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1  |  INTRODUCTION

Populations are aging rapidly in all parts of the world, but 

extended lifetime is generally not spent in best health, be-

cause of age- related disorders that are linked to the func-

tional decline of various organs.1 Sarcopenia, for instance, 

may be defined as a progressive and generalized skeletal 

muscle disorder that involves accelerated loss of muscle 

mass and function,2 and contributes significantly to the 

frailty that compromises the quality- of- life for millions of 

elderly individuals worldwide.3,4 The underlying causes of 

sarcopenia include malnutrition, inactivity, and disease, 

as well as drugs and hospital admission.2 Skeletal muscle 

quality is thus not only lost with old age (primary sarcope-

nia) but also in association with diseases such as cancer,5 

type 2 diabetes,6 cardiovascular disease,7 chronic obstruc-

tive pulmonary disease,8 chronic kidney disease,9 advanced 

liver disease,10 as well as with acute and chronic critical ill-

ness.11 Obesity is an important risk factor for these chronic 

disorders, and disease- related secondary sarcopenia also 

occurs in individuals with excess body fat.12 The estimated 

global prevalence of sarcopenia is imprecise, between 10% 

and 27%, as epidemiology statistics are confounded by vari-

able classification and cut- off points for skeletal muscle 

mass and function,13,14 but loss of muscle quality with age 

clearly adds to overall healthcare costs.15
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Abstract

Sarcopenia lowers the quality- of- life for millions of people across the world, as 

accelerated loss of skeletal muscle mass and function contributes to both age-  and 

disease- related frailty. Physical activity remains the only proven therapy for sar-

copenia to date, but alternatives are much sought after to manage this progressive 

muscle disorder in individuals who are unable to exercise. Mitochondria have 

been widely implicated in the etiology of sarcopenia and are increasingly sug-

gested as attractive therapeutic targets to help restore the perturbed balance be-

tween protein synthesis and breakdown that underpins skeletal muscle atrophy. 

Reviewing current literature, we note that mitochondrial bioenergetic changes in 

sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle 

cells incapable of making sufficient ATP to fuel protein synthesis. Based on the 

reported mitochondrial effects of therapeutic interventions, however, we argue 

that the observed bioenergetic changes may instead reflect an adaptation to path-

ologically decreased energy expenditure in sarcopenic muscle. Discrimination 

between these mechanistic possibilities will be crucial for improving the manage-

ment of sarcopenia.
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While functional and structural muscle phenotypes 

share some similarities between primary and second-

ary sarcopenias, differences in the underlying pathol-

ogy are likely to complicate the clinical management of 

elderly people, who often suffer from sarcopenia with 

multiple causes.2 Exercise is recommended as the pri-

mary treatment of sarcopenia,16 possibly with dietary 

supplements to improve benefits,14 while no single 

anti- sarcopenic drug has been approved to date.2,14 

Novel therapeutic solutions are much needed to treat 

sarcopenia in frail elderly and diseased individu-

als, who are unable to restore skeletal muscle quality 

through increased physical activity.

The notion that exercise and nutrition are major pil-

lars in sarcopenia management17 strongly suggests the 

involvement of bioenergetic failure in disease develop-

ment. Indeed, compromised ATP synthesis capacity has 

been recognized as an important feature of primary and 

secondary sarcopenia for some time.18,19 Many aspects of 

mitochondrial function and dysfunction have been im-

plicated in different types of sarcopenia,20–23 but causal 

interrelations with other cellular defects that are asso-

ciated with this multifactorial muscle disorder have not 

been established conclusively. Such defects include loss 

of skeletal muscle insulin sensitivity24 and a perturbed 

balance between myocellular protein synthesis and 

protein breakdown that favors muscle protein loss.25 

Since insulin resistance and perturbed proteostasis 

are both associated with inflammation26 and oxidative 

stress,27 these cellular defects are also likely function-

ally related to the observed changes in mitochondrial 

activity. Primary sarcopenia is further characterized by 

hormonal changes,28 a decline in the number of skel-

etal muscle satellite cells,29–32 muscle fiber type tran-

sitions,33 the loss of neuromuscular junctions,34 and 

by fat infiltration within and between muscle fibers.2 

Secondary sarcopenia is complicated by the patholog-

ical milieu, as muscle dysfunction may be triggered or 

exacerbated by therapeutics such as corticosteroids35 

and by disease- specific manifestations such as the toxic 

retention of solutes in chronic kidney disease.36

In this review, we give our perspective on mitochon-

drial involvement in sarcopenia, stressing the incom-

pletely understood interrelation between myocellular 

proteostasis and bioenergetics. Citing human studies 

where possible, we explore how exercise and nutrition 

affect sarcopenic muscle mitochondria, and we briefly re-

flect on the promise and risk of emerging mitochondria- 

focussed management strategies.

2  |  MITOCHONDRIAL CHANGES 
IN SARCOPENIC MUSCLE

Age- dependent decline in aerobic capacity coincides with 

changes in skeletal muscle energy metabolism,37,38 and mi-

tochondrial dysfunction has been identified as hallmark of 

aging.39 Sarcopenia appears invariably linked with oxida-

tive stress (Figure 1), a unifying pathological condition that 

is at least partly responsible for compromised mitochon-

drial quality control,40,41 mitochondrial bioenergetics,14,42 

and mitochondrial redox biology43 in sarcopenic muscle.

F I G U R E  1  Mitochondrial changes 

in sarcopenic muscle. Loss of skeletal 

muscle mass and function with age is 

characterized by increased production of 

reactive oxygen species (ROS), decreased 

oxidative phosphorylation, mitochondrial 

biogenesis, and mitophagy, and perturbed 

redox signaling. Created with BioRe nder. 
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2.1 | Mitochondrial redox biology

Oxidative stress results from a decreased expression 

of antioxidant defense systems and from the increased 

formation of reactive oxygen species (ROS) that, to a 

large extent, is accounted for by mitochondria.43–48 High 

ROS levels interfere with the mitochondrial redox biol-

ogy that contributes to the physiological regulation of 

insulin49 and other anabolic signaling pathways,50 and 

thus inhibit protein synthesis.51 Consequent pertur-

bance of proteostasis25 is made worse by stimulatory 

effects of high ROS levels on proteolysis: oxidation of 

proteins by ROS renders them generally more suscepti-

ble to proteasome- mediated breakdown, at least partly 

because oxidation causes unfolding.52 Indeed, preven-

tion by ROS of the activation of the mammalian target of 

rapamycin complex 1 (mTORC1) increases expression 

of muscle- specific E3 ligases that effect proteasome- 

mediated protein breakdown.43 Increased autophagy 

through ROS- prevented activation of mTORC153 as well 

as ROS- induced expression of calcium- activated pro-

teases54 further tip the proteostasis balance toward loss 

of protein. ROS thus provokes skeletal muscle dysfunc-

tion and atrophy, and clinical studies have indeed dem-

onstrated that oxidative damage increases with age55 

and is associated with impaired muscle strength.56

Oxidative stress that leads to sarcopenia during aging,57 

inactivity,58 and chronic disease59 is likely related to a per-

sistent state of low- grade systemic inflammation26 in which 

production of ROS is stimulated by proinflammatory cy-

tokines.60 Conditions in which sarcopenia develops are 

furthermore characterized by a perturbed bioenergetic bal-

ance where nutrient availability in muscle cells outweighs 

energy expenditure,12 and nutrient catabolism creates a re-

duced cellular environment that permits ROS generation.20 

ROS likely exacerbate inflammation61 and may thus rein-

force their own formation. Preventing ROS levels in muscle 

tissue from becoming too high seems an attractive thera-

peutic option to combat sarcopenia, and certain nutritional 

and mitochondria- targeted pharmacological interventions 

(see below for detail) indeed have an antioxidant rationale. 

However, antioxidant- based therapies might be counter-

productive, as insulin and anabolic signaling paths crucial 

for proteostasis are regulated physiologically by ROS.49,50 

Because of this ROS duality, the anti- sarcopenic promise 

of antioxidant therapies has been questioned.62 Future 

antioxidant- based interventions will likely benefit from a 

more complete understanding of mitochondrial redox bi-

ology, and from more detailed insight in the molecular na-

ture and origin of the ROS responsible for the progressive 

shift toward oxidative stress that is evident as primary and 

secondary sarcopenia develop.

2.2 | Mitochondrial quality control

Mitochondrial biogenesis, mitophagy and structural dy-

namics are important for mitochondrial quality control, 

as these processes maintain functional capacity,63,64 re-

move redundant or dysfunctional organelles,65 and re-

model organelle morphology,66 respectively. Regulation 

of these processes is reviewed in detail by others,40,64 and 

it suffices to mention here that such regulation is dis-

rupted in both primary and secondary sarcopenic skele-

tal muscle, at least partly owing to oxidative stress, such 

that the myocellular ability to replace dysfunctional 

with functional mitochondria is lowered.67 Functional 

capacity furthermore depends on regulation of the 

highly variable turnover of individual mitochondrial 

proteins,68 which may change in aging skeletal muscle. 

Compromised quality control of mitochondria likely 

contributes to the decreased oxidative capacity of sarco-

penic muscle,14,42 although it remains also possible that 

molecular signs of attenuated mitochondrial biogenesis 

reflect a lowered demand for oxidative capacity. It is, 

for example, possible that anabolic resistance of protein 

synthesis69 lowers total energy expenditure, which is ex-

pected to decrease oxidative ATP synthesis given that 

control of skeletal muscle energy metabolism is demand- 

driven70 (Figure 2) and given that a significant propor-

tion of overall muscle ATP supply (approximately 20%) 

is generally allocated to protein synthesis.71,72 In this re-

spect, it is worth stressing that therapeutic interventions 

aimed at boosting oxidative capacity through improved 

mitochondrial biogenesis would be of limited success if 

demand for such increased capacity remained low.

2.3 | Mitochondrial bioenergetics

Skeletal muscle bioenergetics have been investigated ex-

tensively in human with phosphorus- 31 magnetic reso-

nance spectroscopy (31P MRS).73 For instance, in  vivo 

measurements of the rate by which phosphocreatine 

(PCr) is recovered after exercise have provided much 

insight in the capacity of oxidative phosphorylation in 

healthy individuals as well as people living with chronic 

disease. Indeed, 31P MRS established relatively early on 

that the PCr recovery rate of skeletal muscle decreases 

with age19,74,75 as sarcopenia develops. Secondary sar-

copenia is also associated with decreased PCr recov-

ery rates, as, for example, revealed in patients with 

dialysis- dependent chronic kidney disease,76 chronic 

lung disease,77 thyroid disorders,78 and heart failure.77 

These (patho)physiological observations are corrobo-

rated by studies on human skeletal muscle biopsies that 

 1
7

4
8

1
7

1
6

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/ap

h
a.1

4
1

0
7

 b
y

 P
ly

m
o

u
th

 U
n

iv
ersity

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

2
/0

2
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



4 of 13 |   AFFOURTIT and CARRÉ

also demonstrate an age- dependent decline in the rate 

of PCr recovery after exercise.74,79 In  vivo and ex  vivo 

data thus both strongly suggest that the oxidative ATP 

synthesis capacity of sarcopenic skeletal muscle is lower 

than that of healthy muscle. Perturbed calcium han-

dling in sarcopenic muscle80 may further dysregulate 

oxidative metabolism. Notably, age effects on oxidative 

capacity remain generally heterogeneous.81 Variable ha-

bitual physical activity as well as the sex of the studied 

individuals contribute to this heterogeneity, as does the 

variety of skeletal muscle groups probed81—these vari-

ables need to be taken into account when age effects on 

mitochondrial ATP synthesis are interpreted. Notably, 

age does not only decrease the capacity of skeletal mus-

cle oxidative phosphorylation but also the efficiency by 

which mitochondrial respiration and ATP synthesis are 

coupled.42,82

PCr- recovery- after- exercise measurements remain 

arguably the most reliable, albeit indirect, way to quantify 

oxidative mitochondrial ATP supply in human,83–85 but 

obtained information is restricted to bioenergetic capacity 

and offers limited insight in ATP synthesis activity under 

conditions of varying energy demand. In this respect, it 

is noteworthy that the causal relation between decreased 

oxidative capacity and perturbed proteostasis in aged skel-

etal muscle remains uncertain. Explicitly or implicitly, it 

is often argued that the rate of protein synthesis is low-

ered in sarcopenia because dysfunctional mitochondria 

are unable to sufficiently sustain this and other anabolic 

processes energetically,20–23,86 but it is equally conceivable 

that the decreased oxidative phosphorylation capacity is 

an adaptation to lowered ATP demand from the depressed 

anabolism that follows from insulin and anabolic resis-

tance69,87 (Figure 2).

3  |  RESPONSE OF SKELETAL 
MUSCLE MITOCHONDRIA TO 
THERAPEUTIC INTERVENTIONS

Current management of sarcopenia aims to build muscle 

mass by increasing physical activity, improving nutri-

tion, and by optimizing hormonal homeostasis.17 To date, 

exercise remains the sole proven therapy of these three 

management pillars.88,89 Dietary supplementation seems 

only beneficial when combined with exercise,2,14,90 and 

although the pharmacological use of vitamin D and tes-

tosterone is supported by evidence from human trials,91 

no anti- sarcopenic drugs have yet been approved. Next, 

we will explore how different sarcopenia management ap-

proaches affect skeletal muscle mitochondria (Figure 3).

3.1 | Exercise

Physical activity increases ATP consumption by skeletal 

muscle cells to fuel contraction. The consequent drop of 

the myocellular energy charge triggers AMP- activated 

kinase (AMPK),92 a master regulator of cellular energy 

metabolism that helps adjust ATP supply to meet ATP 

demand.93 Moreover, physical activity acutely stimulates 

the production of ROS by skeletal muscle mitochondria94 

and thus causes mild endogenous oxidative stress that 

activates AMPK further.95,96 Exercise protects against 

F I G U R E  2  Demand- driven energy metabolism in skeletal muscle. Cellular energy metabolism may be viewed from a top- down 

perspective as the interaction between processes that supply ATP by substrate- level and oxidative phosphorylation, and processes that 

demand ATP. In healthy skeletal muscle, total ATP flux is largely controlled by energy expenditure, which is increased by physical activity. 

Nutrients are catabolic fuels for ATP synthesis and stimuli for anabolic ATP- consuming processes, such as protein synthesis. Created with 

BioRe nder. com.
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oxidative stress in the longer term, however, because 

skeletal muscle cells upregulate expression of antioxi-

dant defense systems in response to the acute increase in 

ROS.97 This mitohormetic response98 likely contributes to 

the benefits of physical activity for mitochondrial activ-

ity in aged skeletal muscle. Long- term positive effects of 

exercise include a boosted oxidative capacity,99 with evi-

dence for increased ATP synthesis capacity in vivo100–102 

and for an increased activity of mitochondrial respiratory 

complexes ex vivo.103–107 Related to this oxidative benefit, 

exercise increases mitochondrial biogenesis108 and mi-

tochondrial mass,106 and improves mitochondrial qual-

ity control40 through effects on structural dynamics and 

autophagy.104,109–111

With ROS as important culprit of the mitochondrial 

defects in sarcopenic muscle (Figure 1), it is perhaps not 

surprising that exercise should rescue such defects, since 

it strengthens the cells' antioxidant defense. Interestingly, 

however, exercise- induced increases in muscle mass and 

function do not always involve increased oxidative ca-

pacity, as the nature of mitochondrial effects appears to 

depend on the type of exercise.42 Both endurance and re-

sistance training increase skeletal muscle quality in sar-

copenia, but while the benefit of endurance exercise is 

consistently linked with clear stimulation of mitochon-

drial biogenesis and increased oxidative capacity,112–116 

mitochondrial effects of resistance exercise are less 

clear.113,117–120 Resistance training does not affect mito-

chondrial biogenesis or mitochondrial content but does 

indeed alter intrinsic mitochondrial function.121,122 For 

instance, resistance exercise changes the mitochondrial 

transcriptome123 and increases specific abundance of mi-

tochondrial respiratory complexes,124 which is consistent 

with the observation that resistance exercise increases 

ATP synthesis capacity without changing mitochondrial 

content,112,125 and may indicate increased coupling effi-

ciency of oxidative phosphorylation.42

AMPK is activated during exercise by a decreased 

ATP/AMP ratio92 and by increased ROS levels.95,96 

Skeletal muscle fibers demand much ATP during both 

endurance and resistance exercise126 and increase their 

production of ROS in acute response to both types of 

physical activity.127 The different mitochondrial effects 

of endurance and resistance training are thus unlikely 

related to these cellular signals per se but are more 

likely owing to differential fiber type recruitment during 

different types of exercise.42 Resistance exercise draws 

predominantly on fast- twitch type 2 fibers, which obtain 

more of their ATP from glycolysis than their slow- twitch 

type 1 counterparts.128 The type of exercise thus seems 

to dictate which skeletal muscle fiber type accounts 

most for the increased muscle mass and function pro-

voked by physical activity. Endurance training induces 

the formation of type 1 fibers, which is reflected by in-

creased mitochondrial mass, while resistance training 

does not increase mitochondrial mass in newly formed 

type 2 fibers but improves mitochondrial ATP synthesis 

efficiency. Notably, resistance exercise amplifies the rise 

in mitochondrial oxidative capacity of sarcopenic skele-

tal muscle established by endurance exercise.129,130 The 

ability of aged muscle to increase mitochondrial mass 

in response to endurance exercise131 indicates that the 

mechanisms that regulate mitochondrial functional 

capacity remain intact in elderly individuals. Whether 

or not this is also the case for the secondary sarcopenia 

that develops in disease is less clear. For example, while 

the transcript level of peroxisome proliferator- activated 

receptor- γ coactivator- 1α is increased in non- dialysed 

F I G U R E  3  Effects of anti- 

sarcopenic interventions on skeletal 

muscle mitochondria. Exercise improves 

mitochondrial quality control and 

increases both the capacity and efficiency 

of oxidative phosphorylation, at least 

partly, through attenuation of oxidative 

stress. Some nutrient supplements contain 

antioxidants, while branched- chain amino 

acids, leucine, in particular, may improve 

proteostasis through energy- demanding 

anabolic stimulation. Mitochondria have 

been suggested as therapeutic targets. 

Created with BioRe nder. com.
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individuals with chronic kidney disease following 

12 weeks of aerobic physical activity, mitochondrial 

mass appears unaffected.132

3.2 | Nutrition

Appropriate nutrition is an essential aspect of current sar-

copenia management.17 Many dietary supplements have 

been explored, including both macro-  and micronutrients 

such as protein,133 unsaturated lipids134 and vitamins,135 

as well as a range of polyphenols from natural sources,136 

but it should be emphasized that nutritional support is 

generally only effective in combination with exercise.2,14,90 

Benefit from polyphenols, vitamin D and polyunsaturated 

fatty acids may be related to the antioxidant properties of 

these nutrients,137–139 but it is unclear to what extent their 

use as dietary supplements actually affects mitochon-

drial ROS production in sarcopenic muscle (Figure  3). 

The bioenergetic relation between dietary protein and 

mitochondrial activity is dual, since amino acids, specifi-

cally, leucine, are oxidative metabolic fuels,140 allowing 

ATP synthesis when broken down through oxidative ca-

tabolism, as well as anabolic stimulants of protein synthe-

sis,69,141 provoking ATP consumption142 (Figure 2).

Protein supplementation remains at the forefront of the 

nutritional management of primary and secondary sarco-

penia, which is unsurprising as perturbed proteostasis is a 

key feature of this muscle disorder.25,143 With age, muscle 

protein synthesis loses its sensitivity to anabolic stimuli 

such as essential dietary amino acids,69 and, together with 

lost insulin inhibition of protein breakdown,144 this ana-

bolic resistance perturbs proteostasis.69,141,145–147 Dietary 

protein supplements seek to overcome anabolic resistance 

but have limited benefit per se, as they appear most benefi-

cial when administered together with exercise.148 This ob-

servation suggests that both catabolic and anabolic stimuli 

are required to restore skeletal muscle mass and function 

in sarcopenia. Branched- chain amino acids—leucine in 

particular—have been recognized to add ‘biological value’ 

to essential amino acid and protein supplements,149 as 

they appear able to stimulate both anabolic and catabolic 

processes.150–153

In healthy skeletal muscle, leucine acutely increases 

protein synthesis in the postprandial state through mTOR 

activation by various signals, including acetyl CoA, leucyl- 

tRNA and sestrin.154 Perhaps to meet energy demand 

from this anabolic stimulation,155 it is suggested by rodent 

pre- clinical studies that leucine also triggers an adaptive 

catabolic response that involves AMPK and that increases 

skeletal muscle mitochondrial biogenesis, mtDNA con-

tent, fatty acid oxidation and glucose uptake.156 The ap-

parently parallel occurrence of catabolic and anabolic 

stimulation is complex,124,156 and indeed paradoxical, as 

AMPK is a well- established mTORC1 de- activator.150,151 

Leucine- induced catabolic and anabolic responses are 

thus likely separated temporally and spatially, through in-

volvement of different fiber types.157

Protein contributes 10%–15% to total fuel oxidation in 

the postabsorptive state in resting skeletal muscle,158 and 

catabolism of branched- chain amino acids accounts for 

about two- thirds of this contribution.158 Insulin inhibition 

of protein breakdown is lost in sarcopenic muscle, which 

likely increases branched- chain- amino- acid- driven oxida-

tive catabolism in older individuals.159 The systemic oxida-

tion of branched- chain amino acids occurs predominantly 

in skeletal muscle mitochondria158,160 and oxidation rate 

is sensitive to nutrition- related changes in intramuscular 

branched- chain amino acid concentration.160 The oxida-

tion rate of branched- chain amino acids in elderly individ-

uals is also increased by endurance161–163 and resistance 

exercise,164,165 as is the anabolic response to leucine, again 

suggesting that both anabolic and catabolic stimuli are 

necessary to obtain maximum benefit from nutrition in 

sarcopenia.

The notion that protein supplementation is most effec-

tive for management of sarcopenia when combined with 

physical activity,148 suggests that bioenergetic processes 

triggered by energy demand may need to be active to 

obtain full benefit from anabolic stimuli. Supplemented 

amino acids may indeed only be usable as catabolic carbon 

fuel for ATP synthesis if demand for ATP is stimulated, 

for example, by exercise. It is worth emphasizing that in-

creased intake of macronutrients without increasing en-

ergy expenditure may do more harm than good, as such 

intake is expected to create an overly reduced cellular en-

vironment that promotes ROS generation. Notably in this 

respect, obesity- related skeletal muscle insulin resistance 

arises at least in part because of imbalanced bioenergetics 

that increase ROS to pathological levels.49 Moreover, loss 

of skeletal muscle insulin sensitivity is an early feature of 

uremic sarcopenia.166 Nutrients with strong antioxidant 

properties may protect against excessively high ROS lev-

els but may inadvertently attenuate any adaptive hormetic 

benefit from exercise that depends on an acute increase in 

ROS production.167

3.3 | Pharmacological intervention

Anti- sarcopenic drugs have not been approved to 

date,2,14,168 as there is insufficient support from human 

trials to justify pharmacological interventions in clini-

cal practice other than vitamin D in elderly women and 

testosterone in elderly men.91 Vitamin D is thus an ex-

ample of ‘Foods for Special Medical Purposes’ and, like 
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other nutrients discussed above, is sometimes referred 

to as a nutraceutical.169 Despite lack of clinical trial evi-

dence, numerous pharmacological approaches have been 

suggested. Drugs that have been investigated include tes-

tosterone, testosterone derivatives (melatonin), and selec-

tive androgen receptor modulators or SARMS,170 which 

not only increase the number of skeletal muscle satellite 

cells,171 but all also have beneficial effects on muscle fib-

ers per se.172,173 Inhibitory antibodies against proinflam-

matory cytokines174 and myostatin inhibitors175 are other 

examples of drugs that have been explored. Therapeutics 

that have been linked explicitly to mitochondrial function 

include growth hormone replacement,176 which increases 

mitochondrial oxidative capacity, improves proteostasis, 

and has anti- sarcopenic benefit for elderly people,177 ghre-

lin and ghrelin receptor agonists, which increase oxidative 

capacity in sarcopenia linked to chronic disease,178–180 and 

5- aminolevulinic acid, which improves muscle quality in 

mice while increasing mitochondrial content.181

The noticeable lack of drug approval is likely related 

to a limited number of randomized clinical trials, which 

are generally hampered by the range of sarcopenia defi-

nitions and by the difficulty of identifying primary end-

points.168 Other therapeutic approaches are much sought 

after, and mitochondria have attracted much attention in 

this respect.182–184

Mitochondrial medicine is a rapidly developing 

field,182–184 and approaches for delivering mitochondria- 

targeted drugs have been reviewed recently by oth-

ers.185,186 Exercise has been recognized as a ‘natural 

medicine’ for skeletal muscle mitochondria,187 but it may 

well become possible in the foreseeable future to improve 

the activity of these organelles in sarcopenic muscle with 

targeted drugs. Drugs that are passively or actively de-

livered to skeletal muscle mitochondria hold promise to 

preserve mitochondrial quality and functionality by low-

ering oxidative stress.188 Although in its infancy, several 

preclinical studies have offered proof- of- principle for this 

potential therapeutic approach. For instance, MitoQ and 

MitoTEMPOL, which are a mitochondria- targeted anti-

oxidant and superoxide dismutase mimetic, respectively, 

have been shown to improve muscle strength and mass 

by altering bioenergetics in several disease mouse mod-

els,189–191 while the mitochondria- targeted Szeto- Schiller 

peptide SS31 has been reported to increase exercise toler-

ance in aged mice.192

Mitochondrial transplantation is a therapeutic ap-

proach with much potential, but also very much in its 

infancy. The introduction of healthy mitochondria to dys-

functional cells or tissues has been trialed to increase oxi-

dative capacity in various disease contexts,193 while work 

with cell and animal models suggests the approach may 

help combat muscle atrophy.194–197

4  |  CONCLUDING REMARKS

Imbalanced protein synthesis and breakdown in skeletal 

muscle accounts for muscle atrophy associated with old age 

and disease.25,143 Decreased oxidative capacity is a central 

feature of both primary and secondary sarcopenia,19,74–78 

but the causal interrelation between altered bioenergetics 

and perturbed proteostasis remains unclear (Figure 2). It 

appears that mitochondrial bioenergetic changes in sarco-

penia are broadly interpreted as an intrinsic dysfunction 

that renders skeletal muscle cells incapable of producing 

sufficient ATP to sustain protein synthesis. The general 

benefit of exercise for skeletal muscle mass and function in 

elderly and diseased individuals, however, demonstrates 

that this apparent insufficiency is readily overcome when 

energy expenditure is increased. This observation indi-

cates that sarcopenic muscle has retained mechanisms to 

produce ATP when needed, and it suggests that the de-

creased oxidative capacity may be an adaptation to patho-

logically dampened energy demand. It is thus conceivable 

that impaired protein synthesis is one of the causes of 

lowered mitochondrial ATP synthesis in sarcopenic mus-

cle, because this defect contributes to decreased total ATP 

consumption. Anabolic and insulin resistance that is re-

sponsible for the compromised balance between protein 

synthesis and breakdown is likely related to the inflamma-

tion and oxidative stress that typify sarcopenic conditions. 

The bioenergetic imbalance between nutrient supply and 

energy expenditure promotes oxidative stress, which may 

exacerbate mitochondrial and cellular defects. The obser-

vation that nutrition is only effective as an anti- sarcopenic 

intervention when applied with exercise, is consistent 

with this order of events. We emphasize that dietary sup-

plements without increased physical activity may do more 

harm than good if compromised energy expenditure were 

at the root of muscle dysfunction, as they would distort 

the bioenergetic balance further and increase the risk of 

high ROS production. Notably, therapies based on mito-

chondrial transplantation would also be inconsequential if 

the bioenergetic changes seen in sarcopenia were second-

ary to pathologically diminished energy expenditure, i.e., 

if the oxidative capacity was increased without the need 

for such capacity. In conclusion, to achieve positive clini-

cal outcomes it will be very important to obtain a more 

precise understanding of the causal interrelations between 

proteostasis, cellular bioenergetics and redox biology in 

both healthy and sarcopenic skeletal muscle.
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