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Abstract

Objective

To assess the responses to taper in endurance athletes using meta-analysis.

Methods

Systematic searches were conducted in China National Knowledge Infrastructure, PubMed,

Web of Science, SPORTDiscus, and EMBASE databases. Standardized mean difference

(SMD) and 95% confidence interval (CI) of outcome measures were calculated as effect

sizes.

Results

14 studies were included in this meta-analysis. Significant improvements were found

between pre- and post-tapering in time–trial (TT) performance (SMD = −0.45; P < 0.05) and
time to exhaustion (TTE) performance (SMD = 1.28; P < 0.05). However, There were no

improvements in maximal oxygen consumption ( _VO
2max

) and economy of movement (EM)

(P > 0.05) between pre- and post-tapering. Further subgroup analysis showed that tapering

combined with pre-taper overload training had a more significant effect on TT performance

than conventional tapering (P < 0.05). A tapering strategy that reduced training volume by

41–60%, maintained training intensity and frequency, lasted�7 days, 8–14 days, or 15–21

days, used a progressive or step taper could significantly improve TT performance (P <
0.05).

Conclusions

The tapering applied in conjunction with pre-taper overload training seems to be more con-

ducive to maximize performance gains. Current evidence suggests that a�21-day taper, in

which training volume is progressively reduced by 41–60% without changing training inten-

sity or frequency, is an effective tapering strategy.
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Introduction

The taper is a pre-competition training strategy that reduces training load in a progressive,

non-linear manner to induce optimal athletic performance at the right moment of the season

[1]. Based on positive (adaptations) and negative (fatigue) effects of training load on the

human body [2], the taper aims to reduce negative impact and increase positive training-

induced adaptations [3,4], by reducing training load to balance the antagonistic effects of accu-

mulated fatigue and training-induced adaptations [5]. Since 1985, when Costill et al. [6] first

experimentally evaluated the impact of pre-competition training load reduction in swimmers,

investigators have conducted numerous experimental studies on swimmers [7–9], cyclists

[10,11], and runners [12,13] to verify the effect of pre-competition taper on the athletic perfor-

mance based on physiological and psychological factors affecting such performance, and to

explore tapering strategies for different sports.

The key to the pre-competition taper as a typical strategy for improving the performance of

endurance athletes is to integrate a scientific arrangement of training variables such as training

intensity, volume, frequency, duration of taper, and type of taper [1,14]. Most of the studies

confirm that their designed pre-competition tapering strategies could improve sports perfor-

mance [15–18]. However, researchers disagree on which variables and how much to change.

Jafer et al. [19] found that a 50% reduction in training volume significantly improved long-dis-

tance runners’ performance. However, some studies have concluded that training volume

should be reduced even more, by at least 60%, to significantly improve the athletic perfor-

mance of endurance athletes in competitions [20]. In addition, a small number of studies have

modified pre-competition training load by reducing intensity [10,21]. These studies vary

widely on taper duration, ranging from 7 to 28 days. Most studies have used a duration of

8–14-day taper [22], but some have used that a shorter (� 7 days) [23] or longer (> 28 days)

[24] duration. However, all these durations of taper can yield positive training effects for ath-

letic competitions. In addition, the types of tapering including step and progressive tapers

have been proven effective [25], however, the progressive taper appears to be more successful

[26]. In summary, pre-competition tapering methods in the aforementioned studies differ sig-

nificantly, and it is still unclear about which tapering are better at improving the performance

of endurance athletes.

Previous meta-analyses (249 swimmers, 80 road cyclists, and 110 track runners) confirmed

the benefits of pre-competition tapering on improving sports performance and suggested that

a duration of 14-day, with no change in training intensity nor frequency, but with training vol-

ume exponentially reduced by 41–60%, appears to be the most effective pre-competition taper-

ing strategy [27]. Despite this meta-analysis evaluating the effects of taper component changes

on performance in competitive athletes, the limitation is that this study focused not only on

endurance athletes but also sprinters. We did not perform a comparative analysis of the

reported type of sports event, and therefore the authors could not provide more specific rec-

ommendations on endurance sports. Given the differences sport-to-sport and athlete-to-ath-

lete, these findings might not accurately reflect the characteristics of tapering for endurance

sports. Although the application effects of tapering in endurance events have received much

attention in the last decade [13,22,28–31], it is very difficult for athletes, coaches, and research-

ers to find tapering strategies to increase performance in endurance athletes. The previous sys-

tematic reviews have helped to shed light on the effects of tapering strategies on competitive

performance [30,32], and on nutrition, hydration, and recovery strategies during pre-competi-

tion taper [30]. However, these reviews did not address typical indicators used to evaluate spe-

cific sports and aerobic capacities, such as maximal oxygen consumption ( _VO
2max

), time to

exhaustion (TTE), and economy of movement (EM), which determine endurance
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performance [33–38]. These limitations have a significant impact on how tapering measures

are interpreted to utilize effective evidence-based practices for endurance athletes. Therefore,

it is very difficult for athletes, coaches, and researchers to identify appropriate tapering strate-

gies to enhance performance in endurance athletes. It seems necessary to perform a systematic

review and meta-analysis of the literature on the effect of tapering on endurance performance.

A TT test is defined as an endurance performance test with a known endpoint. In this type

of test, subjects are required to complete a set distance in as fast a time as possible [37]. TT is

the measurement of the time taken to complete a given distance (e.g., a race or time trial) [36].

It can effectively simulate the physiological responses of athletes during competition, is often

used to evaluate the specific performance of athletes, and is closely related to endurance perfor-

mance [36,39]. TTE, _VO2max, and EM are typical indicators that objectively and directly

reflect specific exercise and aerobic capabilities [34,37,39,40]. The TTE test requires subjects to

perform submaximal exercise intensity to exhaustion until they no longer maintain the

required work rate (e.g., speed or power output) [33,37]. _VO2max is defined as the maximal

oxygen consumption rate measured during incremental exercise [41]. EM is defined as the

oxygen consumption during exercise to generate a given running speed or cycling power out-

put at a given submaximal exercise intensity [4,38].

The purpose of this systematic review and meta-analysis was to assess the effects of tapering

on TT, TTE, _VO
2max

, and EM, all of which are known to be determinants of endurance sport

performance [33–38]. Furthermore, a subgroup meta-analysis was conducted to summarize

the characteristics of training intensity, training volume, frequency, duration, and type of pre-

competition taper to determine an optimal pre-competition tapering strategy and provide

more feasible guidance for training before endurance conoetitions.

Methods

This systematic review was conducted following the guidelines of the Preferred Reporting

Items for Systematic Review and Meta-Analysis (PRISMA) [42].

Literature search

Two independent reviewers (WZQ and GWF) performed the search in the following data-

bases: China National Knowledge Infrastructure (CNKI), PubMed, Web of Science, SPORT-

Discuss, and EMBASE. An electronic search was conducted that included all publication years

(up to and including September 18, 2022). Reviewers used the following Boolean search

phrases in all of the above-mentioned databases: (taper*) AND (endurance training OR endur-

ance exercise*OR swim*OR cycli*OR runn*OR rowi*OR race walk*OR ski*OR skat*OR
sport*OR exercise*) AND (performance* OR competition* OR training). In addition to the

primary search, we also performed a secondary search that included checking the reference

lists of all included studies. Search terms were obtained from reviews of previous studies and

from common synonyms used in discussions of tapering and endurance events.

Eligibility criteria

We included studies that fulfilled the following criteria: 1) Participants: subjects were endur-

ance athletes ( _VO
2max

> 55 ml/kg/min) [43]. If the included studies did not provide _VO
2max

values, training status was determined by the classification used in each study, and the partici-

pants were at least well-trained athletes [44,45]; 2) Interventions: the experimental design pro-

vided detailed pre-competition tapering data, including training intensity, volume, frequency,

type, and duration. A taper is a short-term (�6 days [46,47]) reduction in training load (e.g.,
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the alteration of training volume, intensity, and frequency); 3) Study design: randomized con-

trolled trial (RCT) or controlled trial [48,49]; 4) Outcome indicators: TT tests that required

participants to complete a set distance, TTE, _VO
2max

, and EM. Measurements of TT and TTE

refer to the total time desired to achieve the whole goal quantity, including direct measure-

ments such as performance during either a constant distance (at least middle distance) or a

constant intensity test. We chose TT as the primary-outcome index for examining athletic per-

formance, and the endurance performance–related indices TTE, _VO2max, and EM as second-

ary-outcome indices, to assess the effects of pre-competition taper on sports performance in

endurance events; and 5) Quality assessment: at least moderate study quality on the Physio-

therapy Evidence Database (PEDro) scale or better (> 4 points) [50–52].

Exclusion criteria were as follows: 1) experimental data could not be extracted and

remained unavailable after we contacted the authors; 2) the full text of the study was unavail-

able; 3) taper duration was less than 6 days; 4) published in a non-English language; or 5) TT

not based on distance. Time-based TT tests (e.g., a 60-minute time trial or a 5-minute TT), in

which an athlete attempts to travel the furthest distance or to maintain the highest average

power or velocity within a set duration, are common. However, relative to time-based TT

tests, TT tests that require participants to complete a set distance are the most common type of

TT test, which most closely represent a true race environment. They may be the most appro-

priate for endurance performance assessment [53].

Study selection and methodological quality assessment

The lead author removed duplicates of articles identified across numerous search databases

and screened the titles and abstracts of the search results. If a definitive decision could not be

made, studies were taken forward for a full study review. The eligibility of the full-text articles

was determined according to the inclusion and exclusion criteria by two authors indepen-

dently. A discussion between the two authors resolved any disagreements regarding eligibility.

If necessary, a third researcher was consulted to reach a consensus.

We used the PEDro scale to evaluate study quality. This scale has a total of 11 scoring points

ranged from 0 to 10. Scoring is as follows: 9–10 points indicate high quality, 6–8 points indi-

cate slightly high quality, 4–5 points indicate moderate quality, and< 4 points indicate low

quality. Only studies with better than moderate quality were included [50,51].

Data extraction

The two reviewers (WZQ and GWF) independently extracted information from each study,

including the characteristics of participants, tapering strategies, and outcome data (Table 1):

1. Participants: age, sex, sample size, training status, and TT distance.

2. Interventions: training intensity, volume, frequency, duration, type of tapering. In accor-

dance with the meta-analysis conducted by Bosquet et al. [27], we coded training intensity

(decreased or unchanged), volume (� 20%, 21–40%, 41–60%, or� 60%), frequency

(decreased or unchanged), duration of taper (� 7 days, 8–14 days, 15–21 days, or� 22

days), and type of tapering (progressive or step).

3. Outcome data: pre- and post-tapering mean ± standard deviation (SD) of TT, TTE, and

_VO
2max

. If only standard error (SE) was reported in the study, we used the formula SD = SE

×
p
N [54].
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Statistical analysis

We used Review Manager (RevMan) version 5.4 (Cochrane Collaboration, Oxford, UK) for

heterogeneity assessment, sensitivity analysis, synthesis of results, subgroup analysis, and forest

map creation. Because this study included both RCTs and controlled trials, and also included

different types of endurance events, we used the inverse-variance method for meta-analysis

based on type of experimental design, in accordance with the Cochrane Handbook for System-

atic Reviews of Interventions [61]. Standardized mean difference (SMD) and 95% confidence

interval (CI) of TT, TTE, _VO
2max

, and EM outcomes were calculated as effect sizes. Heteroge-

neity was quantitatively evaluated by I2 values: 25% (low), 50% (moderate), and 75% (high)

[62]. We used the Q statistic to test heterogeneity. The P-value for χ2 was< 0.1, indicating

whether a study showed statistically significant levels of heterogeneity [63].

Two investigators (WZQ and GWF) independently assessed the studies’ risk of bias by

interpreting the funnel in the Begg and Egger tests using STATA software version 16.0 (Stata

Corp., College Station, TX, USA).

Table 1. Characteristics and outcomes of included studies.

Study Age M/F Volume (%) Intensity (%) Frequency (%) Duration
(days)

Type Outcomes PEDro scores

Houmard et al. [15] 32.0±2.6 10/0 −70 U −17 21 S TT, TTE, EM
_
V

_
O

2max

5

McConnell et al. [55] 31.6±1.4 10/0 −66 −20 −50 28 S TT, TTE EM
_
V

_
O

2max

5

Houmard et al.
[56]

28.3±9.51 12/4 −85 U U 7 P TT, TTE, _V_
O

2max

6

Child et al. [57] 30.5±1.61 14/0 −85 U −14 6 P TT 6

Mujika et al. [46] 19.9±1.8 8/0 −75 U U 6 P TT 6

−50 U U 6 P

Mujika et al. [58] 19.4±3.2 9/0 −69 U U 6 P TT 6

−65 U −33 6 P

Neary et al. [10] 22.6±4.7 11/0 −30 U U 7 S TT 6

−50 U U 7 S

−80 U U 7 S

Neary et al. [16] 25±6 22/0 −48 U U 7 P TT, _V_
O

2max

6

U −20 U 7 P

Neary et al. [17] 22.6±4.7 11/0 −30 U U 7 S TT 6

−50 U U 7 S

−80 U U 7 S

Luden et al. [14] 20±1 7/0 −50 U U 21 S TT, _V_
O

2max
, EM 5

Ishak et al. [59] 16.9±0.8 27/0 −43 U U 14 P TT, _V_
O

2max

6

−46.5 U U 14 P

Skovgaard et al. [13] 29.2±4.5 8/3 −49 U U 18 S TT, TTE, EM 5

Spilsbury et al. [30] 21.7±3.0 10/0 -30 U -10 7 P TT 6

Spilsbury et al. [60] 21.4±4.2 8/0 -32 U -18 7 P TT 5

-56 U -18 7 P TT 5

U = unchanged; S = step; P = progressive; TT = time trial; TTE = time to exhaustion; _V_
O

2max
= maximum rate of oxygen consumption measured during incremental

exercise; EM = economy of movement.

https://doi.org/10.1371/journal.pone.0282838.t001
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Results

Characteristics of included studies

A total of 2309 studies were identified with an additional 6 studies included from other

sources. After excluding duplicates and screening the title, abstract, or full text, we ultimately

included 14 studies in this meta-analysis (Fig 1). These 14 studies included 174 athletes, aged

17–32 years. Their sports were mainly middle-distance, long-distance, and ultra distance run-

ning, as well as cycling. We extracted TT data from all 14 studies, 4 studies provided TTE data,

8 studies provided _VO
2max

data, and 6 studies provided EM data (Table 1). In the included

study, TT was measured at different distances, ranging from 800 m to 40 km. Performance

was assessed on the track, treadmill, and cyclcle ergometer in the selected studies.

Table 1 shows the details of different tapering strategies included in this meta-analysis. Mul-

tiple information from the same eligible study needs to be collated. Twenty-one data sets main-

tained training intensities [10(3), 13, 14, 15, 16, 17(3), 30, 46(2), 58(2), 59(2), 60(2), 61, 62],

while two decreased it [16,55]. The range of training volume reduction was� 85%. One data

set reduced volume by� 20% [16], four data sets by 21–40% [10,17,30,60], nine data sets by

41–60% [10, 13, 14, 16, 17, 46, 58(2), 60], and nine data sets by� 60% [10, 15, 17, 46, 59(2), 63,

61, 62]. Regarding the reduction of volume, different training methods were usually applied,

such as a progressive reduction in training distance, a step reduction in both training duration

and frequency, and a step reduction in training hours during tapering days. Training fre-

quency was maintained in sixteen data sets [10(3), 13, 14, 16(2), 17(3), 46(2), 58(2), 59, 61] and

decreased in seven. The shortest duration of taper was 6 days, the longest 28 days; seventeen

data sets used� 7 days [10(3), 16(2), 17(3), 30, 46(2), 59(2), 60(2), 61, 62], two data sets used

8–14 days [58(2)], three data sets used 15–21 days [15, 58(2)], and one data set used� 22 days

[64]. Ten data sets used a step taper [10(3), 13, 14, 15, 17(3), 63], and thirteen data sets used a

progressive taper [16(2), 30, 46(2), 58(2), 59(2), 60(2), 61, 62].

Study quality assessment

Table 1 shows the results of the quality assessment. Study quality ranged from 5 to 6 points.

Five studies were classified as being of moderate quality, while nine were considered to have

slightly high quality.

Synthesis of results

Time trial performance. Fourteen studies reported data for TT. Levels of heterogeneity

were low among these studies (I2 = 8%, P> 0.1). Results for overall effects on TT performance

showed a significant improvement between pre- and post-tapering (SMD, −0.45; 95% CI,

−0.68 to −0.23; P< 0.05; Fig 2). Significant improvement was also observed in experimental

groups compared with control groups (SMD, −0.73; 95% CI, −1.25 to −0.21; P< 0.05; Fig 3),

with a low level of heterogeneity (I2 = 31%, P> 0.1). Begg and Egger tests results showed no

significant publication bias in the experimental group for TT (P> 0.1).

Subgroup analysis with or without overload training before taper showed significantly

lower heterogeneity in both subgroups, with I2 = 0% (P> 0.1) in both the overload training

group and conventional taper group. This indicated that pre-taper overload training might

have been the primary source of heterogeneity. We observed a significant difference between

groups when we compared the overload training group with the conventional taper group

(P< 0.05) (Fig 4).

To further explore potential variables affecting TT improvement in endurance athletes, we

conducted a subgroup analysis of training intensity, volume, frequency, duration of taper, and
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Fig 1. Flow chart of study selection.

https://doi.org/10.1371/journal.pone.0282838.g001

Fig 2. Forest plot of effect size between pre- and post-tapering for TT.

https://doi.org/10.1371/journal.pone.0282838.g002
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type of taper pattern. The results showed that a tapering strategy with a reduction in training

volume of 41–60% that maintained training intensity and frequency, lasted� 21 days, and

used progressive or step tapering could significantly improve the TT of endurance athletes

(P< 0.05; Table 2).

1. Training intensity subgroup analysis showed that maintaining training intensity had a

larger and significant overall effect on TT improvement (SMD, −0.55; 95% CI, −0.79 to

−0.31; P< 0.05), while decreasing training intensity did not improve TT (SMD, 0.25; 95%

CI, −0.67 to 1.17; P> 0.05) (Table 2).

2. Training volume subgroup analysis showed that a reduction in training volume of 41–60%

achieved the largest and most significant improvement in TT (SMD, −0.77; 95% CI, −1.23

to −0.30; P< 0.05). The overall effects for the� 20%, 21–40%, and� 60% groups were

smaller and did not reach significance levels (P> 0.05).

3. Training frequency subgroup analysis showed a significant improvement in TT in the sub-

groups in which training frequency was unchanged (SMD, −0.53; 95% CI, −0.82 to −0.25;

P< 0.05), compared with those in which training frequency was decreased (SMD, −0.32;

95% CI, −0.76 to 0.13; P< 0.05).

4. Subgroup analysis of taper duration showed that the subgroup with duration of 8–14-days

experienced the largest overall effect (SMD, −1.47; 95% CI, −2.75 to −0.19; P< 0.05), signif-

icantly better than the other subgroups. The 15–21-day group experienced the next-largest

effect, and the smallest was seen in the� 22-day group. All three subgroups with durations

of� 21 days significantly improved their TT (P< 0.05). Differences between subgroups

were significant (P< 0.05).

Fig 3. Forest plot of effect size between experimental and control athletes for TT.

https://doi.org/10.1371/journal.pone.0282838.g003

Fig 4. Forest plot of effect size between overload training group and conventional tapering group athletes for TT.

https://doi.org/10.1371/journal.pone.0282838.g004
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5. Subgroup analysis of tapering type showed that the progressive-taper subgroup saw a larger

and more significant improvement in TT (SMD, −0.51; 95% CI, −0.81 to −0.20; P< 0.05).

There was also significant effect of the step taper on change in TT performance(P< 0.05).

Time to exhaustion. Four studies reported data for TTE. Moderate levels of heterogeneity

existed among these studies (I2 = 64%, P< 0.1). Results for overall effects on TTE showed a

significant improvement between pre- and post-tapering (SMD, 1.28; 95% CI, 0.43 to 2.12;

P< 0.05; Fig 5).

Maximal oxygen consumption. Six studies reported data for _VO
2max

. We observed high

levels of heterogeneity among these studies (I2 = 87%, P< 0.1). Results showed that there were

no improvement on _VO
2max

between pre- and post-tapering (SMD, 0.20; 95% CI, −0.93 to

1.33; P> 0.05; Fig 6). However, the studies with both groups showed a significant improve-

ment in the experimental groups compared with the control groups (SMD, 0.77; 95% CI, 0.31–

1.23; P< 0.05; Fig 6), with a low level of heterogeneity (I2 = 0%, P> 0.1).

Economy of movement. Four studies reported data for EM, showing moderate levels het-

erogeneity among them (I2 = 57%, P< 0.1). Results showed that there were no improvement

on EM between pre- and post-tapering (SMD, −0.47; 95% CI, −1.06 to 0.12; P> 0.05; Fig 7).

Table 2. Subgroup analysis of the effects of tapering on TT.

Category N SMD (95% CI) P I
2/% Pinter-group

Training intensity

Decreased 18 0.25 (−0.67, 1.17) 0.59 45 0.10

Unchanged 143 −0.55 (−0.79, −0.31) <0.001 0%

Training volume

�20% 8 −0.25 (−1.27, 0.77) 0.64 N 0.32

21–40% 40 −0.45 (−0.90, −0.00) 0.05 0%

41–60% 54 −0.77 (−1.23, −0.30) 0.001 22%

�60% 59 −0.21 (−0.58, 0.16) 0.26 0%

Training frequency

Decreased 57 −0.32 (−0.76, 0.13) 0.16 27% 0.42

Unchanged 104 −0.53 (−0.82, −0.25) 0.0002 0%

Duration

�7 days 105 −0.36 (−0.63, −0.08) 0.01 0% 0.02

8–14 days 18 −1.47 (−2.75, −0.19) 0.02 63%

15–21 days 28 −0.78 (−1.43, −0.14) 0.02 24%

�22 days 10 0.69 (−0.22, 1.60) 0.13 N

Type of taper

Step 63 −0.38(−0.73, −0.04) 0.03 35% 0.60

Progressive 98 −0.51(−0.81, −0.20) 0.001 0%

https://doi.org/10.1371/journal.pone.0282838.t002

Fig 5. Forest plot of effect size between pre- and post-tapering for TTE.

https://doi.org/10.1371/journal.pone.0282838.g005
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Discussion

Summary of main result

The main finding of this meta-analysis was that pre-competition tapering significantly

improved TT and TTE (P< 0.05) and had no effects on _VO
2max

and EM (P> 0.05). Further

subgroup analysis results showed that pre-competition tapering combined with pre-taper

overload training had a significant effect on TT improvement (P< 0.05), which was superior

to that of conventional tapering (P< 0.05 for the difference between groups). A tapering strat-

egy that reduced training volume progressively by 41–60%, maintained training intensity and

frequency, lasted�21 days could significantly improve TT. In endurance athletes, the primary

mechanism for tapering to improve endurance sports performance is to maintain or further

increase aerobic exercise capacity while eliminating the psychological and physiological stress

accumulated from training [23,27]. For example, cardiac pump function and work efficiency

improved [10,65]; blood testosterone and blood testosterone/cortisol ratio improved

Fig 6. Forest plot of effect size between pre- and post-tapering for _
V

_
O

2max
(A), and between experimental and control

athletes for _
V

_
O

2max
(B).

https://doi.org/10.1371/journal.pone.0282838.g006

Fig 7. Forest plot of effect size between post and pre-tapering for EM.

https://doi.org/10.1371/journal.pone.0282838.g007
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significantly, whereas blood creatine kinase concentration and cortisol concentration

decreased significantly [57,58,66]; heart rate to rating of perceived exertion (RPE) ratio

decreased [10], and emotional state [67,68] improved. In addition, studies have shown that

tapering in endurance athletes significantly increases blood volume, hemoglobin, and erythro-

cyte pressure volume [1], and improves mitochondrial respiratory function [68]. The improve-

ment of these indicators enables the improvement of the oxygen-carrying and oxygen-

transport capacity, maintaining a higher percentage of oxygen utilization capacity, which ulti-

mately leads to an increase in endurance performance. The results of the present meta-analysis

showed that there was no effect of pre-competition taper on _VO
2max

(SMD, 0.20; 95% CI,

−0.93 to 1.33) and EM (SMD, −0.47; 95% CI, −1.06 to 0.12) (P> 0.05), whereas a significant

improvement was found for TTE (SMD, 1.28; 95% CI, 0.43–0.12; P< 0.05). The present study

confirms previous findings. Busso et al. [2] indicated that long-term high-intensity sports

training leads to a continuous reduction in endurance athletes’ training-induced adaptability,

which is often caused by a decline in aerobic exercise fatigue tolerance caused by fatigue accu-

mulation. TTE reflects the fatigue tolerance of these athletes [33], which is closely related to

performance [37]. The increase in TTE implied that the taper played a significant role in pro-

moting the regulation and recovery of fatigue, improving the body’s anti-fatigue ability, and

delaying the occurrence of sports fatigue.

Overload period preceding the taper

The tapering applied in conjunction with pre-taper overload training seems to be more condu-

cive to maximize performance gains. For further exploration the training features of overload

period preceding the taper, we further tracked the original research studies and found that the

mean training intensity of pre-taper overload training remained at 85–95% of maximum heart

rate (HRmax), an increase of 23–26% over the mean training intensity of normal training. This

was consistent with the findings of Thomas et al. [69] that an increase in pre-taper training

load of approximately 20–30% was effective in improving post-taper performance. Another

study found that pre-taper overload training produced higher training-induced adaptations

and facilitated supercompensation [70]. The studies by Hellard et al. [71] and Le Meur et al.

[72] showed that improvements in _VO
2max

and heart pumping function of athletes who under-

went overload training pre-taper were significantly higher than those of athletes who under-

went conventional tapering only.

Application strategy for taper

Intensity. Training intensity is an essential variable in optimising the taper. Our meta-

analysis showed that a decrease in training intensity did not increase TT (SMD, 0.25; 95% CI,

−0.67 to 1.17; P> 0.05), whereas maintenance of training intensity significantly increased TT

(SMD, −0.55; 95% CI, −0.79 to −0.31; P< 0.05). In the included studies that examined mainte-

nance of training intensity, the intensity of middle-distance running events (800 m, 1500 m)

during tapering were maintained at 95–100% of race pace, while the endurance events such as

long- and ultra-long-distance running was maintained at 85–95% _VO
2max

(5000 m, 20 km

cycling) or 82–95% HRmax (5000 m, 10,000 m run; 20 km cycling; half marathon) during

tapering.

It should be pointed out that the above-mentioned studies mainly considered average

intensity during the tapering period. The increase in TT was also closely related to the manage-

ment of training intensity [29]. When the athlete recovered better from the previous overload,

training could be performed at a higher intensity in the later taper phase [4]. Therefore, some

studies have aeeerted that when training volume is dramatically decreased, high-intensity
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training (HIT) is crucial for maintaining and improving physical fitness and performance dur-

ing tapering [27,73–75]. Physiological responses to this strategy may include increases in buff-

ering capacity [56], oxidase activity, red blood cell volume, and muscle glycogen concentration

[47], all of which may contribute to improved performance during a subsequent events. This is

supported by training data from the most successful female cross-country skier globally. Solli

et al. [64] reported that the proportion of HIT progressive increased in the the 3 weeks before

the major competition, with three HIT sessions completed in the last 7 days. From the perspec-

tive of the intensity distribution characteristics included in this meta-analysis, we found that

most pre-competition tapering strategies in the research used HIT. The distribution of training

intensity in the included studies was characterized by alternation among HIT, moderate-inten-

sity continuous training (MICT), and low-intensity continuous training (LICT). However, the

included studies did not detail the intensity distribution characteristics. Generally speaking, as

the competition day was approaching, endurance athletes tended to reduce the duration of

exercise, and increase the number of exercises of a specific intensity to further increase HIT

intensity to that of race pace [19], 90% _VO
2max

[17,76], or> 90% HRmax [59,77]. In general,

intensity distribution grew more polarized as the major competition approached [76], espe-

cially for endurance events such as long- and ultra-long-distance running. Some middle-dis-

tance events used HIT with a higher intensity than race pace (115%) for training during the

tapering [29]. However, HIT at a higher intensity than race pace was less effective in improving

TT than HIT at race pace [29]. For middle-distance events, race pace is already relatively high

in intensity, using a continuous HIT that exceeds race pace for pre-competition training can

increase the risk of injury [28]. In addition, setting HIT intensity to match race pace also helps

athletes further adapt to the rhythm of the sport [28,58,71]. Therefore, in practice, especially

close to the competition day, the intensity of most middle-distance endurance events tends to

use race pace as HIT intensity.

Volume. Existing studies have confirmed that pre-competition volume reduction plays an

essential role in reducing accumulated fatigue and attaining maximal performance in competi-

tion. Determining the appropriate range of volume reduction is the key factor [78,79]. The

results of this meta-analysis showed that a reduction in volume of 41–60% could significantly

increase TT (SMD, −0.77; 95% CI, −1.23 to −0.30; P< 0.05). There was a greater improvement

in TT following volume reduction compared to intensity (SMD, −0.55) and frequency (SMD,

−0.53). The subgroup analysis indicates that the 41–60% volume reduction subgroup prouced

a large effect compared to the other three (� 20%, 21–40%, and� 60%) subgroups. These

results were consistent with those of Chen et al. [70] who adopted the gray modeling method

and curve parameter estimation method to construct pre-competition load change patterns

for different event groups and found that the pre-competition volume reduction for long-dis-

tance endurance events was ~46%. The above results showed that a reduction in volume

of� 40% was not enough to improve to TT performance, which might be due to a small vol-

ume reduction’s inability to eliminate exercise fatigue in a timely and rapid manner [80]. In

comparison, a reduction in volume of� 60% had no significant effect on TT improvement,

which was related to the lack of quantity and quality of endurance training due to a larger vol-

ume reduction [13]. According to Jafer et al. [19], significant physiological changes (e.g., aver-

age red blood cell count, hemoglobinconcentration, and hematocrit percentages) that improve

performance have been found by reducing volume up to 50% before a competition. Neary

et al. [10] performed a comparative study with three reductions in training volume—30%,

50%, and 80%—in cyclists and concluded that VO2 and O2 pulse were optimized only with a

50% reduction in training volume. A meta-analysis by Bosquet et al. [27] also found that a 21–

40% reduction in volume also significantly affected TT improvement (P< 0.05). This might
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be because our meta-analysis only included endurance events, whereas the meta-analysis

developed by Bosquet et al. [27] included both speed events (249 athletes total) and endurance

events (190 athletes total). Li et al. [79] pointed out that pre-competition volume was reduced

more significantly for endurance events than for speed events. This showed that the range of

volume reduction could vary by sport events. Whether the volume reduction range differed by

type of endurance event (middle-distance, long-distance, ultra-long-distance) is unclear. To

maximize the effect of pre-competition volume reduction on sports performance and to make

the implementation of pre-competition taper strategies more pertinent and maneuverable,

future research should further investigate differences in volume reduction between middle-

distance endurance and long-distance/ultra-long distance endurance events.

Frequency. Training load can also be adjusted by changing training frequency. However,

the results of studies on the effect of such change on sports performance are inconsistent, and

whether a clear relationship exists between them is still unclear [79]. The pooled results of the

present meta-analysis showed that a decrease in training frequency had no significant effect on

TT (SMD, −0.32; 95% CI, −0.76 to 0.13; P> 0.05) and that maintenance of training frequency

could significantly improve TT (SMD, −0.53; 95% CI, −0.83 to −0.25; P< 0.05). The reason

might be that training frequency is often closely related to the feeling of movement and the

state of competition. Maintenance of training frequency has been found to improve athletes’

pre-competition motor sensation and lead to a higher level of competitive performance, both

of them would contribute to attaining optimal performance in competition [1,81]. Mujika

et al. [58] compared the effects of training frequency changes on TT during 6 days of tapering

in 10 well-trained male middle-distance runners; the results showed that TT decreased

(1.39%) in the maintained training frequency group and a trivial (only 0.39%) in the decreased

training frequency group. The investigators attributed these results to decreased motor sensa-

tion and technical proficiency due to the decrease in training frequency. That study found no

difference in physiological response of athletes in different groups after tapering. In light of

this, some investigators have proposed that for endurance events with lower technical content

(e.g., long-distance running and cycling events), a reduction in training frequency of ~20%

might be the limit to avoid a decrease in TT [82]; for endurance events with high technical

requirements (e.g., swimming, cross-country skiing, and kayaking), maintenance of training

frequency can effectively prevent a decline in technical efficiency [25]. It should be pointed out

that the effect of decreased training frequency on performance often interacts with other train-

ing variables such as maintenance of training intensity or volume reduction; therefore, clarify-

ing its exact impact on sports performance is difficult [27]. Although further future

exploration of the interactions between changes in training frequency, intensity, and volume

remains necessary, the above results showed that training frequency maintenance during

tapering could effectively promote improvement in sports performance, especially in endur-

ance events that are highly dependent on technology and high technical proficiency.

Duration of tapering. The key to determining optimal taper duration is a scientifically

guided search for the best balance between fatigue recovery and performance improvement.

The results of this meta-analysis showed that endurance athletes achieved the largest effect size

during 8–14 days of taper (SMD, −1.47; 95% CI, −2.75 to −0.19; P< 0.05). This was similar to

the meta-analysis results of Bosquet et al. [27]. The additional finding from the present study

was that taper durations of� 7 and 15–21 days also produced positive training effects

(P< 0.05). The reason might be related to the different types of athletes included. According

to Skorski et al. [83], in addition to _VO
2max

and EM, anaerobic power and capacity are impor-

tant factors that determine performance in road cycling. This is because in many road cycling

races, first place can be decided in the final sprint, and cyclists with high anaerobic capacity
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and power can achieve better results [31,84]. Therefore, it may be important to determine the

appropriate reduction time to optimize the power and anaerobic capacity of cyclists. Studies

have indicated that 1–2 weeks of reduction is the time needed to optimize power and/or anaer-

obic capacity in cyclists [84,85]. When training stress decreases, there is a period of rapid adap-

tation and fiber hypertrophy, as evidenced by a 14.2% increase in the cross-sectional area of

type IIa fiber in cyclists [86]. However, athletes who participate in cyclic sports, such as run-

ning, may require more time (2–3 weeks) to reach peak performance [27,87]. Running perfor-

mance has also been found to improve after 1 or 4 weeks of tapering, but some athletes may

experience negative results [27]. The increase in sports-specific muscle power during tapering

tends to be greater than the improvement in aerobic fitness [88], which may be the main rea-

son for the different durations of taper in cycling and running. The results of the present meta-

analysis indicated that a period of 8–14 days appears to be the optimal taper duration for

cycling and running. However, the effect of taper is also influenced by intensity, volume, fre-

quency, and individual differences [1,89]. Recovery from a reduction in training load varies

between individuals, with no clear timeline, implying that the corresponding optimal taper

duration also varies [90]. Unfortunately, there are no experimental data on the difference in

pre-competition training load reduction between cycling and running. Future research is

needed to investigate the combination of training load reduction and its duration to find

appropriate strategies for pre-competition tapering in cycling and running. Thomas and Busso

[69] used a non-linear model to investigate factors influencing taper duration and found that

range of load reduction and the presence or absence of overload training before tapering had a

significant impact on taper duration. The results of the present meta-analysis fell within the

4–35-day taper duration range that was observed in experimental studies to effectively attain

better sports performance [1]. In summary, we concluded that a taper lasting� 21 days could

achieve better sports performance. These data can provide a quantitative framework for train-

ing before endurance competitions. Regarding the improvement effect on performance, a

taper duration of 8–14 days seems to be the best option. Still, it must be recognized that dura-

tions of� 7 and 15–21 days are also effective in improving sports performance. Therefore, for

specific practice, taper duration should be set according to the adjustment range of the training

load and the athlete’s physiological and psychological responses.

Type of tapering. Taper pattern type is an organic integration of training intensity, vol-

ume, frequency, and reduction duration. Patterns are generally divided into progressive and

step tapers [91]. The training load of the progressive taper presents linear or exponential

changes, leading to the subdivision of this pattern into linear, fast-decay, and slow-decay

tapers. The step taper is standardized to reduce training load. The results of the present meta-

analysis showed that the progressive taper significantly improved TT (SMD, −0.51; 95% CI,

−0.81 to −0.20; P< 0.05); the step taper also had an effective effect on TT (SMD, −0.38; 95%

CI, −0.73 to −0.04; P< 0.05). This indicated that the range of reduction and speed of decrease

in training load might affect improvement in TT.

Different subtypes of progressive taper have dissimilar load characteristics of changes and

therefore different effects on sports performance. We did not perform subgroup analyses of

the linear and exponential tapers in the present meta-analysis because an exhaustive progres-

sive-taper scheme was not provided in the studies we included. Osman et al. [92] found that

exponential taper improved TT in 1500-m athletes better than linear taper. When further com-

paring the effects of the fast- and slow-decay taper patterns on sports performance, most stud-

ies concluded that fast decay reduced training load more than slow decay, which was more

conducive to eliminating accumulated fatigue in early training [25]. However, some studies

found that compared with the fast-decay taper pattern, the slow-decay pattern could more

effectively improve the performance of cyclists [69]. The reasons for these inconsistent results
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were not only due to the differences between athletes but also in the reduction range and speed

of training load reduction caused by different taper durations. Based on the above research

results, Wilson andWilson [81] suggested that the choice of the two exponential-taper types or

patterns should be combined with taper duration, with preference given to the fast-decay pat-

tern if taper duration is short and to the slow-decay pattern in cases of longer taper duration.

Limitations

1. The number of RCTs investigating pre-competition taper in endurance athletes was rela-

tively small [87]. This might have led to a decrease in the quality scores of the studies

included in this meta-analysis. More RCTs are needed to improve the methodological qual-

ity of the studies and assess the effect of taper moderators on field-based performance.

2. The endurance sports included in this meta-analysis were mainly cycling and running.

Middle- and long-distance speed skating, cross-country skiing, and kayaking were less well

represented, which could limit the application of our results to other endurance sports

events. Finally, the participants of the included studies were mostly male athletes, with few

female ones. The results may not be able to represent both male and female athletes in

endurance events.

3. Although this meta-analysis elaborated on the effect of pre-competition taper on the perfor-

mance of endurance athletes, there were specific differences in the physical and psychologi-

cal responses of athletes at different levels. Owing to the limited number of included

studies, we did not conduct a comparative analysis in greater depth of how tapering affected

athletes of different training statuses, which might have weakened or amplified the effect of

pre-competition tapering. Pre-competition tapering strategies for endurance athletes at dif-

ferent levels need further research and more experiments to confirm and maximize the pre-

competition training effect.

Conclusion

The tapering applied in conjunction with pre-taper overload training seems to be more condu-

cive to maximize performance gains. Current evidence suggests that a�21- day taper, in

which training volume is progressively reduced by 41–60% without changing training intensity

or frequency, is an effective tapering strategy. Future research should further explore individu-

alization of tapering strategy implementation and pay more attention to tapering strategies for

endurance athletes of different genders, at different levels, and participating in different types

of events to maximize pre-competition training effects.
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