
 | Human Microbiome | Research Article

Gut microbiota and in�ammation patterns for specialized 

athletes: a multi-cohort study across di�erent types of sports
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ABSTRACT Regular high-intensity exercise can cause changes in athletes’ gut 

microbiota, and the extent and nature of these changes may be a�ected by the 

athletes’ exercise patterns. However, it is still unclear to what extent di�erent types 

of athletes have distinct gut microbiome pro�les and whether we can e�ectively 

monitor an athlete’s in�ammatory risk based on their microbiota. To address these 

questions, we conducted a multi-cohort study of 543 fecal samples from athletes in 

three di�erent sports: aerobics (n = 316), wrestling (n = 53), and rowing (n = 174). 

We sought to investigate how athletes’ gut microbiota was specialized for di�erent 

types of sports, and its associations with in�ammation, diet, anthropometrics, and 

anaerobic measurements. We established a microbiota catalog of multi-cohort athletes 

and found that athletes have specialized gut microbiota speci�c to the type of sport 

they engaged in. Using latent Dirichlet allocation, we identi�ed 10 microbial subgroups 

of athletes’ gut microbiota, each of which had speci�c correlations with in�ammation, 

diet, and anaerobic performance in di�erent types of athletes. Notably, most in�amma-

tion indicators were associated with Prevotella-driven subgroup 7. Finally, we found 

that the e�ects of sport types and exercise intensity on the gut microbiota were 

sex-dependent. These �ndings shed light on the complex associations between physical 

factors, gut microbiota, and in�ammation in athletes of di�erent sports types and could 

have signi�cant implications for monitoring potential in�ammation risk and developing 

personalized exercise programs.

IMPORTANCE This study is the �rst multi-cohort investigation of athletes across a range 

of sports, including aerobics, wrestling, and rowing, with the goal of establishing a 

multi-sport microbiota catalog. Our �ndings highlight that athletes’ gut microbiota is 

sport-speci�c, indicating that exercise patterns may play a signi�cant role in shaping the 

microbiome. Additionally, we observed distinct associations between gut microbiota and 

markers of in�ammation, diet, and anaerobic performance in athletes of di�erent sports. 

Moreover, we expanded our analysis to include a non-athlete cohort and found that 

exercise intensity had varying e�ects on the gut microbiota of participants, depending 

on sex.

KEYWORDS multi-sport, gut microbiota, in�ammation, latent Dirichlet allocation, 

aerobics, wrestling, rowing

R egular physical exercise is bene�cial for human health, such as optimizing cardiores­

piratory �tness, immunity, insulin sensitivity, and body composition (1, 2). This is 

especially true for athletes, who focus on �tness-enhancing training to improve their 

athletic performance. Previous studies have found signi�cant changes in the composi­

tion and function of the gut microbiome in athletes under the in�uence of prolonged 

high-intensity physical exercise (2–4). For instance, compared to normal people, rugby 

players had a higher abundance of Firmicutes and lower levels of Bacteroidetes (5). 
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Marathon runners had an increased presence of Veillonella (6). Professional cyclists 

had an increased abundance of Methanobrevibacter smithii and Prevotella (7). These 

suggested that di�erent types of athletes with specialized training might have di�er-

ent gut microbial variations compared to healthy individuals. Specialized gut microbial 

changes can a�ect athletic performance through multiple avenues, such as regulat­

ing excitatory and inhibitory neurotransmitters to alleviate psychological stress (8, 9), 

and converting exercised-induced lactate into propionate to improve endurance (6). 

However, it is unclear how the gut microbiota pro�les of athletes di�er across di�erent 

types of sports and whether specialized microbial patterns are associated with speci�c 

training models. A better understanding of these links could deepen our understanding 

of the specialized microbial pro�les under speci�c training patterns, thereby facilitating 

the development of personalized exercise modulation for individuals.

However, when physical activity is too intense, athletes may experience negative 

e�ects of gut microbiota changes during exercise (10), such as gut in�ammation. 

Gut in�ammation was correlated with an increased risk of viral or bacterial infection, 

partially caused by excessive physical activity (11). Previous studies have found that 

physical activity resulted in profound di�erences in in�ammatory and metabolic markers 

between professional athletes and controls (12). For example, rugby players exhibit 

lower levels of proin�ammatory cytokines (12), and endurance athletes show increased 

production of butyrate (a modulator of proper immune function) (13). Changes in 

in�ammation-related factors in athletes might imply di�erent degrees of potential gut 

in�ammation risk. However, few studies have focused on microbes’ correlations with the 

gut in�ammation that athletes may experience during exercise. Exploring the potential 

of gut microbiota in adjusting the in�ammation of athletes might help them to alleviate 

the e�ects of sports injuries. Therefore, we constructed a comprehensive multi-cohort 

study including information about physical �tness, diet, blood measurements, and gut 

microbial pro�les for di�erent types of athletes. We aimed to grasp the specialization of 

gut microbiota across multiple sports, as well as their associations with in�ammation. 

This information could prove highly signi�cant for monitoring the potential in�amma-

tion risk and further achieving personalized exercise modulation.

In this study, we built a microbiome catalog for athletes across di�erent types of 

sports and answer key questions including how gut microbiota di�ered in athletes from 

di�erent types of sports; which microbes were associated with and their potential e�ects 

on in�ammation, diet, and anaerobic performance; and what were the di�erences in gut 

microbiota among participants with di�erent exercise intensities.

RESULTS

Overview of the multi-cohort study across di�erent types of sports

We collected a total of 543 fecal samples from athletes in three types of sports, including 

aerobics (AER), wrestling (WRE), and rowing (ROW), and designated these samples as 

the multi-sport meta-cohort (MS cohort, Fig. 1). These various sports have specialized 

training patterns with AER focusing on �exibility, ROW on endurance, and WRE on both 

endurance and explosive power. Owing to the genetic, physical, and environmental 

di�erences between females and males, we divided the MS cohort into two sub-cohorts 

for the following analysis, comprising the MS-female and MS-male cohorts. The MS-

female cohort was composed of 117 AER female athletes and 174 ROW female athletes, 

while the MS-male cohort was composed of 199 AER male athletes and 53 WRE male 

athletes. In addition, we collected 19 blood measurements, 20 dietary measurements, 22 

anthropometrics (basic metabolism and body composition), and 15 anaerobic measure­

ments to be correlated with athletes' gut microbial pro�les (Table S1). Furthermore, to 

investigate the impact of exercise intensities on gut microbiota, we additionally recruited 

and examined 178 fecal samples from non-athletes.
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Establishment and comparison of multi-sport gut microbial pro�les

We �rst established a multi-sport gut microbial pro�le and found that aerobics, wrestling, 

and rowing athletes have their speci�c gut microbial pro�les. In the MS cohort, we 

identi�ed gut microbes at phylum (n = 9), class (n = 13), order (n = 27), family (n = 

52), and genus (n = 111) levels that were presented in more than 10% of all the 543 

fecal samples, as the MS microbial catalog. We then compared these gut microbes at 

each taxonomic level between di�erent types of sports in the MS-female and MS-male 

cohorts, respectively (Table S2). Phyla Actinobacteriota (P = 2.09E−13) and Proteobacte­

ria (P = 1.74E−14) were most di�erently distributed in the MS-female and MS-male 

cohorts, respectively. We found that the di�erentiation in gut microbes was notable, 

with 77% of genera di�erently distributed between AER and ROW in the MS-female 

cohort and 64% of genera between AER and WRE in the MS-male cohort (q < 0.05). 

We then investigated the di�erentiation in microbial diversity. In the MS-female cohort, 

ROW athletes’ gut microbiota had higher Shannon diversity than AER athletes’ gut 

microbiota (P = 1.4E−13, Fig. 2A), and their overall pro�les were obviously separated 

against the PCoA1 axis (P = 1.09E−12) and PCoA2 axis (P = 1.42E−14) of principal 

coordinates analysis (PCoA) based on Bray-Curtis dissimilarities at the genus level (Fig. 

2C). The random forest algorithm was applied to these samples and arrived at a receiver 

operating characteristic (AUROC) of 0.9824 (Fig. 2E), further validating the di�erentiation 

of their gut microbial pro�les. In the MS-male cohort, the Shannon diversity showed 

no signi�cant di�erence between WRE athletes’ gut microbiota and AER athletes’ gut 

microbiota (Fig. 2B). However, the di�erentiation in their overall pro�les was notable, 

as demonstrated by their obvious separation in PCoA and a high AUROC of 0.9392 

in random forest algorithm (Fig. 2D and F). In addition, we introduced sedentary (SD) 

populations to the MS cohort as a control to construct a Random Forest model (Fig. 

S1A through D). Compared with the MS cohort, the area under curve receiver operating 

FIG 1 Overview of the multi-sport cohort. Diagram summarizes data cohort and available metadata (n = number of variables collected).

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00259-23 3

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/m

sy
st

em
s 

o
n
 0

1
 A

u
g
u
st

 2
0
2
3
 b

y
 7

7
.2

2
9
.4

4
.9

0
.

https://doi.org/10.1128/msystems.00259-23


characteristic (AUROC) values were reduced in both male and female groups (0.9464 and 

0.6846, respectively).

Moreover, Fig. 2G and H showed the top 10 genera with the largest contribution to 

random forest classi�cation in the MS-female and MS-male cohorts, respectively. In the 

MS-female cohort, Pseudomonas and Eubacterium_coprostanoligenes_group were the 

most discriminant features for female AER and ROW samples. In the MS-male cohort, 

Psychrobacter and Bacillus were the most discriminant features for male WRE and AER 

samples. These results suggested that both female and male athletes had specialized gut 

microbiota for their respective sports.

Co-occurrence networks for multi-sport gut microbiota

We next investigated the interaction patterns in the gut microbiota of di�erent types of 

athletes. In the MS-female cohort (Fig. 3A), we identi�ed two network clusters based on 

Spearman correlations at the genus level, one of which contained bacteria enriched in 

the AER group (AER-dominated cluster 1), while the other contained bacteria enriched in 

the ROW group (ROW-dominated cluster), such as Eubacterium_hallii_group and 

Clostridia_UCG-014. In the MS-male cohort, we also identi�ed two network clusters 

including AER-dominated cluster 2 and WRE-dominated cluster (Fig. 3B). Moreover, when 

SD populations were recruited in the analysis, we identi�ed an SD-dominated cluster, 

di�erentiated from those MS clusters (Fig. S1E and F). These �ndings suggested that 

di�erent types of populations shared di�erent interaction patterns of the gut microbiota.

Gut microbial composition patterns resolved by latent Dirichlet allocation

Further, we introduced latent Dirichlet allocation (LDA) to resolve the latent structure of 

athletes' gut microbiota. LDA, a Bayesian probabilistic generative model (14–16), could 

reduce the dimensionality of the microbial data into subgroups (topics), where microbes 

within the same topic were modulated by shared latent factors. We identi�ed a total of 

10 microbial topics at the genus level to describe each participant’s gut microbiota 

composition (Table S3). Each topic represented a speci�c probability distribution of 

certain genera (Fig. 4A). We found that the topic proportions were di�erent across multi-

sport gut microbiota (Fig. S2A and B). Hierarchical clustering of the 10 topics (Fig. S2C) 

revealed that topics containing the same dominant bacteria (e.g., topics 2 and 3) or 

containing certain overlapped genera (e.g., topics 8 and 10) were clustered into the same 

group.

Associations between gut microbial subgroups and in�ammation related to 

intensive exercise

Next, we investigated the gut microbial subgroups (topics) associated with in�ammation. 

The Dirichlet regression model was performed to test the associations between gut 

microbial subgroups (topics) and blood measurements (Fig. 4B), and these phenotypic 

factors had a highly explained variance for microbial diversity and function (Fig. S3). In 

the ROW female group, topics 3, 4, 5, 6, 7, and 8 were associated with one or more blood 

measurement factors (q < 0.001), and topic 7 exhibited the strongest positive associa­

tions. As a result, ROW female athletes with a high probability of topic 7 tended to have 

higher leukocyte (P = 1.99E−13), lymphocyte count (P = 9.81E−12), intermediate cell 

count (P = 2.42E−13), and neutrophil count (P = 2.76E−08). These factors were common 

indicators of in�ammation in the blood test and varied with di�erent types of sports (Fig. 

S4A and B). Moreover, we noticed that most genera of topic 7 were reported to be 

associated with sports in�ammation, including Prevotella, Oscillospira, Coprococcus, and 

Haemophilus (Table S4). Prevotella (69.78% of topic 7) colonization in the gut resulted in 

metabolic changes in the microbiota, reduced interleukin 18 (IL-18) production that 

exacerbated intestinal in�ammation, and might lead to systemic autoimmunity. 

Additionally, Prevotella contained enzymes that played an important role in mucus 

degradation, possibly leading to increased intestinal permeability (17). Previous research 
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has suggested that increased intestinal permeability might favor colonic bacterial 

translocation, with a consequent risk of gastrointestinal problems (18, 19). In mouse 

models, exhaustive exercise promoted intestinal in�ammation and increased the growth 

of Oscillospira, and Coprococcus (20), which also had a high percentage in topic 7. In 

addition, when evaluated in a post-exercise phase, exhaustive exercise can cause 

immune function depression, thereby increasing the risk of viral and bacterial infections 

(11), with Haemophilus (2.21% of topic 7) hosting various pathogenic species (21). In 

general, these genera might play a crucial role in enhancing gut permeability and the risk 

of infection, promoting in�ammatory responses in athletes.

Interestingly, the signi�cant associations between topic 7 and those in�ammation 

factors were also observed in the AER male group but they were negative (Fig. 4B). The 

AER male group with a high probability for topic 7 was characterized by a low leukocyte 

(P = 1.06E−09), lymphocyte count (P = 1.74E−05), intermediate cell count (P = 7.33E−37), 

and neutrophil count (P = 5.18E−12). The correlation between topic 7 and in�ammation 

may re�ect the collective response of the microbes it encompasses, and we found that 

Eubacterium_hallii_group (P = 4.1E−07), Clostridia_UCG-014 (P = 0.015), Alloprevotella (P = 

1.6E−05), and Oscillospiraceae_UCG-002 (P = 7.0E−08) were more enriched in the ROW 

FIG 2 Establishment and comparisons of multi-sport gut microbiota pro�les. (A–D) Comparison of the microbial Shannon diversity and microbial overall pro�les 

between di�erent types of sports in the MS-female cohort (A and C), as well as in the MS-male cohort (B and D). Microbial overall pro�les were determined by the 

PCoA using Bray-Curtis di�erences at genus level (E–F). The ROC curves of the random forest classi�cation in types of sports using microbial genera as features, 

with AUROC displayed in the MS-female cohort (E) and the MS-male cohort (F). The top 10 genus contributed to the random forest classi�cation in the MS-female 

cohort (G) and the MS-male cohort (H). **P < 0.05; ****P < 0.001; and ns, not signi�cant. ROC, receiver operating characteristic.
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female group, while Prevotella (P = 0.006) was more enriched in the AER male group (Fig. 

3 and Fig. S4C). Therefore, the di�erence in correlation orientation might result from the 

di�erent enriched genera of topic 7 between the female ROW and male AER groups. We 

further performed a regression analysis of these bacteria and in�ammatory indicators 

FIG 3 Co-occurrence networks of multi-sport gut microbiota. (A and B) The networks of genera were constructed in MS-female (A) and MS-male cohorts (B), 

respectively. Each circle represents a genus with the size representing relative abundance and the color representing its enrichment in the group. The edges 

indicate signi�cant Spearman correlations between genus (P < 0.05 and absolute value of SCC > 0.55). Red edges indicate positive correlations, and blue edges 

indicate negative correlations. SCC, Spearman correlation coe�cient.
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(Fig. S4D and E). For the ROW female group, Clostridia_UCG-014 and Eubacte­

rium_coprostanoligenes_group were consistently negatively correlated with leukocyte (P 

= 0.00023, P = 9.6E−07) and neutrophil count (P = 3E−05, P = 5.1E−07). In AER male 

group, it can be observed that Alloprevotella and Prevotella were consistently negatively 

FIG 4 Associations of athletes gut microbial subgroups with blood measurements, dietary measurements, anthropometrics, and anaerobic measurements. (A) 

Gut microbial subgroups (topics) were identi�ed by LDA. The top 10 genera with the highest probability per topic were displayed. NA represents operational 

taxonomic units (OTUs) not classi�ed to a genus. The topic number is random and serves only as an identi�er. (B) The heatmap shows the associations of athletes 

gut microbial subgroups with blood measurements, dietary measurements, anthropometrics, and anaerobic measurements. The associations were calculated 

by Dirichlet regression models. Each association between a topic and measurement was represented by a square, where the intensity of the color indicates the 

e�ect size. Red indicates the positive association and blue indicates the negative association. A white dot in the center of a circle indicates that the association 

remained signi�cant after FDR correction (q < 0.001). Gray grid means no data. WBC, white blood cell count; LYMPH%, lymphocyte ratio; MID%, intermediate 

cell ratio; NEUT%, neutrophil ratio; LYMPH#, lymphocyte count; MID#, intermediate cell count; NEUT#, neutrophil count; RBC, red blood cells; Hb, hemoglobin; 

HCT, hematocrit; MCV, mean red blood cell volume; MCH, mean erythrocyte hemoglobin; MCHC, mean hemoglobin concentration; RDW-CV, red blood cell 

distribution concentration; RDW-SD, red blood cell distribution width; PLT, platelet; PDW, platelet distribution; MPV, mean platelet volume; P-LPR, large platelet 

ratio; GF, grain frequency; VF, vegetables frequency; MF, meat frequency; AF, aquatic frequency; SF, soy frequency; FF, fruit frequency; AG, amount of grain; AV, 

amount of vegetables; AM, amount of meat; AA, amount of aquatic; AS, amount of soy; AO, amount of oil; AP, amount of pepper; ARG, amount of raw garlic; FC, 

fruit count; VFL, visceral fat levels; VFA, visceral fat area; WHR, waist to hip ratio; VFC, visceral fat content; SFC, subcutaneous fat content; BMC, basal metabolic 

capacity; TEC, total energy consumption; EI, electrical impedance; FFW, fat free weight; FSW, fat free soft weight; SMC, skeletal muscle content; TBW, total body 

water; IW, intracellular water; EW, extracellular water; PC, protein capacity; MC, minerals capacity; BFM, body fat mass; BMI, body mass index; FP, fat percentage; 

UAWL, upper extremity anaerobic work load; MAP, maximum anaerobic power; RMAP, relative maximum anaerobic power; AAP, average anaerobic power; RAAP, 

relative average anaerobic power; APLR, anaerobic power lapse rate; RT, reaction time; SL, standing on left leg with eyes closed; SR, standing on right leg with 

eyes closed; SH, sitting height; VJ, vertical jump; WL, wing length; PP, push-ups 1 min; SI, step index; PBMO, power bike max oxygen uptake; FDR, false discovery 

rate.
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correlated with leukocyte (P = 0.012, P = 0.0052) and lymphocyte count (P = 0.0012, P = 

0.047), while AER female did not observe a signi�cant correlation with in�ammation. 

Overall, these results revealed that certain microbes enriched in topic 7 were associated 

with in�ammation, and this association was in�uenced by sports’ types. Di�erences in 

the abundance of microbes in hosts with di�erent sport types or sex may lead to 

specialized in�ammation patterns, such as Eubacterium_coprostanoligenes_group, 

Clostridia_UCG-014 were correlated with the in�ammation of female rowing athletes.

Associations of gut microbial subgroups with dietary information and 

anaerobic performance

Moreover, the Dirichlet regression model showed that most associations of gut microbial 

subgroups (topics) with dietary measurements and anthropometrics measurements 

were observed in the AER male group (Fig. 4B). Topic 3 was positively associated with 

food intake including drinking, vegetable frequency, meat frequency, aquatic frequency, 

and barbecue (BBQ; q < 0.0005). Meanwhile, topic 3 was negatively correlated with 

fat free weight, skeletal muscle content, and body fat mass (q < 0.0001). The results 

suggested that topic 3 might be the key microbial subgroup in inhibiting obesity 

under high caloric intake. Topic 2 was found to be strongly negatively correlated with 

anthropometrics (basic metabolism) factors such as visceral fat levels, waist to hip ratio, 

and subcutaneous fat content (q < 0.0001), indicating a potential role in weight control. 

Notably, topics 2 and 3 belonged to the same topic cluster and shared similar genera 

probability distributions (Fig. S2D and E). Phascolarctobacterium has a high proportion in 

both topics, and numerous studies reported that it was inversely associated with obesity 

(22). In general, both topics 2 and 3 might play a crucial role in controlling the weight of 

athletes.

We then explored the associations between gut microbial subgroups and anaerobic 

measurements. Topic 9 had the strongest positive association with anaerobic measure­

ments such as upper extremity anaerobic work load, maximum anaerobic power, and 

average anaerobic power (q < 2.48E−5) in the WRE male group. This indicated that topic 

9 might have a potential role in enhancing anaerobic performance, which warranted 

further investigations.

Sex-dependent di�erent intensities of exercise a�ect the human gut 

microbiota

Finally, we sought to investigate the e�ects of di�erent exercise intensities on gut 

microbiota. To this end, we introduced three additional non-athlete cohorts, includ­

ing physical major students (PE), children (CH), and sedentary people (SD). We found 

Shannon diversity was also a�ected by exercise intensity. For females, we found that 

athletes had higher microbial Shannon diversity than that non-athletes (P < 0.05). 

Especially, the ROW group had the highest Shannon diversity of all the other four groups 

(P = 2.86E−22, Fig. 5A). However, for males, the di�erences in Shannon diversity were 

not signi�cant between athletes and non-athletes groups (P = 0.092, Fig. 5B). And the 

gut microbial compositions could be di�erentiated by exercise intensity for both males 

and females (P < 0.05, Fig. 5C and D). Moreover, the Random Forest model showed that 

female groups had higher classi�cation accuracy when discriminating one group out of 

the �ve groups (AUROCAER = 0.933, AUROCROW = 0.994, AUROCPE = 0.910, AUROCCH = 

0.932, AUROCSD = 0.999, Fig. 5E), as compared with that of the male groups (AUROCAER 

= 0.903, AUROCWRE = 0.906, AUROCPE = 0.851, AUROCCH = 0.884, AUROCSD = 0.999, Fig. 

5F). These results suggested that exercise intensity had e�ects on the gut microbiota, 

and these e�ects were sex-dependent.

To further assess the e�ect of sex-dependent exercise intensity on gut microbiota, we 

then identi�ed the top 5 genera with the highest importance in the Random Forest 

model (quanti�ed by the mean decrease accuracy) for each group (Fig. S5). We found 

that the abundance of Clostridium_sensu_stricto_1 decreased as the female participants’ 

exercise intensity decreased, especially in athletes compared to SD, while a similar trend 
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was observed for Intestinibacter in male participants (Fig. S5). In addition, we investigated 

the distribution of in�ammation-associated microbiota (the microbiota in topic 7) in each 

cohort. Prevotella as the dominant microbe in topic 7 (69.78% of topic 7) was found to 

decrease as the intensity of exercise decreased, especially in male participants (Fig. S6). 

Taken together, certain gut microbial alterations could respond to the di�erent intensi­

ties of exercise, and sex was a non-negligible factor in both microbial changes and the 

potential in�ammation risk.

DISCUSSION

Athletes’ gut microbial pro�les were in�uenced by the types of sports they participated 

in. Previous studies have demonstrated that exercise could increase microbial diversity 

in the gut microbiome (12, 23). In the present study, the microbial diversity of the ROW 

female group was profoundly higher than AER female group, suggesting that di�erent 

types of exercise have di�erent e�ects on microbial diversity in female athletes, but no 

signi�cant di�erences were observed between male athletes. The analysis of microbial 

composition and diversity of di�erent types of athletes revealed that the gut microbial 

community of di�erent types of athletes di�ers profoundly. These results con�rmed 

that the pattern, intensity, and frequency of physical exercise cannot be ignored when 

studying the e�ects of physical activity on the microbial community. In other words, 

to monitor the potential risk of in�ammation and further realize individualized exercise 

modulation, it is necessary to consider di�erent types of athletes when studying the 

association between microbiota and in�ammatory factors.

FIG 5 E�ects of di�erent degrees of exercise on human gut microbiota. (A) The boxplots show the microbial Shannon diversity among �ve female groups 

including AER, ROW, PE, CH, and SD. (B) The boxplots show the microbial Shannon diversity among �ve male groups including AER, WRE, PE, CH, and SD. (C and 

D) PCoA of female participants (C) and male participants (D) based on the Bray-Curtis di�erences. (E and F) The ROC curves of the random forest classi�cation in 

�ve groups using microbial genera as features, with AUROC displayed in the female groups (E) and the male groups (F). *P < 0.1; **P < 0.05; ***P < 0.01; ****P < 

0.001; ROC, receiver operating characteristic.
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The associations between gut microbiota and blood measurements con�rmed that 

in�ammatory factors were a�ected by the types of sports. Blood measurements showed 

the strongest and most consistent associations with topic 7 in ROW female and 

AER male, respectively. However, topic 7 was positively correlated with in�ammatory 

indicators in the female ROW group but negatively correlated in the AER male group. 

This intriguing result suggested that gut microbiota and in�ammation might have a 

sport-speci�c relationship. We need to investigate further to determine the causes of 

this sport-speci�c correlation. Speci�cally, we observed a strong positive association 

between topic 7 and in�ammatory markers, but Prevotella (69.78% of topic 7) was not 

signi�cantly correlated with the in�ammatory markers in ROW female group. These 

results suggested that the correlation between topic 7 and in�ammation may re�ect the 

collective response of the microbes it encompasses, rather than the response of a single 

microbe. For the AER male group, a negative association was observed between topic 

7 and in�ammatory markers. Certain Prevotella species have been linked to in�amma-

tion (24), but not all of them are harmful. For example, Prevotella copri CB7 has been 

reported to have both bene�cial and detrimental e�ects depending on the context 

(25). Our data cannot identify which Prevotella species are enriched in the AER male 

group, and the negative correlation observed may be a unique characteristic of the gut 

microbiota of athletes that requires further investigation. Overall, gut microbiota can 

re�ect speci�c in�ammatory patterns in di�erent types of athletes, and the association 

information between the microbial community and in�ammatory factors could prove 

highly signi�cant for monitoring the potential in�ammation risk and further achieving 

personalized exercise modulation. In particular, ROW female athletes should pay more 

attention to the changes in topic 7 and conduct gut microbial modulation and training 

monitoring, to avoid the risk of in�ammation caused by training as much as possible.

Moreover, by combining athletes and non-athletes cohorts, we found that di�er-

ences in exercise intensity could lead to speci�c microbial changes, some of which 

were associated with in�ammation. Broadly speaking, di�erent types and intensities of 

exercise may have distinct impacts on the gut microbes of general people. In addition to 

exercising regularly, regulating the types and intensities of exercises is equally important 

for normal people to gain the bene�t of exercise.

Our work has focused on gut microbial community pro�ling and in�ammation 

pattern mining in multi-sport cohorts. Firstly, the results of this cohort study would 

lay the foundation for future experiments on the modulation of exercise intensity 

for in�ammation control, or to explore probiotics for athletes to adjust their in�am-

mation levels rather than using antibiotics. Further investigations into mechanisms 

are warranted to validate the �ndings of this study. Secondly, conducting multi-omic 

studies, such as metagenomic and metabolomic analysis may further enhance our 

understanding of how gut microbial communities adjust in�ammation when athletes 

take high-intensity exercise. Finally, samples from a wider variety of sports in the future 

will considerably expand our understanding of the athlete microbiota.

Conclusions

In this study, we collected one of the largest sets of gut microbiota samples from 

athletes across di�erent sports types and examined their specialized gut microbial 

pro�les. We determined the association between microbes and in�ammation in athletes, 

compared the di�erent strengths of association among di�erent types of sports, and 

explained their possible roles in regulating in�ammation. We found that the di�erences 

in microbial abundance in hosts with di�erent sports types may lead to specialized 

in�ammation patterns. Additionally, certain microbial subgroups were also found to 

be associated with dietary information and anaerobic performance, which were also 

in�uenced by the types of sports. Furthermore, changes in the abundance of in�am-

mation-related microbiota in healthy individuals were in�uenced by di�erent exercise 

intensities. Finally, we found that sex was a non-negligible factor in both microbial 

changes and the potential risk of in�ammation. Collectively, our work has elucidated 
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the complicated association of physical factors, gut microbiota, and in�ammations 

across di�erent types of sports, which could prove highly signi�cant for monitoring the 

potential gut in�ammation risk and further achieving personalized exercise modulation.

MATERIALS AND METHODS

Study design and sample collection

Professional aerobics athletes (AER, n = 316, female = 117, male = 199, 18 ± 7 years, 

24.80 ± 25.46 kg/m2), male wrestling athletes (WRE, n = 53, 16 ± 4 years, 22.73 ± 10.60 

kg/m2), and female rowing athletes (ROW, n = 174, 15 ± 3 years, 36.03 ± 19.49 kg/m2) 

were selected for fecal sample collection. According to the grade in athletic competition 

and information regarding technical level obtained from General Administration of Sport 

of China, we found that these athletes have participated in at least one competition 

above the province-level. These athletes di�er in terms of training patterns, with aerobics 

focusing on �exibility, rowing on endurance, and wrestling on both endurance and 

explosive power. Therefore, we can explore the di�erences in gut microbiota between 

athletes under di�erent exercise patterns. Additionally, to further evaluate the e�ects of 

exercise with di�erent intensities on the gut microbiota, we constructed a non-athlete 

cohort. The non-athlete cohort consisted of 58 sports college students (PE, female = 26, 

male = 32, 21 ± 2 years, 26.19 ± 40.67 kg/m2), 63 children (CH, female = 37, male = 26, 9 

± 2 years, 15.80 ± 6.78 kg/m2), and 57 sedentary individuals (SD, female = 30, male = 27, 

21 ± 2 years). The sports college students come from Wuhan Sports University, and their 

training intensity and athletic performance are lower than those of professional athletes. 

The children ranged in age from 7 to 11 years, and they started exercising from early 

childhood (<6 years). The sedentary individuals are computer-related workers who spend 

all their working hours sitting (>8 h). All the cohorts had no medical issues or received 

antibiotic treatment in the past 4 months. Fecal samples were collected and stored in 

sterilized 50 mL tubes, immediately placed on freezer packs, and stored at −80°C.

Dietary factors, physical characteristics, and sports-related indicators were recorded 

and examined by the questionnaire and professional measurements for the athlete 

cohort. These factors were divided into �ve groups: blood measurements, dietary 

measurements, anthropometrics (basic metabolism), anthropometrics (body composi­

tion), and anaerobic measurements. Blood measurements such as leukocyte, lymphocyte 

ratio, neutrophil count, hematocrit, and hemoglobin were measured by routine blood 

tests. Dietary measurements such as the level of smoking, drinking, grain, vegetables, 

fruit, and soy were recorded by the questionnaires. Anthropometrics referred to the 

combination of various complex factors such as height, weight, age, basal metabolic 

capacity, fat free weight, protein capacity, body fat mass, and age obtained by the 

questionnaire; the height and weight were measured using an electronic height tester; 

others such as fat free weight, protein capacity, and body fat mass were measured with 

the professional body composition analyzer (X-SCAN PLUS II, Jawon Medical Co., Ltd, 

South Korea) (26). We divided these indicators into anthropometrics (basic metabolism) 

and anthropometrics (body composition), the �rst of which mainly focused on basal 

metabolism-related indicators and the latter of which described the composition of 

the body. Anaerobic measurements were measured using MetaLyzer II (Cortex, Leipzig, 

Germany) (27) and Technogym multipower system D4773L (Technogym, Italy) (28).

DNA extraction and 16S rRNA gene sequencing

DNA was extracted from fecal samples using the PowerSoil DNA Isolation Kit (MoBio, 

USA) according to the manufacturer’s instructions. All extracted DNA was dissolved 

in Tris-EDTA bu�er and stored at −20°C. DNA concentration quanti�cation was per­

formed with a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA), and DNA quality 

assessment was performed with 0.8% agarose gels. The V3–V4 hypervariable region 

of the 16S rRNA gene was sequenced for each sample and we used 5–50 ng of 
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DNA as a template for amplifying the V3–V4 amplicon using the forward primer 

(5ʹ-CCTACGGRRBGCASCAGKVRVGAAT-3ʹ) and reverse primer (5ʹ-GGACTACNVGGGTWTC­

TAATCC-3ʹ). The sequencing library was constructed using the MetaVxTM Library 

Preparation kit (Genewiz, Inc., South Plain�eld, NJ, USA) via adding indexed adapters 

to the ends of 16S rDNA amplicons in limited cycle PCR. DNA libraries were veri�ed 

and quanti�ed by an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) 

and Qubit 2.0 (Applied Biosystems, Carlsbad, CA, USA). All sequencing reactions were 

performed on the Illumina MiSeq (San Diego, CA, USA) platform using a paired-end 

sequencing strategy.

16S rRNA gene sequence data process

The raw multiplexed-paired-end sequences were �rstly input to QIIME2 (version 

2020.11.0) (29) and were demultiplexed using “qiime cutadapt demux-paired” with 

“--p-error-rate 0.” The primers of demultiplexed sequences were then trimmed 

using “qiime cutadapt trim-paired” with “--p-match-adapter-wildcards--p-match-read-

wildcards--p-discard-untrimmed.” The trimmed sequences were quality-controlled 

using “qiime dada2 denoise-paired” with “--p-trunc-len-f 270--p-trunc-len-r 230--p-n-

threads 20--p-min-fold-parent-over-abundance 4.” The dada2-produced representative 

sequences were taxonomically annotated using “qiime feature-classi�er classify-sklearn” 

against the V3–V4 region of the Silva 138 database (30). The taxonomic annotations were 

integrated into the feature table using “qiime taxa collapse.” For beta diversity analysis, 

the dada2-produced feature table was rare�ed to 8,000 reads per sample using “qiime 

feature-table rarefy” with “--p-sampling-depth 8,000” based on the curve plateaus of the 

alpha diversity.

Statistical analysis

Microbial diversity

Statistical analysis was conducted mainly using the R platform (http://www.r-

project.org/). Alpha diversity was quanti�ed by the Shannon diversity that was calculated 

using the function “diversity” of the R package “vegan” (version 2.6-2) (31). Mann-Whit­

ney-Wilcoxon test was used to calculate the statistical signi�cance (P values) of the 

di�erences in alpha diversity between groups. Beta diversity was quanti�ed by the 

Bray-Curtis dissimilarity that was calculated using the function “vegdist” of the R package 

“vegan” (version 2.6-2) (31). Principal coordinates analysis (PCoA) based on Bray-Cur­

tis distances was applied to the samples and visualized by the R package “ggplot2” 

(version 3.3.6) (32). Mann-Whitney-Wilcoxon test was used to calculate the statistical 

signi�cance of the sample separation between groups against the PCo1 and PCo2 axes. 

Permutational analysis of variance (PERMANOVA) on the Bray-Curtis distances with 9,999 

permutations was used to test the associations of the phenotype with both microbiome 

composition and function. PERMANOVA (33) was carried out using the “adonis” function 

in the R package “vegan” package (version 2.6-2) (31).

Prediction model based on gut microbiota to distinguish di�erent athlete types

Random Forest models were generated based on microbial compositions to di�erentiate 

three athlete types using the R package “randomForest” (version 4.7-1.1) (34). The data 

set was randomly divided into the training set (40%) and the testing set (60%). Function 

“trainControl” in R package “caret” was used to perform 10 repeats of 10-fold cross-vali­

dation. Function “train” in R package “caret” was used to �t models over di�erent tuning 

parameters to determine the “mtry” for Random Forest algorithm. Gini coe�cients were 

used to measure how each variable contributed to the homogeneity of the nodes and 

leaves in the resulting Random Forest. The receiver operating characteristic (ROC) curve 

was generated to evaluate the performance of the prediction model.
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Co-occurrence network analysis

Co-occurrence network analysis was based on the Spearman correlations between 

genera. The co-occurrence relationship between the two genera was accepted if the 

Spearman correlation coe�cient was greater than 0.55 or less than −0.55 (calculated by R 

function “cor”) and P < 0.05 (calculated by R function "cor.test”). Cytoscape (version 3.9.1) 

(35) was used to visualize the microbial networks.

Latent Dirichlet allocation and phenotype-subgroup associations

Latent Dirichlet allocation (LDA), a Bayesian probabilistic generative model, was used 

to reveal latent structure present in gut microbial data, as previously described 

(16). Genera subgroups were identi�ed  by LDA and their correlations with pheno­

type including blood measurements, dietary measurements, anthropometrics (basic 

metabolism and body composition), and anaerobic measurements were assessed 

separately using Dirichlet regression models by R package “DirichletReg” (version 

0.7.1) (36). To remove the sex e�ects  on gut microbiota or the phenotypic data, 

we grouped the samples based on sex and the athlete type into four comparison 

groups including AER males versus WRE males and AER females versus ROW females. 

The covariates age and body mass index were adjusted in the regression analysis. 

P  values for all  associations were adjusted using a false discovery rate (FDR), and a 

signi�cant  threshold was FDR < 0.001.

Prediction of functional composition and regression analysis

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt, version 1.0.0-dev) (37) was applied to pro�le the functional composition of 

microbial communities based on the high-quality of 16S rRNA gene according to the 

manual of PICRUSt. The functional trait abundances were determined using the KEGG 

database (version 66.1, 1 May 2013) (38). Regression analysis of microbiota in topic 7 and 

in�ammatory indicators was performed using R function “cor.test.”
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