expected decline 

in the placebo group (− 0.89 mL/kg/min). �ese findings 

were reinforced by a later study by Traustadottir et  al. 

[145] who reported that 3 years of 75 mg daily trans-

dermal T treatment attenuated the expected age-related 

decline that was observed in the placebo group (aver-

age 3-year decrease, 0.88 mL/kg/min). In line with these 

findings, Blackman et al. [112] reported a significant dif-

ference between T (biweekly 100 mg injection) and pla-

cebo groups in men aged 65–88 years (n = 38) following 

a six-month intervention. In contrast to these studies, 

Nair et al. [146] concluded that there was no significant 

difference in aerobic capacity between the T and placebo 

groups after 2  years of T treatment (5 mg transdermal 

patch per day) in ~ 58 older men. However, in this study, 

the median  VO2 peak data at baseline were 40.7 and 40.4 

mL/kg/min (in the T and placebo groups respectively) 

which places these men at the 90th percentile for males 

aged between 60 and 69 years [147]. It is conceivable 

that these high  VO2peak levels at baseline may have pre-

cluded the study’s capacity to demonstrate improvement 

[148]. It is also important to note that the T dose admin-

istered in the Nair et al. [146] trial was modest (5 mg) and 

that the same (5 mg transdermal patch) dose was used by 

Giannoulis et al. [111] who also failed to report any sig-

nificant difference between T and placebo groups follow-

ing a 6-month intervention in 43 men aged 65–80 years. 

Taken together, these studies in healthy middle-aged 

and older men suggest moderate effects of T to improve 

aerobic capacity, with subtle between-group differences 

contributed to by the decline observed in placebo groups 

(Additional file 1: Table S5).

Mechanisms Linking Testosterone and Aerobic Fitness

�e mechanistic pathways by which T affects  VO2peak 

are not yet fully understood and are likely multifactorial. 

T treatment in men has been associated with improved 

oxygen delivery and utilization through increases in 

hemoglobin [149], muscle capillarisation [150], and size 

of type I muscle fibres [151]. Of note, both younger and 

older men have been shown to increase red cell mass 

in a dose-dependent manner following 20 weeks of T 

treatment [149]. Given  O2 transport capacity correlates 

directly with aerobic performance [152], it is surprising 

that there is no conclusive evidence regarding the effect 

of T treatment for improving  VO2peak in middle-to-

older aged men with low-normal serum T levels,  and 

hence new RCTs are required.

The Impact of Exercise Training on Aerobic Fitness

In apparently healthy middle aged and older men, 

studies assessing the impact of exercise training on 

 VO2peak report improvements of 10–32% following 

2–12 months of exercise training [153–158]. Improve-

ments in  VO2peak following exercise training may 

arise from central and/or peripheral adaptation. Cen-

trally, modifications in cardiac structure and func-

tion [159–161] and heart rate have been reported 

following exercise training. Peripherally, improve-

ments in skeletal muscle structure and function [162, 

163], mitochondrial density [164, 165], and decreased 

peripheral vascular resistance have also been identi-

fied as mediators that underpin improvements in oxy-

gen delivery and utilization following exercise training 

[166–171]. A recent systematic review by Montero 

et  al. [172] comprising 16 endurance training studies 

(total n = 153 primarily untrained healthy participants, 

81% male, mean age 42–71 years) assessed the rela-

tive impact of changes in maximal cardiac output and 



Page 9 of 16Green et al. Sports Medicine - Open           (2024) 10:30  

arteriovenous oxygen (a-vO2) difference on maximal 

oxygen consumption  (VO2max). �e authors concluded 

that although both cardiac output and a-vO2 difference 

improved with exercise training, the improvement in 

 VO2max was more attributable to the change in cardiac 

output, based on the linearity and strength of the rela-

tionship between the latter variables. Given that maxi-

mal HR is unchanged following exercise training, the 

increase in cardiac output following training derives 

from an increase in maximal stroke volume. Mecha-

nisms responsible for the increased stroke volume may 

relate to enhanced left ventricular structure/function 

[160] and/or expanded blood volumes [173, 174].

Does the Combination of Exercise Training 

and Testosterone Have Additive Impacts on Aerobic 

Fitness?

Few interventional studies have assessed the effect 

of combining T treatment and exercise on functional 

capacity in healthy older men, or effects on a meas-

ure of functional capacity. In 167 healthy older (66 ± 5 

years) men with low-normal T levels (7–12 nmol/L), 

Hildreth et  al. [85] reported that neither T treatment, 

exercise, nor their combination, improved results in 

the six-minute walk test. However, the exercise inter-

vention employed by Hildreth et al. [85] was predomi-

nantly resistance-based, which may have reduced the 

likelihood of observing improvements in aerobic meas-

ures [175]. In contrast, Barnouin et  al. [87] reported 

that the addition of T treatment to a lifestyle inter-

vention (caloric restriction and exercise training) sig-

nificantly improved  VO2peak compared to placebo 

(T: + 4.0 vs. P: + 2.9 mL/kg/min; T: + 0.42 vs. P: + 0.29 

 L/min) in older, obese, hypogonadal men with mild-

moderate frailty (n = 83, > 65 years, BMI > 30 kg/m2, 

T < 10.4 nmol/L). However, the study by Barnouin et al. 

[87] did not include a control group, which prevents 

definitive conclusions regarding the impacts of T and 

exercise on aerobic fitness.

Consistent with previous literature, we recently 

observed that T treatment at a physiological dose did 

not influence changes in  VO2peak in the T alone group 

[28] (i.e. no exercise intervention) (Fig. 2) [111, 112, 144–

146]. In contrast, but also in line with previous research 

[153–158], we reported a 13% (3.2 mL/kg/min) increase 

in  VO2peak in the exercise only group [28] and a 10% 

gain in the T + Ex group (2.5 mL/kg/min) (Fig. 2). �ese 

results highlight that exercise training is superior to T 

treatment for improving  VO2peak in middle and older 

aged men with low-normal T levels. �e significant main 

effect of exercise was also maintained when calculated in 

absolute terms (L/min).

Summary: E�ects of Exercise and Testosterone on Aerobic 

Fitness

�e literature to date suggests that differences between T 

and placebo groups are largely attributed to the preven-

tion of time-related decline in placebo groups. In con-

trast, there is a mature evidence-base which supports the 

role of exercise in improving aerobic fitness. Our results 

[28], and others, suggest that the addition of T at a physi-

ological dose neither increases nor diminishes the effect 

of exercise on  VO2peak. �erefore, in order to improve 

aerobic capacity in middle-aged and older men, exercise 

training should be recommended and implemented. �e 

addition of T treatment at a physiological dose does not 

appear to provide any benefit beyond that of exercise 

alone, at least over a short timeframe of intervention.

Are There Cardiovascular Risks Associated With 

Testosterone Treatment?

�e literature reviewed in the preceding sections sug-

gests that higher doses of T, particularly if delivered via 

intramuscular injection, may have larger effects on skel-

etal muscle. However, this must be balanced against the 

potential harms of T delivered at higher does than those 

required to achieve physiological concentrations. An 

RCT of transdermal T at relatively higher doses in 209 

men aged 65 years and older with mobility limitations 

was discontinued due to an excess of broadly defined car-

diovascular adverse events in the active treatment arm of 

the study [176]. However, a similar trial of transdermal T 

using conventional doses in 274 men aged 65 and older 

who were frail or intermediate-frail, found no increase 

in cardiovascular adverse events in T-treated men [48]. 

Contemporary meta-analyses of RCTs have not associ-

ated T treatment with increased risk of cardiovascular 

adverse events [177, 178]. In the Testosterone Trials (T 

Trials), a large RCT of 788 men aged 65 years and older 

randomised to T treatment or placebo for 12 months, 7 

men in the T arm, and 7 in the placebo arm, experienced 

a major adverse cardiovascular event [179] (MACE, 

comprising myocardial infarction, stroke or death from 

cardiovascular causes). �e cardiovascular sub-study of 

T Trials analysed 73 men from the T arm and 65 from 

the placebo arm of the main trial, reporting an increase 

in non-calcified plaque volume in T-treated men, with 

larger and longer duration studies recommended to 

clarify this issue [180, 181]. �e Testosterone For Preven-

tion of Type 2 Diabetes Mellitus trial randomised 1,007 

men aged 50–74 years, with waist circumference 95 cm 

or greater and either impaired glucose tolerance or newly 

diagnosed diabetes, to intramuscular T decanoate versus 

placebo for 2 years, on a background of lifestyle inter-

vention [182]. In T4DM, T treatment reduced the risk 



Page 10 of 16Green et al. Sports Medicine - Open           (2024) 10:30 

of type 2 diabetes at 2 years by 40%, with 17 men in the 

placebo arm and 12 in the T arm experiencing a MACE 

during the trial [183]. �erefore, while the possibility that 

T treatment, particularly at higher doses in older men, 

might be associated with cardiovascular adverse events 

has been raised, results from meta-analyses and from 

two recent large RCTs provide some reassurance. Nev-

ertheless, none of the preceding RCTs were powered for 

MACE as a pre-specified outcome. �e results of TRAV-

ERSE, an FDA-mandated cardiovascular safety trial of 

transdermal T, are a major advance in this area [184]. 

TRAVERSE enrolled 5246 men aged 45–80 years with 

cardiovascular risk factors or disease, and low-normal T 

concentrations. Men were randomised to T vs placebo, 

remaining on treatment on average for 22 months, with 

follow-up for an average of 33 months. Of the T-treated 

men, 182/2596 (7%) experienced the primary safety 

endpoint (first occurrence of death from cardiovascu-

lar causes, nonfatal myocardial infarction, or nonfatal 

stroke) vs 190/2602 (7.3%) of men in the placebo group 

(HR 0.96, 95% CI 0.78–1.17) [185]. Likewise, rates of the 

secondary endpoint (first occurrence of death from car-

diovascular causes, nonfatal myocardial infarction, non-

fatal stroke, or coronary revascularization) were similar 

in T and placebo groups, i.e. 269 (10.4%) vs 264 (10.1%) 

(HR 1.02, 95% CI 0.86–1.21), as was all-cause mortality 

risk (5.5% vs 5.7%; HR 0.98, 95% CI 0.78–1.23). TRAV-

ERSE provides reassurance as to the cardiovascular safety 

of T treatment in middle-aged to older men with cardio-

vascular risk factors or disease.

Conclusions
Older men often exhibit lower T concentrations com-

pared with younger or middle-aged men [1, 2, 5, 9]. 

However, it remains unclear whether low T is an inevita-

ble consequence of aging, or a reflection of comorbidity 

accumulation (e.g. obesity, chronic diseases) through-

out the aging process. Healthy men aged 40–69 years 

can have stable T concentrations over a 4-year period 

of follow-up [186]. However, above the age of 70 years, 

longitudinal declines in T levels are accompanied by 

increases in luteinising hormone, suggesting impairment 

of testicular hormone production [10]. Furthermore, the 

majority of people aged ≥ 65 years do not meet physical 

activity guidelines [187].

T is an effective physiological countermeasure for loss 

of lean body mass and strength in men with androgen 

deficiency due to disorders of the hypothalamus, pitui-

tary or testes, who cannot produce sufficient endogenous 

T. Whether it represents a viable intervention to increase 

lean body mass and strength, and/or aerobic fitness in 

middle-aged to older men without disorders of the hypo-

thalamus, pituitary or testes, remains to be established. 

Nonetheless, this review highlights that exercise should 

be a first line strategy to improve strength and aerobic 

fitness in aging men and that combined (aerobic and 

resistance) exercise training programs in middle and 

older-aged men are beneficial. A caveat is that many of 

the studies we reviewed addressed the impacts of exercise 

when it was center-based, supervised and verified, rather 

than community or home-based. An ongoing challenge 

with translating such benefits is adherence with longer-

term exercise in community and home-based settings.

In the longer term, improvements in body composi-

tion and in strength and aerobic fitness are likely to have 

important consequences for successful aging. Our review 

suggests that T has impacts on strength, body composi-

tion and aerobic fitness outcomes that are dependent 

upon dose, route of administration, and formulation. 

Whilst T treatment in middle-aged and older men can 

improve lean body mass, exercise training enhances lean 

body mass, aerobic fitness and strength. Future research 

should address whether, for those unable to exercise, 

benefit accrues from T treatment to maintain muscle 

mass and avoid frailty-related health sequelae.
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