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ABSTRACT
Based on a comprehensive review and critical analysis of the 
literature regarding the nutritional concerns of female athletes, 
conducted by experts in the field and selected members of the 
International Society of Sports Nutrition (ISSN), the following 
conclusions represent the official Position of the Society: 1. 
Female athletes have unique and unpredictable hormone pro-
files, which influence their physiology and nutritional needs 
across their lifespan. To understand how perturbations in these 
hormones affect the individual, we recommend that female ath-
letes of reproductive age should track their hormonal status 
(natural, hormone driven) against training and recovery to deter-
mine their individual patterns and needs and peri and post- 
menopausal athletes should track against training and recovery 
metrics to determine the individuals’ unique patterns. 2. The 
primary nutritional consideration for all athletes, and in 
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particular, female athletes, should be achieving adequate energy 
intake to meet their energy requirements and to achieve an 
optimal energy availability (EA); with a focus on the timing of 
meals in relation to exercise to improve training adaptations, 
performance, and athlete health. 3. Significant sex differences 
and sex hormone influences on carbohydrate and lipid metabo-
lism are apparent, therefore we recommend first ensuring ath-
letes meet their carbohydrate needs across all phases of the 
menstrual cycle. Secondly, tailoring carbohydrate intake to hor-
monal status with an emphasis on greater carbohydrate intake 
and availability during the active pill weeks of oral contraceptive 
users and during the luteal phase of the menstrual cycle where 
there is a greater effect of sex hormone suppression on gluco-
nogenesis output during exercise. 4. Based upon the limited 
research available, we recommend that pre-menopausal, eume-
norrheic, and oral contraceptives using female athletes should 
aim to consume a source of high-quality protein as close to 
beginning and/or after completion of exercise as possible to 
reduce exercise-induced amino acid oxidative losses and initiate 
muscle protein remodeling and repair at a dose of 0.32–0.38  
g·kg−1. For eumenorrheic women, ingestion during the luteal 
phase should aim for the upper end of the range due to the 
catabolic actions of progesterone and greater need for amino 
acids. 5. Close to the beginning and/or after completion of 
exercise, peri- and post-menopausal athletes should aim for 
a bolus of high EAA-containing (~10 g) intact protein sources or 
supplements to overcome anabolic resistance. 6. Daily protein 
intake should fall within the mid- to upper ranges of current 
sport nutrition guidelines (1.4–2.2 g·kg−1·day−1) for women at all 
stages of menstrual function (pre-, peri-, post-menopausal, and 
contraceptive users) with protein doses evenly distributed, every 
3-4 h, across the day. Eumenorrheic athletes in the luteal phase 
and peri/post-menopausal athletes, regardless of sport, should 
aim for the upper end of the range. 7. Female sex hormones 
affect fluid dynamics and electrolyte handling. A greater predis-
position to hyponatremia occurs in times of elevated progester-
one, and in menopausal women, who are slower to excrete 
water. Additionally, females have less absolute and relative fluid 
available to lose via sweating than males, making the physiolo-
gical consequences of fluid loss more severe, particularly in the 
luteal phase. 8. Evidence for sex-specific supplementation is lack-
ing due to the paucity of female-specific research and any differ-
ential effects in females. Caffeine, iron, and creatine have the 
most evidence for use in females. Both iron and creatine are 
highly efficacious for female athletes. Creatine supplementation 
of 3 to 5 g per day is recommended for the mechanistic support 
of creatine supplementation with regard to muscle protein 
kinetics, growth factors, satellite cells, myogenic transcription 
factors, glycogen and calcium regulation, oxidative stress, and 
inflammation. Post-menopausal females benefit from bone 
health, mental health, and skeletal muscle size and function 
when consuming higher doses of creatine (0.3 g·kg−1·d−1). 9. To 
foster and promote high-quality research investigations involving 
female athletes, researchers are first encouraged to stop exclud-
ing females unless the primary endpoints are directly influenced  
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by sex-specific mechanisms. In all investigative scenarios, 
researchers across the globe are encouraged to inquire and 
report upon more detailed information surrounding the athlete’s 
hormonal status, including menstrual status (days since menses, 
length of period, duration of cycle, etc.) and/or hormonal contra-
ceptive details and/or menopausal status.

1. Methods

The International Society of Sports Nutrition (ISSN) position stands are invited papers on 
topics the Journal of the ISSN (JISSN) Editors and Research Committee identifies as being 
of interest to JISSN readers. The process consists of editors and/or the ISSN Research 
Committee identifying a lead author or team of authors to perform a comprehensive 
literature review. Specifically, for this Female Athlete Position Stand, the scientific design 
of the studies was scrutinized for scientific validity [1, 2] as part of the inclusion criteria. 
After the authors develop the content of the position stand, the draft is sent to leading 
scholars in the field for a detailed review. Following a critical review by the scholars, the 
paper was revised by a team of authors, approved by the ISSN Research Committee and 
JISSN Editors, and published as a consensus statement and the official position of the ISSN 
on the topic.

2. Introduction

As even a cursory review of the history of scientific advancement would reveal, the 
biomedical community has long failed to give due deference to the importance of sex 
differences in human physiology. Males have routinely been considered the exemplar by 
which all measures and standards were set. The issue of male bias goes far and the 
literature is rife with examples of science that ignored women [3], even when women 
should have been a target demographic. For example, in the mid-1960’s observation that 
women tend to have lower rates of cardiovascular disease until their estrogen levels 
dropped after menopause spurred researchers to investigate whether hormone supple-
mentation was an effective preventive treatment. The study enrolled 8,341 men and no 
women [4]. Similarly, the Multiple Risk Factor Intervention Trial (MRFIT) investigated 
dietary modifications and exercise to prevent cardiovascular disease, enrolling 13,000 
male subjects and no women [5]. Given the significant sex differences from biology to 
behavior, excluding females means one cannot assume that any findings would apply to 
females. Moreover, it is possible that by doing a sex-based analysis, scientific break-
throughs could occur that could be important for all people by understanding how 
certain interventions vary by sex. Fortunately for all active females, the opportunities for 
athletic endeavors and the body of female-centric human performance research are 
quickly expanding. However, female-centric research studies and female subject numbers 
still lag significantly behind males [3,6].

While health and human performance research does target women, the focus of that 
research is often the influence of the menstrual cycle. One of the earliest publications 
regarding menstruation and physical activity was written in 1877 by Mary Putnam Jacobi, 
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M.D., entitled “The question of rest for women during menstruation” [7]. The assumptions 
made from these early writings are still prevalent today that physical activity might impair 
reproductive function and harm the health of females. Thus, females were restricted from 
most organized, high intensity physical activity and sport. The study of the female 
menstrual cycle as it relates to sport performance began in earnest in 1953 and, as of 
today, ~400 studies on this topic have since been published [8]. Compared to males, the 
scientific design around the menstrual cycle has been deemed “complex” thus has been 
an obstacle to developing and funding high numbers of research studies. Yet, despite the 
obvious endocrinological differences between the sexes and the growing interest in 
menstrual cycle-specific research [9], exercise science and nutrition research continue to 
generalize results from male data to women [10]. Recent guidelines have been published 
on the scientific design and methodology relevant to the study of women’s exercise 
performance and nutrition [1,2,11]. Critically, these guidelines provide recommendations 
on the conditions under which female sex hormones need to be considered [1,8,11]. This, 
along with women’s increased individual interest in approaching peak mental and 
physical performance has resulted in a growing body of research that addresses these 
issues across the lifespan [12,13]. The aim of this position stand is to review this research 
and provide practical evidence-based female-specific recommendations for sport 
nutrition.

3. Overview of sex differences

The terms “sex” and “gender” have come to be used synonymously in the sport and 
exercise literature. However, there are two distinct concepts that should not be used 
interchangeably. “Sex” generally refers to the distinction between females and males 
based on reproductively relevant differences in chromosomes, primary and secondary sex 
characteristics, and endogenous hormonal profiles. “Gender” can refer to several things, 
including one’s self-perceived identity as a woman, man, or otherwise – a trait, which is at 
least partly biologically based and inherent to a person; one’s outward expression of one’s 
gender identity – in terms of one’s appearance and other behaviors; and the role one is 
expected to play in society based on one’s sex or gender identity – the specifics of which 
can vary across sociocultural circumstances. While discussions of gender are certainly 
relevant to the athletic community at large, the specific issue of nutrition among female 
athletes will be better informed by a restriction of the current discussion to sex and 
human sexual differentiation.

Sex chromosome genes and sex hormones, including estrogen, progesterone, and and 
androgens, contribute to the differential responses between the sexes. Following birth, 
significant prepubertal differences exist between the structure and function of other 
organ systems in boys and girls, which are eventually further emphasized by hormone 
activity and driven by a sex-specific reactivity to environmental stimuli, including nutri-
ents and the diet in general. Although difficult to separate from the hormonal influences, 
important sex differences exist in mitochondrial function [14–16], substrate utilization, 
and insulin sensitivity [17–24], immune responses [25–28], muscle morphology and body 
composition [29–32], iron metabolism [33–40], thermoregulation [41–44], hydration 
[45,46]{Sims, 2008 #55, [47–53], appetite control [54–59], and energy availability and 
endocrine function [60–65].
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3.1. Female sex hormones and differential hormone profiles

The primary female sex hormones are 17β estradiol (E2), the predominant endogenous 
estrogen in humans, and progesterone. Both hormones exert agonistic and antagonistic 
effects on metabolism and nutrient needs whereby the ratios and levels of estradiol and 
progesterone affect the proportions of macronutrients used as fuel, not only at rest but 
also during exercise. Estrogen actions in hypothalamic nuclei differentially control food 
intake, energy expenditure, and white adipose tissue distribution [22,66,67]. Estrogen 
actions in skeletal muscle, liver, adipose tissue, and immune cells are involved in insulin 
sensitivity as well as prevention of lipid accumulation and inflammation [20,21,67,68]. 
Estrogen actions in pancreatic islet β-cells also regulate insulin secretion, nutrient home-
ostasis, and survival [66,69,70]. Less is known of the specific mechanisms of metabolic 
influences of progesterone. However, progesterone has direct effects on energy expen-
diture through a progesterone-mediated increase in metabolic rate [71–73]; alters serum 
electrolyte balance through progesterone-mediated increases in aldosterone [74–77]; 
functions catabolically to increase amino acid oxidation and decreases muscle protein 
synthesis [78–81], and affects glucose metabolism through the upregulation of GLUT1 
expression to increase endometrial glycolytic metabolism, attenuating skeletal and hepa-
tic glycolytic pathways [82–85].

To better understand the potential effects of female sex hormones on metabolism and 
nutrient needs of female athletes, it is important to be aware of the many different 
hormonal environments a female athlete of reproductive age could be experiencing. 
For those athletes not using hormonal contraceptives (see the next section), this can 
range from amenorrhea (absence of menstrual cycle) to oligomenorrhea (menstrual cycle 
longer than 40 days, so less than 9 cycles per year) to naturally menstruating (menstrual 
cycle length between 21 and 40 days). And within the naturally menstruating women 
hormone fluctuations vary as a result of ovulatory cycles (eumenorrheic), as well as 
menstrual cycles with anovulation or luteal phase deficiency [2].

The menstrual cycle (MC) and its systemic effect on the body is a crucial area for 
research, as it has been found that women [1] frequently experience different adaptations 
and stress responses to their male counterparts [86,87]. For eumenorrheic women, the MC 
is characterized by fluctuations in several hormones, most notably the gonadal steroids, 
estrogen and progesterone, and is partitioned into the following phases: early follicular 
(EF), mid-follicular (MF), late follicular (LF), ovulation, early luteal, mid-luteal (ML), and late 
luteal phases (Figure 1). Throughout each phase, fluctuations in hormones trigger not 
only changes in the reproductive system but also in all the tissues of the body, which can 
have a direct effect on stress resilience, metabolism, and adaptations [1,88]. As a brief 
review, the length of a normal menstrual cycle is 21 to 40 days [89]. The first half of the MC 
is comprised of the menstrual and follicular phases during which time estrogen levels are 
low (early follicular/menstrual), then rise (mid follicular) and peak (late follicular) and ends 
with the periovulatory phase in which follicular-stimulating hormones and luteinizing 
hormones reach peak concentrations. After ovulation, the second half of the cycle is 
comprised by the early luteal (during which time estrogen level drops and then rises while 
progesterone rises), the mid-luteal (during which time estrogen and progesterone levels 
peak), and finally, the late luteal phase (during which time estrogen and progesterone 
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levels fall). These cyclic hormone changes can affect a number of physical and psycholo-
gical attributes and, ultimately, may influence sports performance, although the effects 
are highly individual [88,90,91].

3.2. Hormonal contraceptives

Many female athletes decide to use hormonal contraceptives for various reasons [92]. 
Hormonal contraceptives (HC) contain derivatives of estrogens and progestogens, which 
downregulate the regular cyclic hormone activity of the hypothalamic-pituitary-gonadal 
axis, resulting in physiological responses that differ to those of endogenous ovarian 
hormones [88,93]. Ethinyl estradiol (EE) and mestranol are the two estrogens used (with 
ethynyl estradiol being much more frequently used), and several progestogens are 
currently used [94]. A full overview of the different formulations and mechanism of 
actions of HCs is out of scope of this position stand, thus the reader is referred to 
Regidor [94,95] and Benagiano [96] for in-depth detail.

Effects of synthetic/exogenous hormones on different systems of the body may require 
close consideration for the practitioner and athlete. For example, endogenous estrogen 
and progesterone have antagonistic effects on fluid balance: estrogens activate the renin– 
angiotensin system, stimulating the production of angiotensinogen and leading to higher 
levels of angiotensin, aldosterone, and sodium in plasma (sodium retention) [52], thus 
resulting in increased water retention. On the other hand, progesterone is a potent 
aldosterone antagonist [47], which stimulates the mineralocorticoid receptor preventing 
sodium retention. However, in OCs, the progestogens are insufficient to counteract the 
sodium-retaining effect of the estradiol component; consequently, the estradiol compo-
nent causes fluid retention [97]. Further, Suh, Casazza et al. [98] examined the effects of 
oral contraceptives (OC), using a longitudinal design, on glucose flux and whole-body 
substrate oxidation rates during rest (90 min) and two exercise intensities [60-min leg 
ergometer cycling at 45% and 65% peak O2 uptake (V˙O2 peak)]. OCs significantly 
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downregulated glucose flux during exercise, with exogenous hormones having a greater 
effect on exercise glucose metabolism than endogenous hormones. Thus, exogenous 
hormones might moderate physiological adaptations and nutritional needs in a different 
manner to endogenous ovarian hormones [98].

The vaginal bleeding patterns associated with continuous estrogen – progestogen 
(combined oral contraceptive/COC) or progestogen-only contraceptive (progestin-only 
pill; intrauterine device [IUD]; implants, injections) regimens are quite different from 
spontaneous cyclical menstrual patterns. Women using COC are subject to a different 28- 
day cycle wherein a 21-day intake period, characterized by constant daily doses of 
a synthetic estrogen (estradiol or mestranol) and one of four generations of a synthetic 
progesterone (termed progestin) is followed by a 7-day break inducing a withdrawal 
bleed (often mistaken for a real menstrual bleed) [99]. This leads to a regular pattern 
whereby synthetic hormone levels are high during the 21-day intake period and low 
during the 7-day pill break. Two major COC formulations are available: the monophasic, 
whereby the dosage of estrogen and progestin do not change across the active pill cycles; 
or multiphasic, whereby the dose of hormones varies across the active pills, particularly 
the progestin. The progestin provides most of the contraceptive effect and the genera-
tion, type, and dosage of the exogenous progestin determines the potency and andro-
genicity (e.g. Norethindrone is a first-generation drug with weak progestin changes, 
whereas Norgestrel and Levonorgestrel are second-generation drugs that are designed 
to be more potent than the 1st generation approaches and subsequently have greater 
androgenicity) [1,100,101]. The mechanism of action of the exogenous hormones is to 
cause ovarian suppression, preventing the surge of luteinizing hormone (LH) and ovula-
tion. It is important to understand that the many different types and generations of COC 
formulations mean that the sparse research available in women using COC is applicable to 
that type of COC and not to all COC in general.

Alternatively, progestin and copper intrauterine devices (IUDs) do not inhibit ovulation 
but reduce endometrial hyperplasia, resulting in an inhospitable environment for implan-
tation [102]. Importantly, only orally administered steroids undergo hepatic first-pass 
metabolism; thus, the localized progestin of the IUD exerts different metabolic effects 
as compared to the progestin of the COC with no changes in body composition or body 
mass [103]. A full review of the types and mechanisms of action for IUDs is beyond the 
scope of this paper and has been written elsewhere [104–106]. Although research is 
lacking regarding the impact of COC and IUD on metabolism and nutritional require-
ments, understanding the hormonal implications can help to draw inferences from 
research in eumenorrheic women.

3.3. Peri and post menopause

The menopausal transition, or perimenopause, is associated with profound reproductive 
and hormonal changes. A time-related change in the character of menstrual cycles as 
menopause approaches is well established, with an increasing proportion of cycles 
observed with prolonged follicular phases that may exhibit delayed ovulatory cycles or 
no ovulatory cycle altogether. Hormonal patterns during the luteal phase of the menstrual 
cycle also show changes with age, with greater absences of ovulatory cycles, while 
reductions in luteal phase progesterone become more common [107–109]. The reduction 
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in progesterone impacts the ratio of estradiol: progesterone (E:P), invoking an imbalance, 
illustrated by anabolic resistance of muscle protein synthesis, insulin resistance, increased 
abdominal adiposity, decreased lean mass, a reduction in bone mineral density, and 
a decrease in energy expenditure [110,111]. The majority of body composition changes 
occur in the four to five years leading up to menopause (commonly defined as a period of 
time of 12 months of no menses), after which body composition changes are more age- 
related, rather than hormone-related [112]. By understanding the influence of hormone 
shifts on physiological parameters of female athletes during menopause transition, nutri-
tional recommendations to improve insulin sensitivity as well as to support lean mass and 
bone density may positively enhance body composition, health, and performance.

4. Energy requirements: intake and availability

Energy is required by the human body for a variety of metabolic processes and physio-
logical functions including muscular activity, heat production, nutrient and cellular trans-
port, biological growth, and synthesis of cell components and new tissues. Thus, a primary 
nutritional consideration for female athletes should be achieving adequate energy avail-
ability (EA). EA is defined as the energy available for metabolic processes, after accounting 
for dietary energy intake and physical activity energy expenditure [61,113]. Specifically, 
the EA is defined as dietary energy intake (EI) minus exercise energy expenditure (EEE) 
corrected for fat-free mass (FFM) relative to total body mass [65,114]. It is widely accepted 
that sufficient energy is crucial for training consistency, particularly during intensified 
periods, as prolonged energy restriction can lead to impaired physiological function, 
maladaptation to prescribed training, and an increased risk of fatigue, illness, and injury 
[61,64,114–116]. In both sexes, energy homeostasis is under the control of a variety of 
hormones secreted from the gut, pancreas, adipose tissue, and gonads.

In this respect, the sex hormones are the primary sources of sex differences as it 
pertains to regulation of energy intake [117]. Estrogen, a primarily female hormone, 
reduces food intake and body weight and exerts an effect on meal size [118] and 
functions in conjunction with other circulating factors such as leptin and ghrelin to 
exert tonic inhibition of food intake [119]. During the late follicular phase of the menstrual 
cycle, estrogen is high, while progesterone concentration is low. It is during this phase 
that resting metabolic rate (RMR) and energy intake are lowest. Conversely, during the 
mid-luteal phase of the menstrual cycle, both estrogen and progesterone concentrations 
increase and reach a peak [58]. Accordingly, resting metabolic rates increase, while energy 
intakes are commonly at their highest levels [59,120]. For example, Barr et al. [121] 
estimated that free living energy intake increases ~ 300 kcal/day during the luteal 
phase of the menstrual cycle in recreationally active females.

4.1. Low energy availability

Low energy availability (LEA) is the underlying etiology of relative energy deficiency in 
sport (RED-S) [114] and occurs when energy intake is less than energy expenditure 
through exercise. As a result, the body does not have enough energy left to appropriately 
sustain physiological functions outside of exercise [63,64]. Research that investigates the 
effects of LEA typically falls into two categories: socio-psychological and physiological. 
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Athletes are at a greater risk for LEA from sociocultural pressures, such as social media 
pressures, pressures from coaches/teammates/self to look a certain way, or from the 
prevailing belief that a lower body weight will result in greater performance outcomes 
[122–125]. Intentional dietary behavior modifications to achieve a certain sport esthetic 
may be a driver for LEA, however many athletes may unintentionally fall into LEA during 
phases of increased training volume or in sports with high energy expenditure 
[113,114,126]. Briefly, the known consequences of LEA cause a myriad of complications, 
which include reproductive dysfunction and impairments to skeletal, cardiovascular, 
gastrointestinal, endocrine, and neurological function [113,115,127,128]. Whether inten-
tional or not, LEA may have significant detrimental effects on health and performance, 
both in endurance and strength-power athletes. Reviews of the current knowledge of 
health and performance impairments related to LEA and RED-S are discussed in detail 
elsewhere [114,126,129,130].

Nutrient sensing pathways are also sensitive to circulating estrogen; specifically, the 
regulation of hypothalamic kisspeptin neurons and the metabolic regulation of KISS1 gene 
expression and release. Kisspeptin is a neuropeptide involved in the regulation of repro-
ductive function and also has a significant role in the regulation of glucose homeostasis, 
feeding behavior, and body composition [131]. The threshold for downregulation of 
kisspeptin signaling of gonadotropin-releasing hormone (GnRH) neurons has a greater 
sensitivity in females than in males [132], Thought to be primarily due to sex differences 
in the density of kisspeptinARC and kisspeptinAVPV/PeN neurons, kisspeptinAVPV/PeN neurons 
are also almost exclusive to the female brain [133]. Estrogen increases expression of KISS1 in 
kisspeptinAVPV/PeN and downregulates the expression in kisspeptinARC promoting a decrease 
in energy intake. Importantly, when energy deficits occur, through undernutrition or 
excessive energy expenditure, the KISS1 gene is downregulated resulting in subsequent 
repression of the GnRH neurons and downregulation of the reproductive axis [134,135].

Exercise induced energy deficits as a means to promote fat loss are more effective in 
men than in women [136,137]. This may be attributed in some respect to a sex disparity 
between the way exercise alters energy-regulating hormones and appetite. Hagobian and 
colleagues [57] demonstrated that in response to moderate-intensity continuous exercise 
with an uncompensated energy deficit, naturally menstruating women have higher 
concentrations of acylated ghrelin and lower concentrations of insulin, both of which 
stimulate energy intake. When the energy deficit was addressed, the patterns of acylated 
ghrelin and insulin were attenuated, but still persisted. In contrast, ghrelin concentrations 
did not change in men, regardless of energy status, along with a slight reduction of insulin 
in the energy deficit condition but not in energy balance [138]. In a follow-up study, an 
acute bout of moderate intensity aerobic exercise did not exert the same effects on 
ghrelin and insulin for women using a monophasic COC and the participants maintained 
an energy deficit after exercise (i.e. did not increase energy intake to match or exceed 
exercise expenditure) [139]. Therefore, in women, higher acylated ghrelin and lower 
insulin/leptin concentrations in response to physical activity may be a mechanism to 
oppose energy deficit, defend body fat stores, and preserve reproduction function. 
However, considering that the primary mechanism of action for many of COCs is to 
suppress ovulation via the inhibition of the hypothalamic–pituitary–adrenal (HPA) axis, 
hypothalamic responses to exercise and energy deficiency may be attenuated with the 
use of COCs [114]. Therefore, the identification of LEA in athletes using COCs can be 
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masked, reducing practitioner and athlete ability to treat and/or prevent longer term 
implications of LEA.

4.2. Recommendations for prevention and treatment of LEA

Specific guidelines for an optimal EA for competitive female athletes have not been 
established, but conceptual models of energy availability thresholds have been pro-
posed from well-controlled laboratory studies [63–65]. An EA of at least 45 kcal kg−1 

FFM·day−1 appears to be a threshold to ensure optimal EA for physiological functions 
and body mass maintenance in female athletes [124]. An EA > 45 kcal kg−1 FFM·day−1 

provides enough energy for weight gain and muscle hypertrophy. In clinical studies, it 
has been established that EA of 30 kcal kg−1 FFM·day−1 is the threshold at and below 
which suppressed metabolic hormones and reductions in luteinizing hormone pulsa-
tility is observed after as little as 5 days in healthy females [64,65,129,140,141]. 
Planned periodization of changing EA status may be advantageous to attenuate the 
negative consequences of LEA and achieve optimal body composition and power-to- 
weight ratios for competition [142]. Continuous workload monitoring throughout the 
season also plays an important role in assessing stress and recovery needs, as high 
energy expenditure, high stress, and caloric needs often occur in the pre-season 
(lower fitness) and again during high travel and competition blocks [143–145]. In 
addition, blood biomarkers, such as cortisol, creatine kinase (CK), sex hormones, 
cytokines, hematological panels, and nutrient markers can be used to detect physio-
logical responses to overall stress and identify balances between training, recovery, 
and performance outcomes [146–149]. Established EA thresholds may not be appro-
priate for reducing the risk of LEA in aging women due to the changing ratios of 
estrogen and progesterone in perimenopause, the subsequent absence of estrogen 
and progesterone in menopause and the known biological impact on resting meta-
bolic rate and body composition [150]. As such, reducing the discrepancy between 
training energy expenditure and energy intake, with careful attention to nutrient 
timing, should be considered [151].

EA is likely to vary between training days (as a function of EEE), and it is the within-day 
periods of low energy intake over 24-hours that are associated with negative health 
indices and body composition changes despite optimal daily EA values [62,152]. 
Research has demonstrated that females with menstrual dysfunction exhibit greater 
elevations in cortisol and decreases in RMR and estradiol the longer they delay nutrition 
intake, post-exercise [62]. Of importance, nutrient timing has been proposed to have 
a significant impact on attenuating increasing health, exercise training, and recovery 
implications [153]. It is important to point out that quantification of EA in free-living 
athletes can be difficult and may have a wide margin of error. To determine the EA, the 
calculation requires accurately measured FFM, EI and exercise EE of the athlete, in which 
errors of validity and reliability will undoubtedly occur [150]. Moreover, non-purposeful 
physical activity expenditure needs to be included to accurately reflect perturbations in 
energy availability. Therefore, EA thresholds should be used to guide nutritional strategies 
in which the individual’s training load, nutrient timing, and manipulation of macronu-
trients to ensure recovery and adaptation are the forefront of the athlete’s nutritional 
plan.
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4.3. Key recommendations

● The primary consideration for female athletes, regardless of hormonal status, is to 
maintain an overall EA level that meets the specific goals and requirements of their 
individual training and performance demands.

● Due to the increased energy needs in the luteal phase of the menstrual cycle, 
eumenorrheic athletes may consider increasing overall 24-h energy intake in this 
phase.

● COC use can mask early signs of LEA, reducing the opportunity to identify LEA and 
prevent further implications.

● Specific attention to nutrient timing in relation to exercise may help to reduce time 
spent in a catabolic state and as a result improve health, performance, and asso-
ciated exercise training adaptations even in times of planned caloric deficit.

● It is acknowledged that at various points in the training cycle, a caloric deficit is 
desired for optimizing body mass and composition, however, athletes and coaches 
of female athletes must understand the repercussion on the greater neuroendocrine 
responses to low nutrition density.

● Monitoring biomarkers across training blocks and athletic seasons can provide 
further insight into the balance between training, recovery, and performance 
outcomes.

5. Sex hormone effects and substrate metabolism

Robust evidence exists that demonstrates the important roles estrogen and progesterone 
have in regulating substrate metabolism [20,24,66,70,80,82,84,154–159]. Estrogen, speci-
fically 17β-estradiol, promotes lipolysis and increases fatty acid availability while decreas-
ing the rate of gluconeogenesis with muscle and liver glycogen sparing. Although 17β- 
estradiol lowers mitochondrial membrane viscosity (which creates a more fluid lipid 
bilayer and facilitates movement and function of membrane proteins), Miotto and col-
leagues [14] demonstrated that female skeletal muscle has a greater abundance of the 
fatty acid transporter CD36, a sex difference that results in a greater membrane transloca-
tion of the CD36 protein during muscle contraction that helps to explain the heightened 
rates of lipid metabolism, which occur in females when compared to males during 
exercise [160,161]. Further, these actions are independent of hormone influences and 
further promote carbohydrate sparing and higher lipid oxidation during exercise 
[155,162,163].

Progesterone decreases the sensitivity of IGF-1 mediated uptake of glucose into 
skeletal muscle, but upregulates GLUT-4 and GLUT-1 translocation to enhance glycogen 
storage in the endometrial tissue for embryonic support [84]. Progesterone also appears 
to accentuate the carbohydrate-sparing actions of estrogen by decreasing hepatic glyco-
genolysis [157]. Progesterone also exerts influence over protein metabolism, specifically 
during the luteal phase, which corresponds with the previously observed increases in 
protein oxidation at rest and during exercise at this time in the menstrual cycle [81,164]. 
This increase is attributed to a greater concentration of progesterone (lowered ratio of E: 
P). The primary action of progesterone is to increase the net rate of protein catabolism 
through enhancement of plasma-free amino acid utilization by the liver, reducing plasma 

400 S. T. SIMS ET AL.



amino acid concentrations and increasing total urinary nitrogen excretion (without 
aminoaciduria) [157,165] due to increased protein biosynthesis of the endometrial lining.

Due to the aforementioned hormonal effects, research has demonstrated that sex 
differences and sex hormone profiles (e.g. menstrual cycle phase, hormonal contraceptive 
use) influence glucose kinetics and net protein balance, which may affect exercise 
capacity and/or performance in eumenorrheic female athletes [166,167]. For eumenor-
rheic women, research has demonstrated a lower rate of glucose appearance, disappear-
ance, and total glycogen utilization in the luteal phase as compared to the follicular phase 
when the energy demands of exercise are high enough to exert pressure on endogenous 
glucose production (>50% VO2max) [168–171].

5.1. Sex mediated differences in carbohydrate metabolism

With respect to whole body carbohydrate (CHO) metabolism, eumenorrheic women have 
generally been observed to oxidize proportionally less CHO, more lipids, and less leucine 
as compared to their male counterparts both at rest and during exercise of low to 
moderately high intensities and durations [154,163,172–174]. The greater lipid oxidation 
in women during submaximal exercise appears to be from adipose tissue, whereas the 
main source of increased fatty acid utilization at rest is from skeletal muscle [155]. This 
sexual dimorphism is apparent after general adaptive changes in endurance training 
(decrease in muscle carbohydrate utilization and increase in lipid oxidation). In this 
respect, women utilize more lipid when compared to men and this is largely attributable 
to sex-specific hormonal influences and epigenetic adaptations to endurance exercise 
[86,175–177]. Moreover, in response to exercise, women maintain the same level of 
glycemia as men, despite having lower glucose flux [173]; indicating that women increase 
glucose clearance less so than men.

Exogenous ovarian hormones appear to exert greater effects on glucose flux during 
exercise than endogenous hormones, as decreases in rates of glucose appearance and 
disappearance can be observed in recently fed women using combined oral contracep-
tives (COC) compared to before COC use [178]. Findings from studies investigating COC 
use and substrate utilization will likely vary due to the use of different types of COC 
agents, monophasic vs. triphasic and different COC formulations as described in earlier 
sections of this Position Stand. Evidence shows that COCs with higher concentrations of 
hormones can decrease glucose tolerance, in turn augmenting insulin resistance in adult 
premenopausal women [179]. Additionally, increases in C-reactive protein levels, through 
glucose tolerance testing of Olympic female athletes on COC, have been observed, 
indicative of an upregulated inflammatory response [180]; with significantly higher oxi-
dative stress in female athletes using COCs than their non-COC user counterparts irre-
spective of lifestyle habits [181].

Resting muscle glycogen in eumenorrheic female athletes may be reduced during the 
follicular phase [182,183] and carbohydrate loading (8.4–9.0 g.kg body weight−1.d−1) has 
been shown to increase resting muscle glycogen concentration in the mid-follicular (MF) 
phase of the menstrual cycle [184,185]. In contrast, CHO loading using a similar pattern 
and amount of carbohydrate intake during the mid-luteal (ML) phase failed to change 
resting muscle glycogen concentrations [182] or only documented a modest increase 
(13%) [186] compared to what is generally reported for male athletes (18–47%) [185,187– 
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191] or female athletes during the follicular phase (17–31%) [184,185]. It is considered that 
the increased presence of progesterone in the mid-luteal phase promotes the shuttling of 
glucose into the liver, as well as upregulating GLUT-4 and GLUT-1 translocation to 
enhance glycogen storage in the endometrial tissue for embryonic support [84,157]. As 
a result, supercompensation of glycogen in skeletal muscle and hepatic tissue may be 
more difficult to attain in the mid-luteal phase without higher routine daily carbohydrate 
levels due to changes in insulin sensitivity and decreased sensitivity of IGF-1 mediated 
glucose uptake. Although the lower level of muscle glycogen storage in the mid-follicular 
phase of the menstrual cycle appears to be overcome by CHO loading, the greater 
intramuscular glycogen concentrations failed to translate into improved time trial perfor-
mance [182,184].

The impact of CHO loading on the muscle glycogen content of COC users is even less 
clear. At this time, it is unknown what effect CHO loading may have on muscle glycogen 
concentration in female athletes taking COC with different concentrations of ethynyl 
estradiol and generations of progestins. More research is needed to address these 
considerations.

Achieving the high intakes of CHO (≥8 g.kg body weight−1 day−1) commonly recom-
mended for CHO loading can be difficult for women whose habitual energy intakes are 
<2000 kcal.d−1 [192–194], as this dose amounts to ingesting more than 70–90% of the 
total energy intake as CHO for a 60-kg woman. Thus, in view of ovarian hormone effects 
on glucose kinetics and to ensure adequate carbohydrate availability is met, it is recom-
mended that all women follow the recommendation to consume a pre-exercise meal or 
snack containing CHO three to four hours before beginning endurance exercise. This 
recommendation is particularly prudent during the active pill weeks of COC users and 
during the luteal phase of the menstrual cycle of eumenorrheic women, where there is 
a greater effect of sex hormone suppression of gluconeogenesis output during exercise 
[90,166].

5.2. Key recommendations

● During all times, but especially during the follicular phase (reduced glycogen sto-
rage) and times of competitive or training scenarios where absolute glycogen 
availability may limit performance, eumenorrheic women should pay particular 
attention to consuming sufficient energy with a primary focus on consuming 
enough carbohydrate to support overall health as well as the duration, intensity, 
and environmental factors (heat, cold, altitude) of performance.

● Women using COC should also ensure adequate carbohydrate availability across all 
phases of the active pill cycle to attenuate exogenous hormone-linked higher 
oxidative stress.

5.2.1. Sex mediated differences in carbohydrate metabolism - during exercise
It is well documented that carbohydrate availability during exercise is ergogenic as CHO 
feeding can help maintain plasma glucose and prevent hypoglycemia, spare hepatic 
glycogen, and delay muscle glycogen depletion [195–198]. However, in women, estrogen 
and muscle metabolic effects directly reduce carbohydrate utilization due to a marked 
hepatic glycogen sparing effect and insulin-mediated storage, thus indirectly shifting 
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substrate utilization toward lipids across low to moderate intensity exercise. Moreover, 
there is a greater sensitivity in women to the lipolytic effects of catecholamines, thought 
to be due to an exercise-mediated upregulation of β1-(lipolysis stimulating) receptors (as 
compared to men) [173,199]. Recommendations for carbohydrate intake during exercise 
are dependent on exercise duration, absolute intensity, environmental conditions (heat, 
humidity, altitude), and gastrointestinal tolerance. However, these guidelines have largely 
been established from male data and generalized to women, with the acknowledgment 
that more female-centric research is needed. Based on the limited research conducted in 
females, several considerations exist for female athletes to improve overall carbohydrate 
availability for training, performance, and recovery. First, a diet high in carbohydrate 
(≥60% of daily energy intake) plus intake of exogenous carbohydrate during exercise 
has shown to increase the percentage of total energy from CHO oxidation in women, with 
an even greater effect than seen in men [200]. This increase was not attributable to 
a higher percentage of exogenous carbohydrate oxidation, but, alternatively, was attrib-
uted to a smaller decrease in endogenous CHO oxidation in eumenorrheic women during 
exercise [201]. Women using COC demonstrate a slightly lower reliance on exogenous 
CHO oxidation as compared to non-COC users [98,179,201]. Second, females exhibit 
slower gastric emptying and gut motility [202,203], a greater incidence of exercise- 
induced gastroparesis as compared to males [204]. Eumenorrheic women reportedly 
experience greater gastrointestinal distress across the early-follicular and late-luteal 
stages of the menstrual cycle as compared to other phases of the cycle [205]. Third, 
carbohydrate intake during exercise should be scaled according to the characteristics of 
the event. During sustained high-intensity sports lasting approximately one-hour, small 
amounts of pre-exercise carbohydrate (~30 g) [206], enhance performance. Although 
carbohydrate mouth rinsing has been shown to have ergogenic effects in men [207], 
the same does not appear to hold true for trained female athletes, in either high intensity- 
short duration or resistance exercises [208,209]. As observed in studies involving males, 
evidence in females also supports CHO ingestion rates of 30–60 g · h−1 of as an appro-
priate target for sports of longer duration (≥60 min) [210]. However, it has not been 
established if multiple transportable carbohydrate blends at high doses (up to 90 g · 
h−1) improve peak exogenous oxidation rates in females [201,211]. During the follicular 
phase in endurance-trained women, the greatest exogenous CHO oxidation and endo-
genous CHO sparing were observed when CHO was ingested at a rate of 60 g·h−1 with no 
further increases when the rate was increased to 90 g·h−1 [212]. Lastly, provision of a CHO- 
electrolyte beverage during endurance exercise in the heat attenuates immune distur-
bances compared to a placebo beverage, more so in the luteal phase of the menstrual 
cycle [213]. Moreover, amino acid catabolism rates appear to be reduced when CHO 
supplementation was provided during exercise [214].

5.3. Key recommendations

● In light of the limited data available, female athletes should track their menstrual 
cycle/hormone status to identify any times of increased GI issues across the cycle and 
if carbohydrate dosing thresholds toward the upper limits of CHO ingestion (>60  
g·h−1) affect GI tolerance.
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● A realistic starting recommendation is to ingest CHO at a rate of 30-60 g·h−1 during 
exercise to offset menstrual cycle effects on glucose kinetics/exercise metabolism. 
This will also limit potential gastrointestinal distress, immune disturbances, and 
protein catabolism.

● The major factor limiting maximal exogenous CHO oxidation is intestinal absorption. 
In addition, hepatic limitations which can influence the release of CHO to systemic 
circulation, energy demands of exercise, gut health, and carbohydrate tolerance to 
intake should all be considered when developing a carbohydrate ingestion regimen.

5.3.1. Sex mediated differences in carbohydrate metabolism - post-exercise
In the acute post-exercise recovery phase, eumenorrheic women have a greater ability to 
maintain glycemia following prolonged exercise as compared with males irrespective of 
menstrual cycle phase. This is mainly due to a more immediate decrease in glucose flux at 
the end of exercise in women, whereas more time is required in men to re-establish basal 
glucose homeostasis [154]. Evidence indicates that during exercise tasks of similar relative 
intensity and the same duration, women display a greater capacity for lipid oxidation and 
regain control over glycemia and glucose flux more rapidly in recovery than do men 
[154,155]. Additionally, metabolic perturbations of exercise are still evident 21 hours after 
60–90 min of low to moderate intensity exercise in men but are no longer apparent after 
3 hours in women [155,172,215].

To the authors’ knowledge, limited investigations have examined the effect of men-
strual cycle phase or hormonal contraceptives on muscle glycogen resynthesis with none 
in peri- and post-menopausal populations. From this limited evidence, muscle glycogen 
repletion is reduced in the follicular phase when compared to the luteal phase in 
moderately trained eumenorrheic women, suggesting an ovarian hormone influence on 
muscle glycogen resynthesis [216]. When compared to males, muscle glycogen resynth-
esis during the follicular phase of the menstrual cycle occurs at similar rates following CHO 
consumption of 1.2 g·kg−1 of CHO in the acute recovery period following glycogen 
depleting exercise [195,217]. In addition, post-exercise supplementation (1.2 g·kg−1 of 
CHO, 0.1 g·kg−1 of protein, and 0.02 g·kg−1 of fat), following four training sessions across 
a week during the follicular phase, improved time to exhaustion during endurance cycling 
at 75% of VO2peak. [218]. Peri- and post-menopausal athletes should adhere to the same 
recommendation as the effects of ovarian hormones are slight compared to sex differ-
ences in post-exercise glycemia. Moreover, due to an increase in insulin resistance 
associated with peri and post menopause [219]; athletes in this life phase should take 
advantage of the non-insulin dependent first phase of glycogen synthesis, which lasts 30– 
40 minutes if glycogen depletion is substantial [220]. In this respect, close consideration to 
nutrient timing recommendations [153] should be employed as well as other strategies to 
maximize glycogen recovery [221].

5.4. Key recommendations

● The replenishment of endogenous glycogen stores after high volume and/or multi-
ple sessions in a 24-hour period is of the utmost importance to optimize perfor-
mance. As a result, strategies to improve carbohydrate availability can promote 
positive training adaptations and health.
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● With the limited data available, we recommend female athletes should focus on 
rapid consumption of at least 1.2 g·kg−1 of CHO following prolonged exercise in 
order to restore spent muscle glycogen.

● Peri and post-menopausal women should focus on rapid consumption of CHO per 
above, with close consideration to nutrient timing to maximize glycogen recovery.

5.5. Sex mediated differences in protein metabolism

Skeletal muscle is viewed to be the primary reservoir for amino acids (AA), and failure to 
deliver adequate amino acids from the diet can challenge the body’s ability to respond to 
daily protein turnover, particularly muscle protein. When essential AAs are low, skeletal 
muscle breakdown rates are increased resulting in a release of AAs necessary to maintain 
proteostasis throughout the body. In contrast, when AA levels are high, muscle protein 
synthesis increases so that more AAs can be incorporated into muscle and other key 
organs and tissues. As AAs are the building blocks of proteins and play an essential role in 
the regulation of protein turnover, maintaining adequate protein intake is essential to 
ensure that a balance is maintained between the rate of muscle protein breakdown (MPB) 
and muscle protein synthesis (MPS) to maintain muscle mass.

To briefly review, 21 AAs are required for MPS; nine of these are essential amino acids 
(EAAs) as they cannot be synthesized in humans and must be supplied in the diet, while 
the remaining are nonessential and can be readily made by other tissues. The anabolic 
effects of AA ingestion on MPS are the result of the EAAs, specifically leucine, which 
indirectly activates the mammalian target of rapamycin (mTOR); note that although 
leucine triggers the essential signaling for MPS, all AAs are necessary to increase MPS in 
humans [222]. Feeding and exercise are potent stimuli for MPS, with the feeding-induced 
stimulation being transient and not solely responsible for muscle protein accretion. 
Exercise, primary resistance-based, enhances MPS. However, the consumption of protein 
post-exercise is necessary to maximize the rates of MPS and overall stimulation of skeletal 
muscle hypertrophy [223].

Although sex-based differences in protein metabolism are likely small compared 
to those observed in carbohydrate and lipid metabolism, the depth of research on 
female athletes is lacking. No studies are currently available that specifically address 
the protein requirements of female athletes across the menstrual cycle or with the 
use of hormonal contraceptives. In eumenorrheic women, evidence suggests protein 
catabolism is higher at rest and following aerobic endurance exercise in the luteal 
phase, when estrogen and progesterone are elevated, compared to the early folli-
cular phase when estrogen and progesterone concentrations are low 
[81,164,223,224]. Moreover, it has been shown that protein oxidation during exercise 
appears to be greater during the mid-luteal phase [164,223] and that females require 
more lysine during the luteal phase than the follicular phase [81] with a lower ability 
to uptake and utilize amino acids for protein synthesis. Although the blood amino 
acid profiles of COC users are shown to differ from non-users [225], the impact of 
COC on protein metabolism needs at rest or in response to exercise is yet to be 
elucidated. The major variable in determining needs is the formulation of the 
contraceptive, specifically the generation of the progestin due to differences in 
androgenicity, and how this may influence skeletal muscle adaptations to training 
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(e.g. first-generation progestins are derived from testosterone and have high andro-
genic activity, whereas third-generation progestins have been modified to have low 
androgenic activity). OCs also reduce endogenous levels of estrogen, progesterone, 
free testosterone, and insulin-growth factor-1 (IGF-1), but enhances cortisol, all of 
which affect the degree of anabolic responses to training [92]. For example, recent 
data have shown that low androgenic activity progestins impairs myofibrillar protein 
FSR at rest and 24 h post-endurance exercise as compared to rates observed during 
the follicular phase of eumenorrheic women, but they have no effect on myofibrillar 
protein breakdown [226]. An additional study compared the effects of two different 
dosages of a third-generation OC with a non-user control group on resistance 
training adaptations. During a 10-week supervised progressive resistance training 
program, a 30 μg ethynyl estradiol dose from a third-generation OC was associated 
with a trend toward a greater increase in muscle mass and a significantly greater 
increase in type I muscle fiber area compared to a 20 μg dose of ethynyl estradiol 
and non-users, though no changes in muscle strength related to training were 
found. This study highlights that the dosage provided by ethinyl estradiol may 
also be a key variable to consider relative to the skeletal muscle adaptations that 
are observed [227].

Considering that adequate dietary protein is important for supporting physiological 
adaptations to exercise, understanding the effects of sex differences, hormonal status, 
types of exercise, and training status is essential for supporting female athletes. Mercer 
and colleagues [228] published an in-depth review that indicates the estimated average 
requirement for protein intake of eumenorrheic recreationally active and/or competitive 
female athletes is similar for aerobic endurance exercise (1.28–1.63 g·kg−1·day−1), resis-
tance exercise (1.49 g·kg−1·day−1) and intermittent exercise (1.41 g·kg−1·day−1), noting 
these requirements are within the mid-range of current sports nutrition guidelines (1.4– 
2.0 g·kg−1·day−1) [229,230]. Moreover, pre- and post-exercise protein intakes of 0.32–0.38  
g·kg−1are recommended for beneficial adaptations in recreational and competitive 
female athletes. As also commonly observed and recommended in males, higher protein 
diets (>2.0 g·kg−1·day−1), coupled with heavy resistance training, have been shown to be 
important for maintaining lean mass and resting energy expenditure under periods of 
intentional and unintentional caloric restriction [231,232], which has been shown to be 
prevalent among recreationally active to elite female athletes [113,124,233–236]. If female 
athletes desire skeletal muscle hypertrophy, a review by Bosse and Dixon suggests that in 
some populations as much as a 60% increase from habitual protein intake may be needed 
to support this goal [237]. High protein diets (>2.2 g·kg−1·day−1) have not resulted in any 
adverse effects to bone mineral density or kidney function in healthy women [238,239].

As mentioned earlier, the timing of nutrient consumption around exercise directly 
influences performance, recovery, fat oxidation, and energy expenditure [129,153]. 
Female athletes often follow special diets for various reasons [113,124,125,129,233] 
and/or exercise in a fasted state. However, evidence indicates that for women specifically, 
exercising in a fasted state can blunt fat oxidation [240], whereas exercising in a fed state 
will result in a greater total daily energy expenditure and increased fat oxidation, poten-
tially improving body composition [134,135]. A recent analysis suggests that consuming 
a bolus of protein (18 g protein, 2 g carbohydrate, 1.5 g fat) 1 hour prior to a single bout of 
resistance exercise (4 sets at 70–75% 1RM for nine different exercises), as opposed to 
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consuming a bolus of carbohydrate (1 g protein, 19 g carbohydrate, 1 g fat), significantly 
augments energy expenditure when protein was consumed [241].

Peri-menopausal and post-menopausal athletes will need to consider daily protein 
intake at the mid to higher range (1.8–2.0 g·kg−1·day−1) of recommendations due to the 
decline of estradiol and the ensuing insulin and anabolic resistance coupled with the 
demands of physical activity [242–244]. Although muscle protein synthesis rates are 
greater in older women at rest [245], they still experience an accelerated loss of muscle 
mass around menopause [246]. This can be partly explained by a higher muscle protein 
synthesis rate in postmenopausal women, which is counteracted by an upregulation of 
protein breakdown [246]. Both an upregulation of stimulatory and inhibitory muscle 
growth regulatory genes in postmenopausal women compared with premenopausal 
women have also been reported [245]. An effective strategy to overcome age and 
hormone-mediated reductions in anabolic sensitivity in older women is the combination 
of resistance exercise and essential amino acid ingestion. Notably, MPS rates increased at 
0–2 hours and remained elevated through 4 hours when resistance exercise was com-
bined with ingestion of 6 to 10 grams of essential amino acids in older women [247,248].

5.5.1. Pre-sleep protein intake
Research suggests that at least 30% of the adults in the US obtain less than seven hours of 
sleep per night [249]. Additionally, many elite athletes fall short of their sleep require-
ments whereby only 3% of elite athletes reported getting enough sleep per night to feel 
satisfied [250]. Further, menstruating women may be at even greater risk of sleep 
deprivation throughout different phases of their menstrual cycle [251]. Multiple studies 
have reported that during the luteal phase of the menstrual cycle, an increased occur-
rence of sleep disturbances and decreased sleep quality result [252–254]. However, not all 
studies agree and some report no changes in sleep quality between the phases of the 
menstrual cycle [255,256]. Nevertheless, sleep deprivation after a hard bout of exercise, 
particularly in the evening, may lead to poor recovery, resulting in impaired muscle 
glycogen repletion, reduced muscle damage repair, and decreased cognitive function 
coupled with an increase in mental fatigue [257].

To combat these negative outcomes, data has accumulated to support the strategic 
manipulation of pre-sleep nutrition to meet daily caloric and protein intake needs to 
support the recovery demands of sport. Specifically, studies that have examined pre-sleep 
protein ingestion have shown efficacy in improving overnight MPS, various indices of 
recovery, and longitudinal improvements in strength and performance when consumed 
after an evening bout of exercise [258]. Recently, Apweiler et al. [259] determined that ~ 
40 g pre-sleep casein protein ingestion, did not enhance functional recovery after 
a morning bout of exercise in healthy, active individuals. While no proper study has 
demonstrated that the time of day for exercise is a key influence on the potential efficacy 
of pre-sleep feeding strategies, it appears to be most efficacious for recovery when 
consumed after an evening workout when compared to a morning workout [258–260]. 
Recent research indicates that consuming protein before sleep may have beneficial 
responses in women, such as reduced muscle soreness and improvements in recovery, 
with no changes to lipolysis or fat oxidation [261]. Some data support an increased next- 
morning resting metabolic rate following pre-sleep protein ingestion; however, it is 
unclear if this result is positive or negative and likely depends upon the goal of the 
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athlete [261]. Additionally, there is no difference in the morning resting metabolic rate or 
increases in oxygen consumption between consuming isoenergetic/isonitrogenous high- 
protein food (cottage cheese) versus a high-protein (casein) liquid shake [262]. It has also 
been shown that consuming chocolate milk before sleep increases resting and exercise 
carbohydrate oxidation, but this did not translate to improved next-morning running 
performance in female athletes [261]. However, the caloric content of the chocolate milk 
drink (355 ml; 180 kcal; 30 g CHO; 12 g PRO; 0 g Fat) was likely too low to have an impact 
on performance some eight hours post-ingestion.

Nevertheless, very little research is available that has examined the impact of pre-sleep 
nutrition on sleep quantity or quality, particularly amongst female athletes. Recent 
correlations between higher carbohydrate intake in teenage females and decreased 
total sleep, suggest prioritizing fats or proteins pre-sleep may be more beneficial to 
sleep duration [263]. Consuming foods within 4 hours of sleep, especially larger meals 
higher in fat, however, may also induce heart burn [264] which may be detrimental to 
sleep onset. Although there is the risk of disrupted sleep with pre-sleep nutrition, 
potential optimization of macronutrient distribution as well as size and timing of meals 
may decrease these negative effects while allowing for improvements in recovery and 
performance in women.

Pre-sleep protein ingestion has favorable outcomes in some athletes and recreationally 
active individuals but has yet to be elucidated in female athletes. Further, no data is 
available that tracks pre-sleep nutrition and internal markers of recovery such as resting 
heart rate or heart rate variability in athletes. These data would be intriguing due to their 
close association with next-day readiness to play while also offering insight for athletes to 
optimize pre-sleep nutrition. Moreover, these markers combined with knowledge of the 
menstrual cycle phases may be the next major leap forward for female athlete nutrition 
recommendations.

5.6. Key recommendations

● Minimal research has explored the endogenous and exogenous hormonal effects on 
the protein needs of female athletes.

● Pre-menopausal eumenorrheic and OC-using female athletes should aim to con-
sume a source of high-quality protein at a dose of 0.32-0.38 g·kg−1 as soon after 
exercise as possible to replenish any exercise-induced amino acid oxidative losses 
and initiate muscle protein remodeling and repair.

● As close to the end of exercise as possible, peri and post-menopausal athletes should 
aim for a bolus of high EAA (~6-10 g) containing protein food or supplement to 
overcome anabolic resistance.

● For women at all stages of menstrual function (pre-, peri-, and post-menopausal), 
daily protein intake should fall within the mid-to upper ranges of current sport 
nutrition guidelines (1.8 – 2.2 g·kg−1·day−1). Eumenorrheic athletes in the luteal 
phase should consider increasing intake by ~ 12% to offset the increased protein 
catabolism effects of progesterone. Peri and post-menopausal women, regardless of 
sport, should aim for the upper end of the range. Meal dosing should be moderate in 
protein (∼0.3 g protein·kg−1) every 3 hours to maximize muscle protein repair and 
remodeling during prolonged (>24 h) recovery periods.
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● Pre-sleep protein ingestion has not been elucidated as specifically beneficial for 
female athletes in eucaloric states, however those in a low energy availability state 
may benefit from protein, pre-sleep, to help attenuate muscle soreness and improve 
recovery.

6. Special considerations

6.1. Electrolyte handling and hydration

Menstrual cycle hormones affect fluid dynamics by altering capillary permeability, vaso-
motor function, fluid regulatory hormone release, and plasma osmolality [265]. The 
elevation in plasma progesterone concentration during the luteal phase inhibits aldoster-
one-dependent sodium reabsorption in the kidneys due to progesterone competing with 
aldosterone for the mineralocorticoid receptor.

Both estrogens and progestogens can influence neural and hormonal control of 
thirst, fluid intake, sodium appetite, and sodium regulation. Additionally, sex differ-
ences are present in the activity and stimulus of the cell bodies of the periventricular 
nuclei and the supraoptic nuclei (located in the anterior hypothalamus), where argi-
nine vasopression is synthesized [266,267]. Four studies by Stachenfeld and colleagues 
[48,49,53,268] and another by

Verney et al. [269] demonstrated an estrogen-associated shift to an earlier threshold in 
the osmotic sensitivity of thirst and release of vasopressin, indicating a smaller increase in 
plasma osmolality is required to trigger vasopressin release and thirst in the brain. 
Notably, this shift persists during OC use.

Additionally, thermoregulatory and cardiovascular capacity may be impaired at lower 
relative magnitudes of exercise-induced dehydration in females compared with males. 
Females have, on average, lower absolute total water volume as compared with males 
(~31 vs.~44 L) [270] even when expressed as a proportion of body mass (~49% vs. 58%) 
[271]. It has been suggested that the lower body water in females vs. males results in 
a larger proportion of a female’s total body water lost during exercise-induced dehydration. 
However, there appears to be equivalent losses of plasma volume between the sexes under 
similar exercise conditions [272,273] potentially representing sex differences in the com-
partmentalization of fluids. Thus, with less total body water and blood volume in conjunc-
tion with a lower proportion of total body water [274] distributed to the extracellular 
compartment, as compared to males, females have less absolute and relative fluid available 
to lose via sweating making the physiological consequences of fluid loss more severe [45].

Exercise-associated hyponatremia refers to a clinically relevant reduction in blood 
sodium concentrations during or up to 24 hours after physical activity. This can be 
a result of solute (primarily sodium) loss and/or excess fluid load [275]. Women are at 
greater risk for exercise-associated hyponatremia, and this risk has been primarily attrib-
uted to their lower body weight and size, excess water ingestion, and longer racing times 
relative to men [276]. Variations in thirst across the menstrual cycle [277] may increase the 
risk of hyponatremia, during prolonged races, in one phase over another if athletes are 
not accounting for alterations in fluid losses associated with perturbations across the 
menstrual cycle. While these factors may contribute to the greater incidence of 
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hyponatremia in women, it is likely that the differential effects of female sex hormones on 
sodium handling also play a role.

6.2. Menopause, aging, and hydration

Independent of menopause, aging has important effects on fluid balance. Aging is 
associated with a higher baseline plasma osmolality, coupled with an age-related blunt-
ing of thirst sensation during exercise (and water deprivation), the usual thirst mechanism 
that occurs with a drop in fluid volume (dehydration) is impaired [278]. Older women are 
slower to excrete water (as compared to younger, premenopausal women) increasing the 
risk of hyponatremia [279,280]. Moreover, rehydration is a slower process with aging, 
primarily due to slower kidney function and hormonal responses to sodium and water 
flux. Estrogen-based hormone replacement therapy results in an increased basal plasma 
osmolality, plasma volume expansion, and an earlier osmotic threshold for arginine 
vasopressin release (e.g. 280 vs. 285 mOsmol/kg H2O), but a reduction in urine output, 
resulting in greater overall fluid retention. However, the higher overall fluid retention is 
not due to increased free-water retention, but rather increased sodium retention- the 
synthetic estrogens inducing a reduction in sodium excretion [278,281], eliciting a slight 
reduction in the hyponatremic risk.

7. Supplements

Dietary supplement use is the highest among females [282]. Research on collegiate 
female athletes suggests that more than half (65.4%) are using either traditional (single 
and multivitamin/mineral supplements) or non-traditional (herbals, botanicals, and other 
biologic and nutrient) sports supplements at least one time per month [283]. Recently, 
a standardized audit of the literature was conducted to determine representation for the 
female athlete of recognized sports supplements [284] (beta-alanine, caffeine, creatine, 
glycerol, nitrates/beet juice, and sodium bicarbonate) and it was determined that there is 
a lack of depth and elucidation of supplement use and dosages for the female athlete. 
Though the majority of dietary supplements have been evaluated primarily in men, the 
following overview introduces potential dietary supplements that may be efficacious for 
women based on physiological theory and sex-physiology [284].

Beta Alanine. The evidence for beta alanine (BA) determined potential erogenicity by 
delaying the onset of both anaerobic and aerobic fatigue allowing for longer and/or more 
intense training sessions, which increases the potential for greater physiological adapta-
tions and subsequent performance [285,286]. However, lower initial muscle carnosine 
levels have been reported by women, suggesting women could potentially see greater 
benefits as compared to men. For example, Varanoske and colleagues [287] recruited 26 
recreationally active participants (13 females) for 28 days of BA (6 g·d−1) supplementation. 
BA resulted in greater muscle carnosine concentration in females, yet no difference in 
fatigue attenuation was demonstrated between the females and males. Moreover, 
females who have greater muscle carnosine levels from higher dietary protein intake 
are able to delay fatigue compared to women who have lower carnosine levels [288]. 
Currently recommendations suggest that BA supplementation should not differ between 
females and males, with a total dose of 4–6 g·d−1 divided into at least 1–2 doses to 
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increase muscle carnosine concentrations over a 4-wk timeframe [289]. For additional 
details, we refer interested readers to the ISSN Position Stand on Beta Alanine [290]. 
However, a specific dosing regimen (amount, timing, etc.) for female athletes may be 
required beyond what has been published in the current literature for BA and should be 
elucidated across pre-, peri-, and post-menopausal females to optimize supplementation 
effects.

Caffeine. Caffeine is one of the most widely used psychoactive compounds and reduces 
fatigue or improves alertness by blocking adenosine receptors in the brain. A full review of 
caffeine effects is beyond the scope of this position stand, thus, we refer interested 
readers to the ISSN Position Stand on Caffeine [291]. With regard to females, 
a menstrual cycle phase effect on elimination of caffeine has been demonstrated with 
greater accumulation and slower elimination in the luteal phase (although no phase 
difference in half-life) [292]. Beyond this, the evidence for caffeine erogenicity in females 
is mixed at best. For example, caffeine has been shown to improve strength performance 
in resistance-trained women [293], but erogenicity was reduced in habituated caffeine 
users unless ingestion of an acute dose of caffeine equivalent to the athlete’s daily 
caffeine ingestion is used [294,295]. Moreover, a recent systematic review [296] demon-
strated that the effects of caffeine during resistance exercise may be reduced in women 
when compared to men ingesting the same caffeine dosage. In addition, some of the 
caffeine-induced stimulant effects are of smaller magnitude in women than in men [297]. 
It may be that the physiological responder status of caffeine has a greater implication on 
caffeine efficacy [298]; with a dose–response relationship relative to body weight needed 
to invoke effectiveness [291]. Additional research is needed to determine any sex differ-
ence or sex hormone effect on caffeine uptake, dosage, and/or efficacy.

Nitrates. Dietary nitrate is growing in popularity as a sports nutrition supplement. 
Inorganic nitrate is present in numerous foodstuffs and is abundant in green leafy 
vegetables and beetroot. Following ingestion, nitrate is converted in the body to nitrite 
and stored and circulated in the blood. In conditions of low oxygen availability, nitrite can 
be converted into nitric oxide, which is known to play a number of important roles in 
vascular and metabolic control [299]. Dietary nitrate supplementation has been shown to 
increase plasma nitrite concentration and reduce resting blood pressure [300]. Nitrate 
supplementation may reduce the oxygen cost of submaximal exercise and can, in male 
athletes, enhance exercise tolerance and performance [301]. A significant literature gap is 
present in nitrate/beet juice exercise research, with few studies including female partici-
pants or examining relevant outcomes exclusively in female populations. In this respect, 
limited evidence has demonstrated how untrained and recreationally trained females 
respond to nitrate supplementation. As routinely observed in males, untrained and 
recreationally trained females also experience a decrease in O2 costs of submaximal 
exercise [302,303]. Alternatively, Wickham et al. [304] investigated the effects of acute 
and chronic supplementation in recreationally trained COC-users and found no effect on 
submaximal cycling vO2 or time trial performance, despite increases in plasma [NO3

–] and 
[NO2

–] in both acute and chronic supplementation conditions. Post-menopausal women 
are a unique population with reduced endogenous nitric oxide bioavailability as com-
pared to men and younger women. Recently, Proctor and colleagues investigated grip 
strength and force development in 13 post-menopausal women using a double-blind 
randomized design and found that NO3

− supplementation enhanced force development 
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and increased time to fatigue [305]. This study highlights the potential efficacy of NO3
− 

supplementation in postmenopausal women, however future research should be con-
ducted, in trained females controlling for hormonal status (phases of the natural and OC 
cycles, perimenopause, and post menopause) to determine the effects of dietary NO3

– 

supplementation on exercise and performance metrics.
Creatine. Evidence to support the benefits of creatine supplementation for women is 

growing, with positive benefits related to strength, hypertrophy, performance, as well 
as energetic and cognitive outcomes [306]. Compared to men, females exhibit 70–80% 
lower endogenous intramuscular phosphocreatine stores and consume considerably 
lower amounts of dietary creatine [307] yet have higher reported (~10%) resting levels 
of intramuscular creatine concentrations [308], indicating supplementation at higher 
doses may be more efficacious [309]. Moreover, creatine kinase perturbations have also 
been shown to align with the cyclical pattern of estrogen across the menstrual cycle 
[310,311]. It has been suggested that supplementation in the luteal phase may be 
more effective for the mechanistic support of creatine supplementation with regard to 
muscle protein kinetics, growth factors, satellite cells, myogenic transcription factors, 
glycogen and calcium regulation, oxidative stress, and inflammation [312,313], but 
original investigations are needed to further explore this notion. Additionally, no 
research has investigated the relationship between hormonal contraceptive patterns 
and creatine kinase. Short- and long-term creatine supplementation has shown sig-
nificant beneficial ergogenic outcomes in strength, hypertrophy, and exercise perfor-
mance in trained and untrained female populations when compared to placebo 
controls [313,314]. Currently, evidence shows consistent recommended dosage 
amounts for males and females. In this respect, creatine supplementation typically 
follows a pattern of a loading dose of ~ 20 g per day for 5 days (4 × 5 g doses taken 
every 4 hours), followed by 3-5 g per day [306]. We refer interested readers to the ISSN 
Position Stand on Creatine for a full review of the mechanistic/physiological effects of 
creatine [315].

Iron. Iron deficiency anemia and iron deficiency are five to seven times more common 
in female athletes as compared to males [316]. These prevalence rates are linked to sex 
differences [317], poor dietary intake, exercise-induced iron losses, and menstrual cycle 
perturbations of iron regulation [38,318,319]. During the early follicular phase (days 0–5), 
lower estrogen and progesterone hormone concentrations and iron regulatory hormonal 
activity may facilitate increased iron absorption and recycling [38]. In the late follicular 
phase (days 6–14), the gradual rise in estrogen maintains low hepcidin activity, enabling 
iron absorption and recycling in the days following menses [320]. At ovulation, estrogen 
and testosterone peak, associated with increased iron uptake and erythropoiesis [321]. 
Following ovulation, increases in progesterone increase hepcidin expression, which limits 
iron utilization [322]. The increase in inflammatory markers prior to menses [1,38] can 
exacerbate hepcidin activity, causing further limiting of iron utilization. Previous research 
results demonstrate a rebound in hepcidin, serum iron, and transferrin saturation post- 
ovulation that stabilizes during the luteal phase [320]. Thus, iron supplementation in 
eumenorrheic female athletes may be more effective in the follicular vs. the luteal phase, 
although additional research is needed to elucidate phase-based supplementation [323]. 
As hormonal contraceptive use is protective against iron deficiency [324], it is not 
recommended for oral contraceptive users to supplement iron without medical advice. 
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Moreover, a slower recovery of post-exercise basal hepcidin levels has been observed in 
post-menopausal women for up to 24 h [325], thus planning the timing of iron supple-
mentation in postmenopausal women who exhibit iron deficiency may increase iron 
homeostasis in this population.

8. Conclusion

Although women have been underrepresented in nutrition, sport, and exercise science 
research, evidence continues to accumulate that highlights how sex differences and sex 
hormones influence the nutritional requirements to maximize health, performance, and 
recovery of female athletes. Due to the known wide intra-individual differences created 
secondary to specific hormonal profiles of female athletes, diligent tracking of menstrual 
cycle and hormonal contraceptive use in premenopausal women is recommended. 
Furthermore, attention should be paid in female athletes who may be transitioning from 
peri to post-menopausal status to best understand their unique patterns, which can provide 
insight and objective data on personalized approaches to nutritional strategies. Specific 
attention to overall energy status is the biggest driver in facilitating positive exercise training 
adaptations, promotion of optimal performance, and health outcomes. From there, key 
considerations should be made relative to the sex hormone's effects on metabolism. 
A widespread lack of studies in females assessing nutritional strategies for performance, 
body composition manipulation, and supplementation exists across the literature. It is our 
hope that this position stand will bring to light many of these key areas and motivate future 
scientific investigations to incorporate more females into all studies involving these outcomes.
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