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A B S T R A C T   

Sarcopenic obesity, or the loss of muscle mass and function associated with excess adiposity, is a largely 
untreatable medical condition associated with diminished quality of life and increased risk of mortality. To date, 
it remains somewhat paradoxical and mechanistically undefined as to why a subset of adults with obesity 
develop muscular decline, an anabolic stimulus generally associated with retention of lean mass. Here, we review 
evidence surrounding the definition, etiology, and treatment of sarcopenic obesity with an emphasis on emerging 
regulatory nodes with therapeutic potential. We review the available clinical evidence largely focused on diet, 
lifestyle, and behavioral interventions to improve quality of life in patients with sarcopenic obesity. Based upon 
available evidence, relieving consequences of energy burden, such as oxidative stress, myosteatosis, and/or 
mitochondrial dysfunction, is a promising area for therapeutic development in the treatment and management of 
sarcopenic obesity.   

1. Introduction 

Adults over the age of 65 represent the most rapidly expanding de-
mographic globally, having increased from 6 % to 9.6 % of the popu-
lation share from 1990 to 2021 [1]. Aging is associated with a loss of 
independence exacerbated by mobility, frailty, functional capacity, and 
cognitive ability. Sarcopenia, or the progressive loss of muscle mass and 
strength, is the most common disease associated with advancing age, 
present in >10 % or ~70.3 million individuals globally [2]. Adults over 
the age of 65 with sarcopenia experience disability, diminished quality 
of life, and premature risk of death, constituting significant individual 
and socioeconomic burden. 

Obesity, or the progressive and recurrent accumulation of excess 
body fat, is the most prevalent non-communicable disease in human 
history, affecting >13 % or ~1 billion individuals globally [3]. 
Concurrently, there is an unprecedented prevalence of obesity in the 
elderly, estimated at ~35 % globally with >70 % overweight [4]. In 
young and middle-aged adults, obesity is generally associated with ab-
solute increases in muscle mass and sustained function, the exception 
being patients with severe obesity or a BMI ≥ 50 kg/m2 [5]. Despite this, 
obesity shortens longevity and increases cardiovascular morbidity and 
mortality [6], strengthening the notion that weight management is an 
essential component of healthy aging. 

In the late 20th century, a subset of older adults was identified as 

having both obesity and sarcopenia, soon thereafter to be termed sar-
copenic obesity. Sarcopenic obesity is now broadly accepted as a clinical 
condition defined by excess adiposity and low skeletal muscle mass and/ 
or function [7]. It is currently estimated that ~11 % of older adults 
globally have sarcopenic obesity, which dramatically increases after the 
age of 70 [8]. Sarcopenic obesity is a prognostic factor for disability and 
survival, dramatically increasing the risk of obesity- and age-related 
disease [9,10].To date, sarcopenic obesity remains a largely untreat-
able condition with no targeted medical therapies. Furthermore, 
mechanisms of disease onset remain elusive. The purpose herein is to 
review evolving evidence surrounding the diagnosis, etiology, and 
treatment of sarcopenic obesity. Given the dramatically underserved 
nature of this patient population and lack of available evidence, we 
focus largely on emerging pre-clinical therapeutic developments with 
intention to treat sarcopenic obesity. 

2. Etiology of sarcopenic obesity 

The delineating feature of sarcopenic obesity is the decline in muscle 
mass and/or function, observed in terms of loss of lean mass, strength, 
and/or locomotor activity. Muscle contraction, or the ability of skeletal 
fibers to produce force, is dependent on several factors, the most notable 
being muscle: (1) size/volume, (2) architecture, (3) quality, and (4) 
bioenergetic potential. As such, a decline in any one or a combination of 
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determinants may result in a decline in muscle function. Furthermore, 
the sole delineation between sarcopenic obesity and age-related sarco-
penia is systemic energy burden. As such, the interaction between sites 
of lipid storage and force production most likely dictates disease onset 
and progression, though the cellular and molecular mechanisms remain 
elusive. 

2.1. Endocrine control of muscle function by adipose tissue 

Adipose tissue is the predominant site of fat storage and engages in 
interorgan crosstalk to coordinate the cellular response to extrinsic lipid 
signals [11,12]. For example, adipocytes themselves or infiltrating 
macrophages within adipose tissue produce pro-inflammatory cyto-
kines, such as interleukin-6 (IL-6) and/or tumor necrosis factor alpha 
(TNF-α), in response to excess free fatty acids which upregulate the 
systemic inflammatory response [13]. To this end, IL-6 and TNF-α are 
negatively associated with muscle mass and strength in both men and 
women with sarcopenic obesity [14,15]. IL-6 mediated activation of 
STAT3 also independently triggers muscle wasting by stimulating 
atrophy-related signaling in skeletal muscle [16]. 

Leptin, an adipokine responsible for regulating energy balance by 
inhibiting hunger, can also drive myoblast proliferation and prevent 
premature terminal differentiation of muscle cells [17]. Indeed, ten days 
of leptin treatment significantly increased hindlimb muscle mass and 
muscle cross-sectional area in aged mice with a healthy weight [18]. 
Remarkably, circulating leptin seems to be increased in patients with 
sarcopenic obesity compared to non-sarcopenic controls, suggesting that 
the up-regulation of leptin is likely due to resistance to its action, thus 
blunting the positive effects of leptin in skeletal muscle [19–21]. Adi-
ponectin secreted from adipose tissue also regulates muscle glucose 
metabolism, fatty acid oxidation, muscle proteolysis, and muscle 
regeneration during aging [22–26]. Likewise, plasma adiponectin levels 
are higher in patients with sarcopenic obesity compared to body weight 
and age-matched controls [27], suggesting that loss of adiponectin 
sensitivity may contribute to the onset and progression of sarcopenic 
obesity by stimulating protein degradation in skeletal muscle [28]. 

Aromatase is an essential enzyme in the estrogen biosynthetic 
pathway that irreversibly converts testosterone to estradiol [29]. 
Obesity increases the risk of hypogonadism, and androgen deficiency 
fuels unfavorable changes in body composition [30]. Consequently, 
primary or secondary deficiencies in testosterone impairs muscle protein 
synthesis, myogenic differentiation, and stimulates adipogenesis, 

subsequently impairing overall muscle function and quality [31]. 

2.2. Muscular determinants of sarcopenic obesity 

Given the multidimensionality of the disease, it is challenging to find 
specific molecular signatures in skeletal muscle that may explain why 
sarcopenic obesity further compromises skeletal muscle mass and 
function. The accelerated rate of muscle loss observed in sarcopenic 
obesity is primarily characterized by an a symbiotic relationship be-
tween protein synthesis and breakdown [32], resulting in diminished 
quality, quantity, and/or distribution of muscle fibers. For example, 
sarcopenia is associated with specific type II muscle fiber atrophy and 
diminished satellite cell pools [33], which is highlighted in mouse 
models of sarcopenic obesity [34]. This observation is important in that 
type II muscle fibers typically have a larger cross-sectional area than 
type I fibers, in addition to being able to generate force more rapidly, 
which may be essential for performing activities of daily living [35]. 

Change in function and/or number of resident stem cells within 
skeletal muscle may contribute to the onset of sarcopenic obesity. In 
both human and rodent models, satellite cells are required for the 
regenerative capacity of skeletal muscle, which may directly exacerbate 
muscle function and mass [36]. In the context of obesity, the adipose 
tissue secretome significantly impairs myogenesis, but this effect is 
restricted to older myoblasts compared to young [37]. Obesity also re-
duces satellite cell number and proliferative capacity and slows activa-
tion [38,39]. Importantly, mitochondria seem to regulate satellite cell 
function by augmenting organelle division [40], namely fission and 
fusion [41]. Energy burden in the context of obesity and aging activates 
mitochondrial fission, which overtime depletes mitochondrial volume 
and may complicate long-term muscle performance [40,42]. Consis-
tently, restoration of oxidative phosphorylation (OXPHOS) capacity and 
mitochondrial quality control rescues the regenerative failure of exces-
sive mitochondrial fission in aged satellite cells [43]. In contrast, sat-
ellite cells are largely not required to maintain muscle cross-sectional 
area in aging mice [44]. Taken collectively, these data suggest that 
mitochondrial morphology and function are tightly interconnected in 
muscle stem cells and that this connection is critical in the switch be-
tween quiescence and the proliferative fate of these cells during tissue 
repair. Overall, obesity decreases muscle mass and muscle quality [45], 
and it is suspected that this diminished satellite cell content and pro-
liferative function may be related to impaired mitochondrial dynamics, 
resulting in the loss of skeletal mass and function. 

Fig. 1. Working model of sarcopenic obesity. 
Obesity in the background of aging exacer-
bates energy imbalance, resulting in excessive 
mitochondrial fission, declining quality con-
trol, and increased oxidative stress. In turn, 
regenerative functions within skeletal muscle 
decline, including decreased proliferative po-
tential, myotube maturation, and protein 
turnover. In result, skeletal muscle function 
declines, resulting in frailty, decreased force 
production, and diminished locomotor 
function.   
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Increased intramyocellular lipid (IMCL) content is a common meta-
bolic feature of skeletal muscle with aging and obesity [40,41]. Sarco-
penia and obesity amplify one another as muscle loss diminishes the 
amount of available insulin-responsive tissue, promoting insulin resis-
tance, which, in turn, raises anabolic resistance [46]. There is evidence 
that a higher IMCL content may play an integral role in the development 
of muscle resistance to anabolic stimuli and the progression of sarco-
penia with aging and muscle atrophy in obesity [47–49]. With 
advancing age, muscle IMCL accumulation is associated with metabolic 
abnormalities, reduced strength, poor muscle performance, and 
mobility [50]. Consistently, reducing IMCL content improves muscle 
insulin sensitivity insulin in rodents with obesity [51]. 

It is well known that high-fat diet-induced mitochondrial dysfunc-
tion causes muscle IMCL accumulation [52]. Indeed, 3-hydroxyacyl-CoA 
dehydrogenase (HAD) activity, a key enzyme for mitochondrial fatty 
acid oxidation, is blunted in patients with sarcopenic obesity [53]. 
Similarly, mitochondrial respiratory chain complex I and IV activities 
and the PGC-1α mRNA level are significantly reduced in rats with sar-
copenic obesity. PGC-1α regulates mitochondrial energy metabolism 
and biogenesis and influences carbohydrate and lipid utilization by 
activating members of the nuclear receptor family [54]. Therefore, 
targeting mitochondria to enhance fatty acid oxidation may be a plau-
sible and innovative approach to treating sarcopenic obesity. It would 
reduce IMCL content, thereby improving insulin action and conse-
quently the anabolic response, thus leading to preserved muscle mass 
(Fig. 1). 

3. Diagnosis 

Sarcopenic obesity is a sub-clinical disease in that there is no uni-
versal consensus on diagnostic criteria and implementation in clinical 
practice. As such, identification and diagnosis rely on the sum of its 

parts, that being obesity and sarcopenia. Obesity is universally, albeit 
sub optimally identified by determination of the body mass index (BMI) 
derived from the mass and height of an individual. Patients with a BMI 
≥ 30 kg/m2 meet the diagnostic criteria for obesity and would be treated 
as such outside of rare circumstances when a patient has unusually high 
lean mass, for example in some athletic populations. In a research 
setting, severity of obesity may be further refined according to absolute 
or age-normalized cut-offs of excess visceral fat mass [55]. Like obesity, 
sarcopenia was only recently recognized as an independent disease with 
clear diagnostic criteria [56]. Sarcopenia is now defined as loss of 
muscle function (dynapenia) and mass, identified clinically by a gait 
speed <0.8 m/s and low appendicular lean mass [57,58]. Recently, the 
European Society for Clinical Nutrition and Metabolism (ESPEN) and the 
European Association for the Study of Obesity (EASO) issued a joint 
consensus statement on the definition and diagnostic criteria for sarco-
penic obesity [59]. The proposed diagnostic workflow is as follows: (1) 
screening of patients by high BMI or elevated waist circumference and 
surrogate parameters for sarcopenia (symptoms, clinical suspicion, and/ 
or questionnaires); (2) diagnosis of patients by testing muscle function 
followed by body composition analysis; and (3) staging, if positive for 
sarcopenic obesity, based upon the absence (stage I) or presence (stage 
II) of attributable clinical complications such as functional disabilities, 
cardiovascular, and/or respiratory diseases [59]. To date, no interna-
tional classification of diseases (ICD) code has been designated for sar-
copenic obesity, and the working definition/differential diagnosis is 
constantly evolving. Age is a strong risk factor for the onset and severity 
of sarcopenic obesity, but the disease is not exclusive to old age [60]. As 
such, diagnostic consideration is given based upon symptomatic pre-
sentation, with age being a component of risk management. 

Fig. 2. Emerging cellular therapies for sarcopenic obesity. 
Pharmacological strategies that enhance muscle function directly by enhancing cellular quality control or indirectly by alleviating energy burden work synergistically 
to abrogate the physiological consequences of sarcopenic obesity. 
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4. Treatment 

Current treatment of sarcopenic obesity is focused on improving 
quality of life via lifestyle intervention and palliative care when patients 
are immobilized. First line therapy for patients with sarcopenic obesity 
is exercise focused on enhancing muscle function. Secondary in-
terventions include micronutrient supplementation, dietary/medical/ 
surgical therapy for weight management, and/or hormonal replace-
ment, when applicable [61]. To date, there are no curative and/or tar-
geted therapies for sarcopenic obesity. For patients with mobility, 
resistance exercise programs are the cornerstone of treatment for 
notably favorable effects on muscle function and body composition in 
older adults (Fig. 2). 

4.1. Lifestyle and medical interventions 

In patients with established sarcopenia, exercise programs improve 
muscle strength and performance in a dose-dependent manner with 
variable outcomes for muscle mass [62–64]. Resistance, aerobic, and 
combination training programs reduce body fat and improve muscle 
function in older men and women in a community dwelling setting with 
sarcopenic obesity [65]. Notably, resistance exercise training alone was 
superior for improvements in muscle performance. Elastic resistance 
training improves physical function while reducing fat mass in older 
women with sarcopenic obesity [66,67]. Similarly, dietary modification 
that ensures adequate and/or high protein intake prevents the decline in 
muscle mass and in some cases, improves muscle function [68,69]. Di-
etary restriction is the gold-standard first-line treatment for obesity and 
counteracts, to an extent, the deleterious effects of aging on skeletal 
muscle function across mammals [70]. However, evidence of safety and 
efficacy in patients with sarcopenic obesity is sparse. In a recent trial, a 
very low-calorie diet improved muscle performance in patients with 
sarcopenic obesity, albeit to the detriment of muscle mass [71]. Patients 
treated with a very low-calorie diet plus exercise exhibited similar im-
provements in muscle function with preserved lean mass, indicating that 
combinatorial therapy is synergistic in disease management. Micro-
nutrients and minerals such as amino acids, vitamin D, selenium, and 
magnesium may be supplemented into the diet to correct pre-existing 
deficiencies or to establish supraphysiologic concentrations to elicit a 

biological response [72]. Whey protein supplementation in combination 
with exercise improves muscle function in adults with sarcopenic 
obesity [73]. In males, testosterone replacement therapy may be 
implemented alone or in combination with diet, exercise, or vitamin 
supplementation to restore androgen balance [74]. Use in older adults is 
somewhat limited due to high risk of cardiovascular events [75]. Simi-
larly, in postmenopausal women, estrogen replacement therapy may be 
used alone or in combination with lifestyle intervention with generally 
positive outcomes on retention of lean mass in muscle function [76]. 
Whole-body electromyostimulation (WB-EMS) is an exercise-mimetic 
approach which replaces contractile force from resistance training by 
supplying a mild electrical pulse to targeted muscle groups over a given 
period of time [77]. Advantages of the treatment are time efficiency and 
accessibility for populations with high frailty. Though WB-EMS favor-
ably improves body composition and muscle function compared to non- 
interventional controls [78–80], the effect sizes are small and may be 
ineffective in adults with more severe sarcopenic obesity [81]. More 
recently, oxytocin therapy has been employed as an exploratory therapy 
for sarcopenic obesity with the aim of restoring age-relative decline in 
oxytocin production. Intranasal oxytocin is well-tolerated and improves 
lean mass in older adults with sarcopenic obesity [82]. However, it re-
mains unclear if intranasal oxytocin improves muscle function and 
physical ability. A summary of prevailing clinical interventions is dis-
played in Table 1. Collectively, treatment options are deficient and 
complicated by the contrasting needs underlying sarcopenia and 
obesity. For the remainder of the review, we discuss emerging targeted 
therapies for sarcopenic obesity. 

4.2. Mitochondrial uncouplers 

Mitochondria are rate-limiting organelles that control cellular func-
tion by exergonic supply of adenosine triphosphate (ATP), synthesizing 
macromolecules, regulating protein-metabolite interactions, and cuing 
cell fate. Aging and obesity are associated with an array of mitochon-
drial maladaptive processes that trigger organelle dysfunction and 
oxidative stress, contributing to lipid-induced insulin resistance, muscle 
atrophy, cellular senescence, and a decline in force production capacity 
[42,83–85]. Interventions such as calorie restriction enhance mito-
chondrial fitness by promoting bioenergetic efficiency and maintaining 

Table 1 
Clinical investigations with intention to treat sarcopenic obesity.  

Study Intervention Sample Population Sarcopenic obesity criterion Result 
Camajani et al. 

(2022) 
VLCKD combined with interval training  24 Men and women 

aged 50–70 years 
FM >39–41 % for women and 
>29–31 % for men; STS > 15 s; 
SPPB < 8 

Equal reduction of FM and increase in muscle 
strength for both treatment arms compared 
to baseline 

Camajani et al. 
(2022) 

LCD combined with whey and leucine 
supplementation  

16 Men and women 
aged 50–70 years 

FM > 38 %; HGS < 16 kg; STS >
15 s; SPPB < 8 

Reduction of FM and increase in muscle 
strength compared to baseline 

Wittmann 
et al. (2016) 

WB-EMS or WB-EMS combined with 
protein supplementation  

75 Women aged ≥70 
years 

FM > 35 %; SMI < 5.75 kg/m2 MetS Z-score reduction in WB-EMS alone 
compared to control group 

Kemmler et al. 
(2016) 

WB-EMS or WB-EMS combined with 
protein supplementation  

75 Women aged ≥70 
years 

FM > 35 %; SMI < 5.75 kg/m2 Improvement in sarcopenia z-score in both 
treatment arms compared to control group 

Kemmler et al. 
(2017) 

WB-EMS combined with protein 
supplementation or isolated protein 
supplementation  

100 men aged ≥70 
years 

FM > 27 %, SMI < 0.789 Improvement in sarcopenia z-score in both 
treatment arms compared to control group 

Liao et al. 
(2017) 

Elastic band RT  46 Women aged 
60–80 years 

FM > 30 %, SMI < 1 SD sex- 
specific mean 

Reduction of FM and improvement in 
physical capacity relative to control group 

Liao et al. 
(2018) 

Elastic band RT  56 Women aged 
60–80 years 

FM > 30 %, SMI < 2 SD sex- 
specific mean 

Improvement in in muscle quality and 
physical function relative to control group 

Chen et al. 
(2017) 

RT, AT, and CT  60 Men and women 
aged 65–75 

ASM ≤ 32.5 % for men and 
≤25.7 % for women 

RT, AT, and CT improved ASM relative to 
control group 

Nabuco et al. 
(2019) 

Whey protein combined with RT  26 Women aged ≥60 
years 

ASLT < 15.02 kg and FM > 35 % Increased ALST and decreased FM relative to 
placebo 

Espinoza et al. 
(2021) 

Intranasal oxytocin  21 Men and women 
aged ≥60 years 

BMI 30–43 kg/m2 and gait speed 
<1 m/s 

Oxytocin increased whole body lean mass 
compared to placebo 

Abbreviations: VLCKD: very low calorie ketogenic diet, FM: fat mass, SST: sit-to-stand test, SPPB: short physical performance battery, HGS: hanggrip strength, WB- 
EMS: whole-body electromyostimulation, SMI: skeletal muscle index, MetS Z-score: metabolic syndrome Z-score, SD: standard deviation, RT: resistance training, 
AT: aerobic training, CT: combined resistance and aerobic training, ASM: appendicular skeletal muscle mass, BMI: body mass index, ASLT: appendicular lean soft 
tissue. 
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redox balance [86]. Interestingly, we and others have found that mito-
chondrially targeted uncouplers, such as BAM15 and SHC517, reverse 
adiposity while preserving lean mass to a greater extent than calorie 
restriction alone [87–89]. Mitochondrial uncouplers enhance electron 
flow through partial dissipation of the electrochemical gradient requi-
site for ATP synthesis [90]. This strategy is attractive in the context of 
healthy aging in that uncouplers enhance energy expenditure indepen-
dent of appetite and food intake, a key determinant of sarcopenia. More 
recently, we have demonstrated that restricting bioenergetic efficiency 
lowers body fat, increases muscle fiber area, and enhances muscle 
function and locomotion in preclinical models of sarcopenic obesity 
[34]. Restricting bioenergetic efficiency appears to improve muscle 
function by enhancing mitochondrial quality control and biogenesis, 
ensuring that damaged mitochondria are cleared from the network and 
replaced with properly functioning organelles [34]. Mitochondrial 
uncoupling may improve muscle function indirectly by alleviating age- 
related neurodegeneration [91]. To this end, mild mitochondrial 
uncoupling has been observed to be a protective mechanism against 
aging by enhancing the functional integrity of active muscle fibers [92]. 
To date, evidence remains limited to small rodent and in vitro models, 
and as such further investigation is required to determine therapeutic 
efficacy in larger mammals. However, structural optimization to 
improve absorption, distribution, and pharmacokinetic properties of 
currently available uncoupling agents is required to achieve the requi-
site potency and efficacy for treatment in humans. 

4.3. Sphingosine-1-phosphate (S1P) receptor agonists 

Sphingosine-1-phosphate (S1P) is a bioactive phospholipid that 
mediates an array of cellular processes as a downstream product of the 
sphingomyelin signaling pathway. Extracellular S1P binds to the cell 
surface receptors, enabling intracellular signal transduction. S1P con-
centrations are elevated in patients and rodents with obesity, which 
serves to maintain metabolic homeostasis and restrict tissue inflamma-
tion [93,94]. Furthermore, aging suppresses S1P receptor signaling 
which limits tissue repair [93]. Activation of S1P receptors opposes the 
action of ceramides which contribute to insulin resistance and inflam-
mation in obesity and aging [95,96]. Ceramide is a lipid intermediary in 
cellular stress responses and an essential factor of sphingolipid meta-
bolism. Increases in ceramide synthesis through a higher dietary intake 
of saturated fatty acids (e.g., palmitate) are also correlated with the 
development of insulin resistance and sarcopenic obesity [97]. Fingoli-
mod (FTY720) is an S1P analog compound that can downregulate S1P 
receptors (S1PR) or degrade sphingolipids such as ceramide [98]. 4 
weeks of FTY720 treatment increased lean mass and strength in mice 
with obesity, although the anabolic response to muscle contraction was 
not improved in aged animals [97]. Despite FTY720 therapy decreasing 
the accumulation of ceramide and other sphingolipids in the skeletal 
muscle of obese and aged obese animals, inflammatory markers are 
upregulated after FTY720 therapy even when sphingolipid accumula-
tion is reduced in the muscle of sarcopenic obese animals [97]. So far, 
FTY720 treatment is efficient in improving muscle insulin resistance and 
preserving muscle mass and function by targeting S1P only in young 
mice with obesity but not in mice with sarcopenic obesity [99]. 

4.4. Nuclear factor-κB (NF-κB) inactivation 

The nuclear factor κB (NF-κB) is a heterodimeric protein complex 
that governs aspects of transcription, inflammation, and cell fate 
through membrane receptors and extracellular signals. Under homeo-
static conditions, NF-κB proteins remain sequestered and inactive in the 
cytoplasmic domain by IκBα [100]. Extracellular signals such as cyto-
kines promote degradation of IκBα, resulting in NF-κB activation and 
subsequent signal transduction. In the context of aging, NF-κB tran-
scriptional activity is elevated as a function of increased cellular 
senescence and/or inflammation [101]. Within aged skeletal muscle, the 

combination of elevated reactive oxygen species (ROS) and inflamma-
tion is required for the induction of cytokines such as TNF-α and its 
downstream target NF-κB [102,103]. Some known downstream targets 
of NF-κB include myostatin, another member of the transforming growth 
factor beta superfamily, that together with activin A negatively regu-
lates skeletal muscle mass [104,105]. The activin type II receptor, acting 
through Smad 2/3, is the major pathway regulating skeletal muscle size 
[106]. Obesity in the context of aging exacerbates NF-κB activation via 
skeletal muscle and adipose tissue inflammation [107]. Bimagrumab is a 
monoclonal antibody that blocks activin II receptors, preventing the 
activity of myostatin and other negative skeletal muscle regulators that 
show increased muscle weight and muscle hypertrophy after treatment 
[108,109]. Given the crosstalk between cytokine pathways and TGF-β 

signaling, Bimagrumab may also protect muscle mass by inactivating 
NF-κB, as activin A is a downstream signal of NF-κB in the cytokine 
release pathway, which causes muscle atrophy [110]. Myostatin is 
known to signal muscle cells in a pro-oxidant manner by increasing ROS 
production via NF-κB [111]. In support of this notion, blocking activin A 
signaling can restore muscle function in pre-clinical models of cachexia 
[112]. It is broadly accepted that NF-κB mediates muscle wasting 
induced by TNF-α [113]. TNF-α may also trigger ceramide formation 
through stimulation of both de novo synthesis pathways consisting of 
the condensation of palmitoyl-CoA with serine and sphingomyelinase- 
mediated hydrolysis of membrane sphingomyelin [113]. Thus, it is 
reasonable to assume that targeting NF-κB may provide a feasible target 
for treating sarcopenic obesity. Although NF-κB inactivation improves 
insulin sensitivity associated with ceramide content reduction in aged 
mice, it is detrimental to muscle health during aging because it changes 
the expression of genes related to muscle progenitor cell migration, 
differentiation, and fusion, as well as increasing proteasome activity 
[114]. 

4.5. AMP-activated protein kinase (AMPK) agonists 

The AMP-activated protein kinase (AMPK) is a conserved sensor of 
cellular energy status which is activated in response to a wide variety of 
mitochondrial stressors in order to restore homeostasis of the adenine 
nucleotide pool. In response to declining ATP or an increase in the AMP: 
ATP ratio, AMPK is activated to facilitate substrate catabolism and 
enhance oxidative phosphorylation [115]. In addition to energy sensing, 
AMPK also serves as a signaling molecule to regulate mitochondrial 
function and ward against oxidative stress [116]. Liver kinase B1 (LKB1) 
and protein kinase A (PKA) are both major upstream regulators of AMPK 
and have been shown to stimulate mitochondrial biogenesis and in-
crease antioxidant capacity, and thus may represent a reasonable 
approach for improving mitochondrial function and mitigating oxida-
tive stress in sarcopenic obesity [117,118]. Resveratrol, a polyphenol in 
many plant species, exerts many health benefits, including anti- 
oxidative, anti-inflammatory, and anti-catabolic effects [119]. Interest-
ingly, the PKA/LKB1/AMPK pathway is activated by resveratrol and 
attenuates muscle wasting and loss of muscle function by enhancing 
mitochondrial dynamics, decreasing mitochondrial phenotype abnor-
malities, and increasing the antioxidant capacity in a rat model of sar-
copenic obesity [119]. The 5,7-dimethoxyflavone, a flavone found in 
Kaempferia parviflora, is studied in the context of aging due to its anti- 
diabetic, anti-obesity, and anti-inflammatory properties [120,121], and 
is also a promising treatment for attenuating sarcopenic obesity. Aged 
mice with obesity provided with 5,7-dimethoxyflavone for eight weeks 
showed a significant increase in muscle function and mass through 
stimulation of mitochondrial biogenesis and protein synthesis, as well as 
attenuation of proteolysis [122]. AICAR is an AMP analogue that 
pharmacologically stimulates AMPK, both in vitro and in vivo. AICAR 
improves a number of age-related functions including cognition, motor 
coordination, cellular senescence, and inflammation [123–125]. It has 
also been shown to prevent lipid-induced insulin resistance and restore 
metabolic function in diet-induced models of obesity [126]. Chronic 
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AICAR treatment has been shown to reduce muscle wasting and improve 
muscle function in a mouse model of spinal muscular atrophy [127]. 
More recently, AICAR was found to exert AMPK-independent effects 
such as increasing fatty acid oxidation and suppression of gluconeo-
genesis [128]. However, little to no beneficial effects have been 
observed in early phase clinical trials due to poor oral availability and 
efficacy observed above the maximum tolerated dosing [128]. Metfor-
min, the most prevalent antihyperglycemic medication worldwide, ac-
tivates AMPK by augmenting the cellular adenine nucleotide pool, 
which contributes to its glucose lowering effects including suppression 
of gluconeogenesis and intestinal glucose absorption [129]. Metformin 
attenuates weight gain and results in modest weight reduction over long 
term administration in humans by restricting food intake and enhancing 
peripheral insulin sensitivity [130,131]. More recently, metformin has 
been shown to prevent sarcopenic obesity in mice by protecting muscle 
function [132]. However, the effect was partially lost with long-term 
administration of a high-fat diet. The ability of metformin to improve 
metabolic function has been tied to several upstream triggers of AMPK, 
including partial inhibition of mitochondrial complex I, alteration of 
cellular redox balance, and energy charge [133]. Furthermore, AMPK- 
stimulated energy stress increases mitochondrial biogenesis and mito-
chondrial protein synthesis and decreases ROS, which is also associated 
with improved muscle function and insulin sensitivity in skeletal muscle 
[134,135]. Furthermore, metformin has been shown to preserve skeletal 
muscle satellite cells, prevent satellite cell senescence induced by lipid 
overload, and enhance myogenesis [136]. In contrast, metformin blunts 
the bioenergetic and hypertrophic responses to exercise training in older 
adults, suggesting a non-synergistic interaction with lifestyle interven-
tion [137,138]. Further, long-term metformin administration may 
induce muscle atrophy via activation of myostatin, a negative regulator 
of muscle hypertrophy [139,140]. Metformin has also been connected to 
muscle atrophy via upregulation of atrogenes, such as MuRF1 and 
MAFbx32, as well as over-activation of the ubiquitin-proteasome activ-
ity system [141]. However, these findings are incongruent with other 
reports suggesting that metformin enhances redox balance that could 
prevent the muscle breakdown, likely limiting mitochondrial-complex I 
linked hydrogen peroxide production [142,143]. Indeed, metformin 
treatment for 4 weeks reduces the potential for succinate and fatty-acid- 
supported mitochondrial ROS emission in skeletal muscle without any 
effect on respiratory control [143]. Collectively, metformin-stimulated 
AMPK activation favorability influences cellular function which, in the 
absence of other interventions, improves muscle tone. However, further 
research is required to establish whether metformin can treat sarcopenic 
obesity. 

4.6. Glutathione (GSH) agonists 

An uninterrupted supply of energy is necessary to sustain cellular 
function. Mitochondria act in coordination with nutrient sensors to 
provide cellular energy. However, leakage of electrons, as mitochondria 

engage in energy transfer results in ROS production, and if leakage is 
excessive this can cause damage to the organelles [144]. Oxidative stress 
and mitochondrial dysfunction are toxic to cellular function, which is 
further amplified by deficiencies in endogenous antioxidant glutathione 
activity (GSH) [145,146]. ROS-induced oxidative stress is associated 
with genomic damage, which can regulate pathological gene expression 
programs that attenuate muscle stem cells’ regenerative potential with 
advancing age, thus causing cellular senescence [147,148]. To this end, 
senescent cells, independent of but as observed in aging, produce an 
inflammatory environment which arrests stem cell proliferation and 
muscle regeneration, ultimately impairing muscle function [148,149]. 
Antioxidants may protect mitochondria from ROS, and GSH is an 
abundant endogenous intracellular antioxidant tripeptide composed of 
glycine, cysteine, and glutamic acid, ultimately preventing ROS-induced 
genomic damage [150]. GSH plays an essential role in protecting cells 
against oxidative stress and is required for optimal mitochondrial fatty- 
acid oxidation [145]. Compared to young individuals with normal BMI, 
older adults with obesity have ~66 % lower GSH concentrations in 
skeletal muscle. Glycine and n-Acetylcysteine (GlyNAC) supplementa-
tion is promising in mice [145] and early phase clinical trials for sar-
copenic obesity [151], with robust improvements in muscle function 
and attenuation of mitochondrial dysfunction in skeletal muscle pri-
marily driven by limiting oxidative stress [151]. GlyNAC treatment has 
been shown to improve gait speed, handgrip strength, and exercise ca-
pacity measured by a rapid 6-minute walk test [152]. Since GSH is 
required for the maintenance of lipid homeostasis in skeletal muscle, 
aberrant GSH function triggers the onset of insulin resistance and muscle 
dysfunction as observed in sarcopenic obesity [145,153]. However, 
stopping GlyNAC resulted in the reversal of the accrued benefits in both 
muscle function and mitochondrial-fatty-acid oxidation [150,152]. 
Thus, correcting GSH deficiency with GlyNAC supplementation repre-
sents another promising approach for treating sarcopenic obesity. An 
overview of preclinical models for sarcopenic obesity treatment is pro-
vided in Table 2. 

5. Conclusions 

Sarcopenic obesity is a multidimensional disease with limited 
treatment options. Systemic energy burden established by obesity in the 
context of aging serves as the pathophysiological driver of disease, 
exacerbating the rate of muscle loss. To this end, relieving energy 
burden and enhancing muscle function are requisite components to 
successful therapeutic intervention. Drugs that target processes related 
to energy transduction and nutrient deposition appear to have thera-
peutic value, however, further investigation is required to determine 
efficacy and tolerability in humans. 

5.1. Limitations 

At current, the body of clinical evidence is not definitive or 

Table 2 
Preclinical investigations with intention to treat sarcopenic obesity.  

Study Intervention Action Model Result 
Dantas et al. 

(2021) 
BAM15 Mitochondrial 

Uncoupler 
Aged C57BL/6J mice with obesity Improved muscle function and size and reduction in body fat 

Rivas et al. (2019) FTY720 S1P analog Young and aged C57BL/6J mice with 
obesity 

Reduction of FM and increase in muscle strength in young but 
not old mice 

Huang et al. 
(2019) 

Resveratrol AMPK activation Young and aged Sprague-Dwaley rats 
with obesity 

Prevents muscle atrophy and loss of function 

Kim et al. (2020) 5,7- 
Dimethoxyflavone 

mTOR activation Young and aged C57BL/6J mice with 
obesity 

Improved muscle function and mass 

Lyu et al. (2022) Metformin Non-specific Aged C57BL/6J mice with obesity Prevents sarcopenic obesity and reduces muscle fat 
Nguyen et al. 

(2013) 
GlyNAC Glutathione activation Young and aged C57BL/6J mice with 

sarcopenia 
Reduction of FM and insulin resistance 

Abbreviations: FM: fat mass, S1P: sphingosine-1-phosphate, mTOR: mammalian target of rapamycin, AMPK: AMP-activated protein kinase, GlyNAC: glycine and n- 
Acetylcysteine. 
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generalizable and lacks consistency in defining sarcopenic obesity as a 
disease state. In pre-clinical models, treatment utility is confounded by 
the type of controls used in the study (i.e. obesity without sarcopenia in 
the context of aging). Further research is direly needed to understand 
the causes and consequences of sarcopenic of obesity as a discretely 
defined disease. 
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