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Purpose of review

This review offers a contemporary clinical approach to the recognition, prevention and management of
sarcopenia, and discusses recent clinically relevant advances in the aetiopathogenesis of muscle ageing
that may lead to future therapeutic targets.

Recent findings

The key recent directions for sarcopenia are in the diagnosis, understanding molecular mechanisms and
management. Regarding the recognition of the condition, it has become increasingly clear that different
definitions hamper progress in understanding. Therefore, the Global Leadership in Sarcopenia has been
established in 2022 to develop a universally accepted definition. Moreover, substantial work is occurring
to understand the various roles and contribution of inflammation, oxidative stress, mitochondrial dysfunction
and metabolic dysregulation on skeletal muscle function and ageing. Finally, the role of resistance-based
exercise regimes has been continually emphasised. However, the role of protein supplementation and
hormone replacement therapy (HRT) are still under debate, and current clinical trials are underway.

Summary

With the global ageing of our population, there is increasing emphasis on maintaining good health.
Maintenance of skeletal muscle strength and function are key to preventing frailty, morbidity and death.
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INTRODUCTION

Globally, populations are rapidly ageing due to
increased life expectancy and falling fertility rates
[1]. Consequently, there is an increased emphasis on
maintaining the health and functional capacity of
individuals into old age [1]. A key factor in main-
taining health and independence is the moderation
of age-associated degenerative loss in skeletal
muscle typified by decreased muscle size, strength
and function [2]. Humans achieve peak skeletal
muscle mass and strength inmid-life, and thereafter
relative muscle mass declines by 30–50% at age
80years [3,4]. Concurrent with the reduction in
muscle mass, is the reduction in muscle power by
approximately 10–15% each decade until 70 years,
which then accelerates to a 25–40% reduction per
decade [2]. Therefore, loss of muscle strength and
power is more rapid than the loss of muscle mass,
indicating additional factors are involved in the
deterioration of muscle function with ageing [2,5].

The term sarcopenia was first used in 1989 to
describe an age-related decline in lean body mass

affecting mobility and independence [6]. Since its
inception, numerous definitions of sarcopenia have
been proposed, with the most recent definition
published in 2019 by the European Working Group
on Sarcopenia (EWGSOP). It encompasses the loss of
skeletal muscle mass and strength alongside
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functional decline and deficit [7,8]. Sarcopenia is
associated with atrophy of muscle fibres, accumula-
tion of fibrofatty tissue, and metabolic alterations
within themuscle, including disrupted protein turn-
over, impaired regeneration, andmitochondrial dys-
function impacting muscle function and quality [9].

The consequences of muscle ageing and sarco-
penia are significant, with a growing body of evi-
dence highlighting the strong inter-relationship
between sarcopenia and adverse functional and clin-
ical outcomes [10,11]. In 2000, an estimated US
$18.5 billion in healthcare costs were attributed to
sarcopenia [12]. With the number of elderly people
expected to increase from 841 million in 2013 to
more than two billion by 2050, the costs associated
with sarcopenia are also expected to increase expo-
nentially. Sarcopenic patients have increased rates
of falls, disability, hospital, and nursing home
admissions and mortality [13,14].

Sarcopenia is an independent risk factor for mor-
tality [15]. Kitamura et al. have shown that the risk of
all-cause mortality in sarcopenic Japanese patients is
two- and three-fold higher than in nonsarcopenic
female and male patients respectively [16]. Likewise,
Nakamura et al. demonstrated that sarcopenic
patients had a two-fold higher risk of all-cause mor-
tality than nonsarcopenic patients [17]. Multiple
studies have also shown that sarcopenia significantly
increases mortality rates of hospital-inpatients. For
instance, Bayraktar et al. showed in-hospital mortal-
ity rate of nonsarcopenic patients was 17.6% lower
than that of sarcopenic patients [18].

Functional disability and decline are also signif-
icant consequences of sarcopenia. Xu et al. found
that sarcopenia was associated with higher odds of
disability related to activities of daily living [19], and
Vongchaiudomchoke et al. showed that a diagnosis
of sarcopenia was an independent risk factor for
poorer functional outcomes at one-month post hos-
pital discharge in critically ill surgical patients [20].

Therefore, reducing the age-related degenerative
changes in skeletal muscle is critical to reducing the
risk of injury, permanent disability and mortality in
older adults [21]. Factors including appropriate exer-
cise and good nutrition are considered vital in the
prevention and treatment of acceleratedmuscle loss.
With the ageing of our population, this will become
an increasingly important public health issue that
requires urgent attention. This reviewwill discuss the
definition of sarcopenia, clinical approach, aetiopa-
thogenesis, treatment, and preventive techniques
for sarcopenia.

DEFINING SARCOPENIA

There is much debate in the literature regarding the
definition of sarcopenia. Multiple international
working groups have proposed definitions (key cri-
teria summarised in Table 1), and whilst they gen-
erally contain similar domains – muscle strength,
musclemass, and physical performance – consensus
between them is poor [7,8,22

&

]. For example, a
recent European study of over 1400 community-
dwelling older adults found the prevalence of sar-
copenia varied greatly from 0.7% to 16.8% depend-
ing on which of 12 definitions were used [23]. The
Global Leadership in Sarcopenia was established in
2022 to develop a universally accepted definition for
sarcopenia; this work remains ongoing [24

&

].

CLINICAL APPROACH TO SARCOPENIA

The benefit of widespread screening for sarcopenia
has not been established. This is partly owing to the
difficulty in developing a single appropriate screen-
ing tool [29,30] and partly because there are no
established treatments for sarcopenia. However,
there is significant value in having clinicians con-
sider and recognise sarcopenia because early inter-
vention with exercise and nutritional advice may
slow functional decline and improve quality of life.

Current recommendations for the initial steps in
a sarcopenia diagnostic pathway revolve around a
case-finding approach, which explores a diagnosis
of sarcopenia when signs or symptoms are reported
[7]. Such symptoms generally include falls and func-
tional decline, which, once neurological and mus-
cular diseases have been excluded, are frequently
dismissed in the older population as an unavoidable
side effect of ageing. At this point, the clinician
should consider sarcopenia.

The Strength, Assistance walking, Rise from a
chair, Climb stairs, and Falls (SARC-F) questionnaire
was recommended by the EWGSOP in 2019 as the
primary sarcopenia case-finding instrument [7,31,32].
The value of the SARC-F is that it is a patient-

KEY POINTS

� A universally accepted definition for sarcopenia
is needed.

� Substantial work is ongoing to understand the various
roles and contribution of inflammation, oxidative stress,
mitochondrial dysfunction, and hormonal changes on
skeletal muscle function and ageing.

� The role of resistance-based exercise regimens has
been continually emphasised.

� The roles of protein supplementation and HRT are still
under debate, and current clinical trials are underway.
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administered questionnaire that evaluates the hall-
mark symptoms of sarcopenia: falls and functional
decline [33,34

&

]. The drawbacks of the SARC-F are that
it has high specificity but only low-moderate sensitiv-
ity,meaning it isbetter suited to rulingoutpeoplewho
donothave sarcopenia rather thanruling in those that
do [30,31,35].

More sensitive but also more involved tools
include the SARC-CalF and the Ishii Index. The
SARC-CalF is an amalgamation of SARC-F and calf
circumference measurements. It has been suggested
as a better choice for early screening for sarcopenia
because of its increased sensitivity for case finding
[25,29,35–39]. The Ishii Index has even greater sen-
sitivity as it assesses calf circumference and grip
strength [7,40–42]. The choice of tool comes down
to clinician time and preference.

Once a potential case of sarcopenia has been
identified, strength measures can be directly
assessed to confirm probable sarcopenia. These
may include grip-strength and/or chair stand meas-
urement [7]. Gold-standard confirmation of sarco-
penia is not usually employed in a clinical setting as
it involves costly computed tomography or mag-
netic resonance imaging, for which consistent cut-
off values for sarcopenic muscle mass have not been
defined [7]. Functional assessment may also be use-
ful for establishing condition severity and as a
marker for program prescription and surveillance.

Such assessments may include a timed up and go,
gait speed, short physical performance battery and
400m walk [7,25,27,28]. The clinical approach to
sarcopenia described here is outlined in figure one
(Fig. 1).

AETIOPATHOGENESIS OF MUSCLE

AGEING

The aetiopathogenesis of muscle ageing and sarco-
penia remains elusive and is likely to involve many
interrelated ageing factors that ultimately disrupt
skeletalmuscle homeostasis. This sectionwill discuss
factors receiving current attention for their signifi-
cant pathogenic role – and, therefore, therapeutic
potential – in the aetiopathogenesis of sarcopenia,
including inflammation, mitochondrial dysfunc-
tion, oxidative stress, and metabolic dysregulation.

INFLAMMATION

Chronic, subacute inflammation is a physiological
hallmark of ageing termed inflamm-ageing [43].
There is a demonstrated association between
chronic inflammation and muscle atrophy [44–
47]. Inflammatorymarkers such as tumour necrosis
factor (TNF), interleukins (IL), reactive oxygen
species (ROS) and C-reactive protein are likely
key mediators; IL-6, in particular, is thought to

Table 1. Comparison of definitions of Sarcopenia.

Definition Muscle Strength Muscle Mass Physical Performance

EWGSOP [7] Handgrip strength:
� M: < 27 kg
� F: < 16 kg

OR chair stand:
� > 15 s (5 rises)

ASM:
� M: < 20kg
� F: < 15kg

OR ASM/Height2:
� M: < 7.0kg/m2

� F: < 5.5kg/m2

Gait speed: �0.8 m/s (4m)
OR SPPB score: � 8 points
OR TUG: �20 s
OR 400m walk: � 6 min/ noncompletion

AWGS [25] Handgrip strength:
� M: < 28kg
� F < 18kg

ASM/ Height2:
� M < 7.0kg/m2

� F: <5.4kg/m2

OR BIA M<7 kg/m2, F <5.7 kg/m2

Gait speed: <1.0m/s (6m)
OR 5-time chair stand � 12s OR SPPB � 9

FNIHSP [26] Handgrip strength:
� M <26kg
� F: <16kg

ALM/BMI:
� M: <0.789 kg/BMI
� F: <0.512 kg/BMI

IWGS [27] ALM/Height2:
� M: � 7.23 kg/m2
� F: � 5.67 kg/m2

Gait speed: < 1.0m/s (4m)

SDOC [28] Handgrip strength (absolute):
� M: <35.5kg
� F: <20 kg

OR standardised to body weight/ BMI

Gait speed: �0.8m/s (4--6m)

ALM, appendicular lean mass; ASM, appendicular skeletal mass; AWGS, Asian Working Group on Sarcopenia; BIA, bioelectrical impendence analysis; BMI,
body mass index; EWGSOP, European Working Group on Sarcopenia; F, female; FNIHSP, Foundation for the National Institutes of Health Sarcopenia Project;
IWGS, International Working Group on Sarcopenia; M, male; SDOC, Sarcopenia definitions and outcomes consortium; SPPB, short physical performance battery;
TUG, timed up and go.

Old muscle, new tricks Sch€utze et al.
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disruptmitochondrial function and inducemuscle
atrophy [47,48]. In turn, damaged mitochondria
from skeletal muscle are thought to perpetuate
chronic inflammation by releasing cellular constit-
uents such as mitochondrial DNA (mtDNA), cas-
pases and ROS. These released constituents are
thought to act as damage-associated-molecular-

patterns, triggering an innate immune response
[49,50].

This relationship is exacerbated in chronic disease
states, where inflammation increases above normal
age-related levels, such as chronic kidney disease
(CKD). Sarcopenia is more common in CKD and is
strongly associatedwith increased intramuscular ROS,

Exclude alternative 

cause 
(e.g. neurological and muscle 

disease)

Case-finding tool
(SARC-F, SARC-CalF, 

Ishii Index) 

Strength measurement
(e.g. grip strength, chair to 

stand) 

Functional assessment
(e.g. TUG, SPPB, gait speed)

Interventions

Optimise and increase 

exercise
(Resistance-based) 

Optimise nutrition

Not 

sarcopenia

Uncertainty

Unlikely sarcopenia

Aids/equipment to 

ensure safe 

environment

Gold-standard 

assessment
(e.g. CT, MRI)

Probable sarcopenia

Confirmed 

sarcopenia

Falls and impaired 

function

Clinical suspicion for 

sarcopenia

Monitor

FIGURE 1. Clinical approach to sarcopenia. Proposed updated pathway for the screening, diagnosis, and management of
sarcopenia. The algorithm is based off the EWGSOP Find-Assess-Confirm-Severity pathway [7], however, has been updated to
include additional case-finding tools and relevant interventions.
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IL-6 and TNF, as well asmore renal-specificmediators,
including uremic toxins and angiotensin-II [51–53].
The destructive nature of chronically elevated inflam-
matorymediators isdemonstratedacrossmost inflam-
matorymusclediseases. For example,TNF, IL-6and IL-
1 are heavily implicated in the pathogenesis of
Immune-Mediated Necrotising Myopathy [54], while
IFN-] is a key inflammatory mediator implicated in
Inclusion Body Myositis (IBM; [55]). IBM is the
most common acquired myopathy in persons over
50 years and, in many ways, can be considered a
model of accelerated sarcopenia. Indeed, IBM is
often diagnosed late because weakness in affected
individuals is commonly mistaken for ‘normal’ age-
related muscle decline and/or sarcopenia. The
histopathological features include chronic T cell-
mediated inflammation associated with significant
elevated levels of cytokines, abnormal protein
homeostasis with accumulation of many proteins
including TAR DNA-binding protein 43, -amyloid
and Phos-Tau within skeletal muscle fibres, as well
as the accumulation of mitochondrial mutations
[56]. These pathological events lead to accelerated
muscle atrophy, impaired regeneration, weakness,
and disability. This is a stereotypical disease where
chronic inflammation and oxidative stress (invol-
ving nitric oxide) damages mitochondria, releasing
ROS and mtDNA into the cytoplasm, establishing a
self-sustaining loop culminating in inflammation,
cell stress, mitochondrial dysfunction, and ulti-
mately, cell death [55].

MITOCHONDRIAL DYSFUNCTION AND

OXIDATIVE STRESS

Almost all cells within the body rely on mitochon-
dria to generate sufficient energy in the form of
adenosine triphosphate (ATP) to support the meta-
bolic demands of the cell. However, the function of
the mitochondrion extends far beyond this, into
waste removal, biosynthesis, and control of pro-
grammed cell death [57,58,59]. Disruption to any
of these functions causes an imbalance in cell
homeostasis and accumulation of dysfunctional
mitochondria [60–64]. In ageing muscle, this accu-
mulation is largely due to increased oxidative stress
from the mitochondria. This is known as the mito-
chondrial theory of ageing [65]. While the genera-
tion of ROS at the electron transport chain is normal
during ATP production, there is an increased pro-
portion of ROS generated in ageing muscle, which
perpetuates mitochondrial damage as well as dam-
age to other cellular structures [65,66,67].

In addition, ineffectivemitophagy increases dys-
functional mitochondria. Mitophagy is a specialised
process of autophagy involving mitochondria-

specific breakdown and component recycling.Multi-
ple studies have demonstrated that altered mitoph-
agy dynamics exist in aged skeletal muscle and that
this correlates with accumulation of dysfunctional
mitochondria, poorer muscle function and degener-
ation of the neuromuscular junction [60–64].

There are many localised consequences of dys-
functional mitochondria in skeletal muscle including
reduced efficiency of ATP production, which amplify
energy deficits [68]. However, these changes also con-
tribute to increased local and systemic inflammation
and metabolic dysregulation [66,67,68].

METABOLIC DYSREGULATION

The progressive loss of mitochondrial respiratory
activity leads to an increased reliance on alternative
metabolic pathways to metabolise substrates,
(mainly glucose and free fatty acids), tomeet cellular
ATP demands. Alternative pathways include the
hexosamine pathway and the glyoxalase pathway
[69,70], leading to additional generation of ROS and
advanced glycation end (AGE) products [71–74].
Circulating levels of AGEs are negatively associated
with muscle mass, muscle strength and physical
function in older adults and are therefore implicated
in development of sarcopenia [75–78].

Excess substrates may also be stored if they can-
not enter these alternative metabolic pathways. The
major energy storage in the human body comprises
glycogen, which has limited capacity [79–83], and
triglycerides, which are stored primarily in adipose
tissue depots [84], but also within various tissues
including skeletal muscle [85]. Lipid infiltration into
skeletalmuscle is known asmyosteatosis [84,86]. The
direct association between myosteatosis and muscle
atrophy has recently been demonstrated in mouse
models,where local lipid accumulationwas shown to
trigger catabolic pathways [85], with this muscle
atrophy exacerbated in older mice [87]. This age-
related exaggeration is likely because myosteatosis
perpetuates pathogenic processes already significant
in sarcopenia, such as mitochondrial dysfunction,
oxidative stress and chronic inflammation, hyper-
glycaemia, and insulin resistance [44,84,88,89].

Sarcopenic obesity refers to the coexistence of
reduced skeletal muscle mass and function, and
excess body fat as measured by body mass index
or waist circumference [85,90

&

,91
&&

]. Sarcopenic
obesity has been reviewed extensively elsewhere
[84,85,89,90

&

,91
&&

,92
&

] and thus will not be
addressed in detail in this review. However, it is
noted that this condition appears to have a unique
pathophysiological process and risk profile thatmay
not adhere to the general pathophysiological seque-
lae of sarcopenia in nonobese individuals [89,90

&

].

Old muscle, new tricks Sch€utze et al.
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MODERATING MUSCLE AGEING

Exercise is the only intervention shown to mediate
age-related muscle atrophy, although nutrition and
hormone replacement therapy (HRT) are likely
to contribute.

EXERCISE

Exercise is the primary factor in protection against
sarcopenia. It regulates mitochondrial function,
dampens inflammation, and improves insulin sen-
sitivity [93–96], and has recently been demon-
strated to promote muscular antioxidant protein
expression, which aids in the clearance of ROS
[97]. Moreover, exercise stimulates muscle protein
synthesis; even a fewminutes per week of resistance-
based exercise significantly affects muscle mass
[98,99]. Harper et al. [65] concluded that a program
incorporating moderate-to-high repetition resist-
ance training followed by moderate-to-high inten-
sity endurance training would best prevent the
development of mitochondrial dysfunction and
associated functional decline.

There is a natural decline in habitual physical
activity in older persons. This is likely multifactorial
and associated with increased musculoskeletal pain,
muscle atrophy and general fatigue. Exercise inten-
sity and volume are important to mitigate the
changes associated with sarcopenia. Therefore,
patients may require a multipronged approach to
an exercise program that includes appropriate pain
management, education and specialised supervi-
sion. Ultimately high repetition (lower loading)
resistance training is the most effective for protect-
ing against morbidity associated withmuscle ageing
[65,100,101].

NUTRITION AND SUPPLEMENTATION

Furthermore, clinicians need to consider targeted
nutritional programs in those at risk of or who have
already developed sarcopenia. Adding protein to
resistance-based exercise training has shown mixed
results. It appears that protein supplementation has
limited benefit for older adults with adequate pro-
tein intake, but further studies are required to deter-
mine benefit in specific populations, particularly
those in care, the very frail or with inadequate
protein intake [102]. The Exercise and Nutrition
for Healthy AgeiNg trial is an ongoing five-arm
triple-blinded randomised controlled trial in sarco-
penic older adults, to assess the combined anabolic
interventions of protein, omega-3-supplementa-
tion, and exercise on physical performance, com-
pared with placebo or single interventions (NCT
03649698).

Diets with a high inflammatory index have been
associated with reduced muscle mass, muscle
strength and gait speed and higher systemic inflam-
mation, however the benefits of an anti-inflamma-
tory diet are yet to be established [103,104]. There
has also been suggestion that antioxidant supple-
mentation may enhance the positive effect of exer-
cise on mitochondrial health, although this has not
been consistently demonstrated [105].

HORMONE REPLACEMENT

Some hormones are integral for the growth and
maintenance of skeletal muscle, including insulin-
like growth factor-1, dehydroepiandrosterone, tes-
tosterone and oestrogen, all of which decrease with
increasing age [106] and may contribute to sarco-
penia and frailty [107]. Men with low free testoster-
one are 68% more likely to develop mobility
limitation than men with normal free testosterone
[108]. Therefore, replacing these hormonesmay be a
reasonable strategy to mitigate muscle ageing. For
example, several studies have shown that oestrogen
HRT prevents reduction in skeletal muscle mass and
strength in menopausal women (reviewed in [109]),
and that this effect can have lasting effects on
maintenance of muscle quantity and quality, even
years after cessation of therapy [110]. In addition,
testosterone administration has been shown to
increase maximal voluntary contraction [111],
inhibit adipogenesis and reduce inflammation
(reviewed in [107]).

CONCLUDING REMARKS

Muscle ageing and sarcopenia are becoming increas-
ingly significant global issues with an ageing pop-
ulation. Achieving a consensus definition on
sarcopenia is an important next step in this area
to allow data comparison across regions and
enhance our understanding of this condition. From
a clinical perspective, early suspicion and interven-
tion in age-related muscle atrophy is probably more
important than defining the condition or its
severity. Muscle ageing is inevitable, and everyone
would benefit from an appropriate and longstand-
ing exercise program, regardless of whether criteria
for a diagnosis of sarcopenia has been met. These
programs should involve progressive, resistance-
based exercise with possible additional nutritional
supplementation, particularly if daily protein
requirements are not being met. HRT may also be
considered where clinically appropriate.

Future directions in muscle ageing revolve
largely around teasing out key players in its aetio-
pathogenesis. Broadly, it is understood that chronic

Muscular disease
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inflammation, mitochondrial dysfunction andmet-
abolic dysregulation perpetuate each other, result-
ing in age-related muscle atrophy, with many other
contributing factors.
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