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Background: Fatigue is oftentimes induced by high-intensity exercise potentially via

the exceeded amount of reactive oxygen species, leading to diminished functions

(e.g., aerobic capacity) and increased risk of injuries. Studies indicate that molecular

hydrogen (H2), with antioxidant and anti-inflammatory properties, may be a promising

strategy to alleviate fatigue and improve aerobic capacity. However, such effects have

not been comprehensively characterized.

Objective: To systematically assess the effects of in taking H2 on fatigue and aerobic

capacity in healthy adults.

Methods: The search was conducted in August 2022 in five databases. Studies with

randomized controlled or crossover designs that investigated the rating of perceived

exertion (RPE), maximal oxygen uptake (VO2max), peak oxygen uptake (VO2peak),

and endurance performance were selected. The data (mean ± standard deviation

and sample size) were extracted from the included studies and were converted

into the standardized mean difference (SMD). Random-effects meta-analyses were

performed. Subgroup analysis was used to analyze potential sources of heterogeneity

due to intervention period, training status, and type of exercise.

Results: Seventeen publications (19 studies) consisting of 402 participants were

included. The pooled effect sizes of H2 on RPE (SMDpooled = −0.38, 95%CI −0.65

to −0.11, p = 0.006, I2 = 33.6%, p = 0.149) and blood lactate (SMDpooled = −0.42,

95% CI −0.72 to −0.12, p = 0.006, I2 = 35.6%, p = 0.114) were small yet significant

with low heterogeneity. The pooled effect sizes of H2 on VO2max and VO2peak

(SMDpooled = 0.09, 95%CI−0.10 to 0.29, p= 0.333, I2 = 0%, p= 0.998) and endurance

performance (SMDpooled = 0.01, 95% CI −0.23 to 0.25, p = 0.946, I2 = 0%, p > 0.999)

were not significant and trivial without heterogeneity. Subgroup analysis revealed

that the effects of H2 on fatigue were impacted significantly by the training status

(i.e., untrained and trained), period of H2 implementation, and exercise types (i.e.,

continuous and intermittent exercises).

Conclusions: This meta-analysis provides moderate evidence that H2

supplementation alleviates fatigue but does not enhance aerobic capacity in

healthy adults.

Systematic review registration: www.crd.york.ac.uk/PROSPERO/, identifier:

CRD42022351559.
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1. Introduction

Aerobic capacity enables the performance of daily activities that

require repetitive movements of the body for prolonged periods of

time and/or against physical loads (e.g., exercise) (1). Fatigue induced

by such activities is a significant contributor to reduced performance,

as well as to exhaustion and weakness (2–5). Considerable effort has

therefore been taken to develop safe strategies to effectively reduce

fatigue and in turn improve aerobic capacity within both the sport

and non-sport setting.

One mechanism of fatigue development appears to be that

high-intensity exercise induces high amounts of reactive oxygen

species (ROS) within mitochondria, which leads to dysregulation

within human inflammatory and neuroendocrinological systems (6–

10). Studies have thus emerged to implement antioxidant nutrients,

such as vitamins and resveratrol, to alleviate fatigue and facilitate

recovery from fatigue (11, 12). These studies have shown promise, but

have also highlighted that the appropriate dosage of these nutrients

is critical and that the intake of excessive amounts may induce

side effects such as oxidative stress and the inhibition of exercise-

induced physiological adaptations within skeletal muscle and the

cardiovascular system (12–16).

Since Ohsawa’s pioneering discovery of the selective antioxidant

function of molecular hydrogen (H2), research suggests that the

intake of H2 holds promise as a non-toxic strategy to alleviate

exercise-induced oxidative stress and inflammation (17–19). Studies

have reported that H2 molecules administered via inhaled gas or

oral water, can penetrate cell membranes and diffuse rapidly into

organelles (20), thus selectively reducing OH and ONOO− (21, 22).

Recently, a number of relatively small studies have also demonstrated

that the intake of H2 via hydrogen-rich water (HRW) or hydrogen-

rich gas (HRG) may reduce fatigue and enhance aerobic capacity

(23–27). However, results of these studies have been inconsistent.

For example, one study observed that intake of 500mL hydrogen-

rich water within 10min before exercise increased maximum

oxygen uptake (VO2max) and reduced subjective fatigue during an

incremental cycling exercise in healthy young adults (25). In contrast,

another study reported that intake two doses of 290mL hydrogen-

rich water before an incremental treadmill running exercise could

not induce such benefits in endurance athletes (28). These and other

studies suggest that the impact of H2 supplementation may depend

upon dosage, as well as other factors including training status of the

individual and the type of exercise in question(23, 29, 30).

The purpose of this study was to examine the impact of H2

intake on fatigue and aerobic capacity by conducting a systematic

review and meta-analysis of available peer-reviewed publications

on the topic. Subgroup analyses were also completed in hopes of

guiding future research by providing insight into whether dosage,

training status, and exercise types potentially influences the impact

of H2 supplementation. Our overarching hypothesis was that H2

supplementation prior to or during exercise would significantly

reduce fatigue and increase aerobic capacity in healthy adults.

2. Methods

This study was conducted in accordance with the Preferred

Reporting Items for Systematic Reviews and Meta-analyses

(PRISMA) guidelines (31). This study was registered with

PROSPERO (CRD42022351559).

2.1. Data sources, searches, and study
selection

Two authors (KZ and ML) independently searched PubMed,

Web of Science, Medline, Sport-Discus, and PsycINFO databases

from inception to August 5, 2022, using a comprehensive search

strategy (eTable 1). Manual searches of the reference lists in the

related publications were also performed.

Studies were included if: (1) the participants were healthy

adults with a mean age≥18 years and were free from any dietary

supplements or medications; (2) the intervention was the intake

of molecular hydrogen by the participants; (3) the control group

with placebo; (4) the outcomes include at least one of RPE, blood

lactate, VO2max, peak oxygen uptake (VO2peak), and performance of

endurance exercises (i.e., cycling time to exhaustion, race time, etc.);

(5) randomized controlled or crossover design.

Studies were excluded if they were: (1) animal trials; (2) written

by non-English language, (3) without specific data; (4) review and

conference articles; and (4) repeated publications.

2.2. Data extraction, outcomes, and risk of
bias assessment

Two independent reviewers (ML and YW) extracted relevant

data from each included study (32), including the authors,

publication year, sample size, participant characteristics, H2

administration protocol, design of exercise, and outcome measures.

Any disagreement between the two authors was discussed with JZ

and DB until a consensus was achieved.

The primary outcome of fatigue was the RPE score and that

of aerobic capacity was VO2max, or VO2peak (33, 34) when VO2max

was not available. The secondary outcome of fatigue was blood

lactate and that of aerobic capacity was performance of endurance

exercises, including cycling time to exhaustion, and race time. The

mean and standard deviation of each outcome in post-tests in each

study were extracted. The post-test data of outcomes in each study

were summarized in eTable 2.

Two investigators (KZ and ML) independently assessed the risk

of bias in the included studies using the Cochrane Collaboration’s

tool (35), containing the following criteria: (1) selection bias; (2)

performance bias; (3) detection bias; (4) attrition bias; (5) reporting

bias; (6) other sources of bias. Studies were defined as high risk of bias

when ≥1 of these items were with a high risk of bias, and as low risk

if all these items were with low risk of bias. In other situations, it was

defined as moderate risk.

2.3. Statistical analysis and grading the
evidence

To determine the effect size (ES) of the intervention, the

standardized mean difference (SMD; Hedges’ g) of the outcomes

was calculated, with a 95% confidence interval (CI). ES was
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FIGURE 1

Study flowchart.

classified as trivial (<0.2), small (0.2∼0.49), moderate (0.5∼0.79),

or large (>0.8) (36). Meta-analysis was performed in Stata

v15.1 (STATA Corp., College Station, TX) using the inverse

variance method. Heterogeneity was assessed by measuring the

inconsistency (I2 statistic) of intervention effects among the trials.

The level of heterogeneity was interpreted according to guidelines

from the Cochrane Collaboration: trivial (<25%), low (25∼50%),

moderate (50∼75%), and high (>75%) (37). A random-effects

model was used to estimate the pooled effect in anticipation of

heterogeneity across the studies due to differences in participants

and intervention characteristics. The publication bias was assessed

by the funnel plot and Egger’s test. Subgroup analysis was used

to analyze potential sources of heterogeneity due to intervention

period, training status, and type of exercise. If a significant

asymmetry was detected, we used the Trim and Fill method for

sensitivity analysis of the results (38). All the statistical significance

was set at p < 0.05.

Additionally, the quality of evidence for outcomes was evaluated

using the Grading of Recommendations Assessment, Development

and Evaluation (GRADE), which characterizes the evidence on

the study limitations, imprecision, inconsistency, indirectness, and

publication bias (39, 40).

3. Results

The flow diagram of screening is shown in Figure 1. A total of

605 relevant publications were retrieved (PubMed n = 50, Web of

Science n= 305, Medline n= 210, Sport-Discus n= 36, PsycINFO n

= 3, Manual search n = 1), and 577 publications were excluded after

reviewing the titles and abstracts. After the evaluation of full texts,

11 of the 28 publications were removed, and thus 17 publications

consisting of 19 studies (i.e., 15 randomized crossover designs and

four randomized controlled trials) were included in the following
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TABLE 1 Characteristics of the included studies (n = 19).

Study Design Total no. of
participants

Age, mean ±
SD, y

No. of
participants
by sex (%)

Training
status

Protocol of
H2
administration

Exercise
protocol

Outcome
measures

Aoki et al. (42) RCD 10 20.9± 1.3 Male:10(100)

Female:0(0)

Elite socc er players HRW (H2

conc.:0.92∼1.02

ppm)

Three 500ml doses

before exercise

Cycling for 30min

at 75 % VO2max and

maximal knee

extension exercise

Fatigue: BLA↓

Others:

d-ROMs→ ;

BAP→ ;

CK→ ; Peak

torque→ ;

MF↓; MPF↓

Drid et al. (43) RCD 8 21.4± 2.2 Male:0(0)

Female:8(100)

Judo athletes HRW

300mL within

30min before

exercise

Special judo fitness

test

Fatigue: BLA↓

Aerobic

capacity:

Performance

index→

Others:

pH↓;Bicarbonate↓;HRmax →

;Resting

HR→ ;

Recovery HR

→

Da Ponte et al. (44) RCD 8 41± 7 Male:8(100)

Female:0(0)

Well-trained

cyclists

HRW (pH:9.8;

ORP:−180mV;

FH:450 ppb;

TDS:180 mg/L)

2 liters per day for 2

weeks before

exercise

30min intermittent

cycling test to

exhaustion

Fatigue:

RPEc → ;

BLA→

Aerobic

capacity:

Pm →

Others:

VO2 → ;

RER→ ;

HRavg → ;

HRmax → ;

Pmax → ;

Fatigue

index→ ;

Time to

Pmax → ;

Blood pH→ ;

Bicarbonate

[HCO−
3 ] → ;

Base

excess→ ;

pO2 → ;

pCO2 → ;

Hemoglobin→

; Hemoglobin

Sat→ ;

Glucose→
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TABLE 1 (Continued)

Study Design Total no. of
participants

Age, mean ±
SD, y

No. of
participants
by sex (%)

Training
status

Protocol of
H2
administration

Exercise
protocol

Outcome
measures

LeBaron et al. (45) RCD 19 25.0±8.9 Male:15(79)

Female:4(21)

Untrained healthy

participants

HRW (TDS:13.1

mg/L)

Incremental

treadmill running

test to exhaustion

Aerobic

capacity:

VO2peak →

Others:

HRavg↓;

HRmax → ;

RER→ ;

RR→

500ml intake the

day before and on

the day of exercise

Botek et al. (26) RCD 12 27.1± 4.9 Male:12(100)

Female:0(0)

Recreationally

trained sport

science students

HRW (pH:7.4;

ORP:−400mV;

Temp: 22◦C; H2

conc.:0.5 ppm)

Incremental cycling

test to exhaustion

Fatigue: RPE↓;

BLA↓

Others: VE→ ;

VO2 → ;

VE/VO2↑;

HRavg → ;

RQ→

600ml within

30min before

exercise

Javorac et al. (27) RCD 20 22.9± 1.5 Male:10(50)

Female:10(50)

Untrained

physically active

participants

HRG (%4 H2)

20min

once-per-day

inhalation for 7

days

Incremental

treadmill running

test to exhaustion

Fatigue:

BLA→

Aerobic

capacity:

VO2max → ;

TTE→

Others: Leg

MVIS→

;YMCA

endurance→ ;

resting Blood

pressure→ ;

Resting

HR→ ; MRS↑;

Insulin→ ;

Ghrelin→ ;

IGF-1↑;

CK→ ;

Myoglobin→ ;

C-reactive

protein↑;

Ferritin↑;

ESR→

(Continued)

F
ro
n
tie

rs
in

N
u
tritio

n
0
5

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fnut.2023.1094767
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Z
h
o
u
e
t
a
l.

1
0
.3
3
8
9
/fn

u
t.2

0
2
3
.1
0
9
4
7
6
7

TABLE 1 (Continued)

Study Design Total no. of
participants

Age, mean ±
SD, y

No. of
participants
by sex (%)

Training
status

Protocol of
H2
administration

Exercise
protocol

Outcome
measures

Ooi et al. (28) RCD 14 34± 4 Male:14(100)

Female:0(0)

Well-trained

runners/triathletes

HRW (H2 conc.:

2.60 ppm)

2 doses of 290mL

within 5∼10min

before exercise

Incremental

treadmill running

test to exhaustion

Fatigue:

RPE→ ;

BLA→

Aerobic

capacity:

VO2max → ;

TTE→

Others: RE→ ;

Speed at

OBLA→ ;

HRmax→ ;

VEmax → ;

RER→ ; Blood

Glucose→ ;

Blood

HCO−
3 → ;

Blood pH→

Mikami et al. (25)a RCT H:52 51.2± 6.9 Male:23(44)

Female:29(56)

Untrained

physically active

participants

HRW (H2 conc.:0.8

ppm)

500mL within

30min before

exercise

Incremental cycling

test to 75% HRmax

Fatigue: RPE↓

Aerobic

Capacity:VO2max →

Others:

Resting HR↓;

VAS↓

P:47 51.5± 7.9 Male:20(43)

Female:27(57)

Mikami et al. (25)b RCT H:30 43.6± 13.3 Male:15(50)

Female:15(50)

Fitness trainers HRW (H2 conc.:1.0

ppm)

500mL within

10min before

exercise

Incremental cycling

test to HRmax

Fatigue: RPE↓

Aerobic

capacity:

VO2max↑

P:30 43.2± 14.4 Male:15(50)

Female:15(50)

Dobashi et al. (47) RCD 8 19.4± 0.85 Male:8(100)

Female:0(0)

Untrained

physically active

participants

HRW (Temp:4◦C;

H2 conc.:5.14 ppm)

6min repeated

sprint cycling

exercise

Fatigue:

BLA→

Others:

CMJ→ ;

MVIC→ ;

Pmax ; Pm for

10-s→ ;

d-ROMs→ ;

BAP→

500mL within

5min before and

after the exercise for

3 days
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TABLE 1 (Continued)

Study Design Total no. of
participants

Age, mean ±
SD, y

No. of
participants
by sex (%)

Training
status

Protocol of
H2
administration

Exercise
protocol

Outcome
measures

Botek et al. (30) RCD 16 31.6± 8.6 Male:16(100)

Female:0(0)

Well-trained

runners

HRW (pH:7.8; H2

conc.: 0.9 ppm)

420-mL doses at

24 h, 3 h, 2 h, and

40min before

exercise

4.2-km up-hill race Fatigue:

RPE→

Aerobic

capacity: Race

time→

Others:

HRmax →

Shibayama et al. (48) RCD 8 20.9± 0.3 Male:8(100)

Female:0(0)

Untrained

physically active

participants

HRG (68% H2)

60min after

exercise

30min Treadmill

running

(75%VO2max) and

squat jump 5× 10

rep.

Aerobic

capacity:

Pm →

Others: CMJ↑;

MVIC→ ;

Pmax → ;

d-ROMs→ ;

BAP→ ;

U8ER↓;

CKa→ ;

LDa→ ; White

blood cells→

Hori et al. (29) RCD 12 21.8± 5.8 Male:12(100)

Female:0(0)

Untrained healthy

participants

HRG (1% H2)

30min during

exercise

Cycling for 30

minutes at 60%

VO2peak

Aerobic

capacity:

VO2peak →

Others:

VCO2↑; VE↑;

HRavg→ ;

Vacetone↑;

VO2 rest→ ;

VCO2 rest→ ;

VE rest→ ;

Recovery HR

→ ; Vacetone

rest→ ;

d-ROMs→ ;

BAP→
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TABLE 1 (Continued)

Study Design Total no. of
participants

Age, mean ±
SD, y

No. of
participants
by sex (%)

Training
status

Protocol of
H2
administration

Exercise
protocol

Outcome
measures

Hori et al. (23)a RCD 9 19.9± 1.2 Male:6(67)

Female:3(33)

Untrained

university students

HRW (H2 conc.:4.3

ppm)

Incremental cycling

test to exhaustion

Fatigue:

RPE→ ;

BLA→

Aerobic

capacity:

VO2peak →

Others:

Resting

HR→ ;

Pmax → ;

CDO→ ;

RER→ ;

VE→ ;

HRmax→ ;

d-ROMs→ ;

BAP→

500mL doses at

35min before

exercise

Hori et al. (23)b RCT H:10 20.3± 1.3 Male:20(100)

Female:0(0)

Untrained

university students

HRW (H2 conc.:5.9

ppm)

500mL on all

weekdays for 2

weeks

Incremental cycling

test to exhaustion

Fatigue:

RPE→ ;

BLAc →

Aerobic

Capacity:

VO2peak →

Others:

Pmax → ;

CDO→ ;

RER→ ;

VE→ ; Resting

HR→ ;

HRmax→ ;

d-ROMs↑;

BAP↑

P:10 20.4± 4.7

Timon et al. (41) RCD 27 25.5± 5.5 d Un Trained cyclists

(n=12) and

untrained

participants (n=15)

HRW (pH: 7.5; H2

conc.:1.9 ppm;

ORP:−600mV)

1920 and 2240ml

per day for 7 days

Incremental cycling

test to exhaustion

Fatigue:

RPE→ ;

BLA→

Aerobic

capacity:

VO2max↑;

TTE↑

Others: Pmax↑;

HRmax→ ;

VT2 %

VO2max↑;

Fatigue index↓

26.3± 5.9 e
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TABLE 1 (Continued)

Study Design Total no. of
participants

Age, mean ±
SD, y

No. of
participants
by sex (%)

Training
status

Protocol of
H2
administration

Exercise
protocol

Outcome
measures

Alharbi et al.(49) RCD 18 21± 1 Male:18(100)

Female:0(0)

Recreationally

trained participants

HRC (0.636

µg/capsule)

2.544 µg/day for 3

days

Incremental cycling

test to exhaustion

Fatigue:

BLA→

Aerobic

capacity:

VO2peak → ;

TTE→

Others:

Electrolytes

(Na+ → ;

K+ → ;

Ca2+ → ;

Cl− → ;

AGap↑;

AGapK→ );

VE↑; VO2↑;

VCO2↑; Blood

gas (pH ↑;

PO2 → ;

PCO2 → ;

HCO−
3 ↑);

TR-NIRS in

the RF/VL

(Total

[Hb+Mb]→ ;

Deoxy

[Hb+Mb] ↑;

StO2↑);

HRmax→ ;

HRavg → ;

Pmax →

Dong et al. (46) RCT H:9 23.2± 1.1 Male:6(67)

Female:3(33)

Dragon boat

athletes

HRW (FH:1600

ppb)

1000mL per day for

8 days

Rowing
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rowing test

Aerobic

capacity:

Pm→
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Recovery HR

↓

s P:9 22.7± 0.9 Male:6(67)

Female:3(33)
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analyses (Table 1). One publication (25) included two randomized

controlled trials, and the other one (23) included a randomized

crossover study and a randomized controlled trial.

3.1. Participant characteristics

A total of 402 healthy participants with mean ages ranging from

18.8 to 51.5 years were included (Table 1). For the training status, 210

of them were untrained, and 192 were trained. Sex information was

missing in one study (41) (Table 1).

3.2. Protocol of H2 administration

The included studies implemented three types of hydrogen, that

is, hydrogen-rich water (HRW) (n = 13) (23–26, 28, 30, 41–47),

hydrogen-rich gas (HRG) (n = 3) (27, 29, 48), and hydrogen-rich

calcium powder (HRC) (n= 1) (49). Hydrogen concentrations varied

considerably (e.g., HRW: 0.5∼5.9 ppm; HRG: 1 to 68%) across these

studies (Table 1). Eight studies (23, 25, 26, 28, 30, 42, 43, 50) examined

the effects of a single intake of H2 within 24 h before exercise. Seven

studies (23, 27, 41, 44–46, 49) implemented the protocol of repeatedly

intaking H2 from 2 to 14 days before exercise. One study (47) used

the intake of HRW before and after exercise for 3 days, and another

study (48) used a single 60-min inhalation of HRG immediately

after exercise. The specific amount of H2 was presented in Table 1.

Placebos used in these studies depended upon the type of supplement

and drinking water, inhaling normal air, or swallowing capsules (i.e.,

capsules containing calcium powder).

3.3. Exercise protocol

Two exercise types (continuous and intermittent) were used to

induce fatigue. Specifically, eight studies (23, 25–28, 41, 45, 49) used

continuous load-incremental exercise (i.e., incremental treadmill

running test, incremental cycling test); four studies (29, 42, 46, 48)

used continuous fixed-load exercise; one study (30) used a 4.2-km up-

hill race; three studies (24, 44, 47) used intermittent sprint exercises;

and the other one (43) used an intermittent judo fitness test.

3.4. Outcome measurements

Nine of the studies (23–25, 28, 30, 41, 43, 44, 49) assessed both

fatigue and aerobic capacity immediately after exercise. Three studies

(26, 42, 47) assessed only fatigue immediately after exercise. Four

studies (29, 45, 46, 48) assessed only aerobic capacity. In addition,

other outcomes such as heart rate, explosive power, respiratory

circulations, blood metabolites, and muscle functions were also

assessed (Table 1).

3.5. Risk of bias

The results of the quality evaluation of the included 19 studies

were shown in Figure 2. Four (23, 29, 44, 47) of them used a
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TABLE 2 Subgroup analysis results regarding the effects of H2 on fatigue.

Outcomes Variables No. of studies SMD (95%CI) P-value Test of heterogeneity

χ
2 P-value I2(%)

RPE Training status

Untrained 4 −0.47 (−0.78,

−0.16)

0.003 1.70 0.637 0

Trained 6 −0.36 (−0.75, 0.12) 0.161 11.40 0.044 56.1

Period of H2 implementation

Intake H2 at a single time before exercise 7 −0.44 (−0.77,

−0.12)

0.007 10.11 0.120 40.6

Intake H2 for multiple days before exercise 2 −0.12 (−0.58, 0.33) 0.606 0 0.976 0

Exercise types

Continuous exercises 8 −0.32 (−0.59,

−0.06)

0.017 9.69 0.207 27.8

Intermittent exercises 1 −0.96 (−1.70,

−0.22)

0.011 0 – –

Blood Lactate Training status

Untrained 4 −0.30 (−0.69, 0.09) 0.132 0.77 0.856 0

Trained 8 −0.49 (−0.92,

−0.06)

0.025 14.73 0.040 52.5

Period of H2 implementation

Intake H2 at a single time before exercise 6 −0.62 (−1.19,

−0.05)

0.032 12.56 0.028 60.2

Intake H2 for multiple days before exercise 5 −0.26 (−0.57, 0.06) 0.107 1.95 0.746 0

Exercise types

Continuous exercises 7 −0.37 (−0.74, 0.00) 0.052 10.73 0.097 44.1

Intermittent exercises 4 −0.56 (−1.12, 0.01) 0.053 4.37 0.224 31.3
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randomized, single-blinded and placebo-controlled design; and the

others used a randomized, double-blinded and placebo-controlled

design. One study (23) was evaluated as high risk of bias, 11 were

as low risk, and the other seven (23, 25, 29, 44, 46, 47) were as

moderate risk.

3.6. Meta-analysis

Based on the heterogeneity, we performed subgroup analyses of

RPE and blood lactate by comparing between training status (i.e.,

untrained and trained), intervention period (i.e., a single time within

24 h and multiple days before exercise), and exercise modes (i.e.,

continuous and intermittent exercises) as variables (Table 2).

3.6.1. Effects of H2 on fatigue
3.6.1.1. RPE score

Two publications (25, 26) showed that H2 can significantly reduce

RPE score as compared to the placebo; while another six publications

(23, 24, 28, 30, 41, 44) showed that H2 cannot significantly reduce

RPE score (Table 1).

The pooled ES of RPE score was small and significant

(SMDpooled = −0.38, 95% CI −0.65 to −0.11, p = 0.006, Figure 3)

with low heterogeneity (I2 = 33.6%, p = 0.149). The funnel plot

(Figure 7A) and Egger’s test (t = 0.98, p = 0.358) indicated no

publication bias.

Subgroup analysis showed that participant training status

contributed significantly to the effects of H2. Specifically, the ES in

untrained participants was significant and small (SMD=−0.47, 95%

CI −0.78 to −0.16, p = 0.003). The ES in trained participants was

not significant and small (SMD = −0.36, 95% CI −0.75 to 0.12, p =

0.161). A significant and small ES for single-dose H2 intake before

exercise (SMD = −0.44, 95% CI −0.77 to −0.12, p = 0.007) was

observed, while only trivial ES was observed in multiple-day intakes

of H2 (SMD=−0.12, 95% CI−0.58 to 0.33, p= 0.606). With respect

to exercise type, the ES was large for intermittent exercises (SMD

= −0.96, 95% CI −1.70 to −0.22, p = 0.011), and was small and

significant (SMD = −0.32, 95% CI −0.59 to −0.06, p = 0.017) for

continuous exercises.

3.6.1.2. Blood lactate

Three publications (26, 42, 43) showed that H2 can significantly

reduce blood lactate levels as compared to the placebo; while another

eight publications (23, 24, 27, 28, 41, 44, 47, 49) showed opposite

results that H2 cannot significantly reduce blood lactate levels

(Table 1).

The pooled ES of blood lactate was significant and small

(SMDpooled = −0.42, 95% CI −0.72 to −0.12, p = 0.006, Figure 4)

with low heterogeneity (I2 = 35.6%, p = 0.114). The funnel plot

(Figure 7B) and Egger’s test (t = −3.64, p = 0.005) indicated a

potential risk of publication bias; but the Trim and Fill method

for sensitive analysis showed that the pooled ES (Fixed: SMDpooled

= –.362, p = 0.002; Random: SMDpooled = −0.418, p = 0.006)

was robust.

Subgroup analysis showed that participant training status

contributed significantly to the effects of H2. Specifically, the ES

in trained participants was significant and close to moderate (SMD

= −0.49, 95% CI −0.92 to −0.06, p = 0.025), but was small and

not significant in untrained participants (SMD = −0.30, 95% CI

−0.69 to 0.09, p = 0.132). A significant and moderate ES for single-

dose H2 intake before exercise (SMD = −0.62, 95% CI −1.19 to

−0.05, p= 0.032) was observed, while only small ES was observed in

multiple-day intakes of H2 (SMD=−0.26, 95% CI−0.57 to 0.06, p=

0.107). Regarding exercise type, the ES was moderate for intermittent

exercises (SMD = −0.56, 95% CI −1.12 to 0.01, p = 0.053), and

was small (SMD = −0.37, 95% CI −0.74 to 0.00, p = 0.052) for

continuous exercises.

3.6.2 Effects of H2 on aerobic capacity
3.6.2.1. VO2max/VO2peak

Three publications (25, 29, 41) reported that H2 induced

significant improvement in VO2max or VO2peak as compared to the

placebo; while six publications (23, 25, 27, 28, 45, 49) reported no

such effect (Table 1).

The pooled ES of VO2max and VO2peak was not significant

and trivial (SMDpooled = 0.09,95% CI −0.10 to 0.29, p = 0.333,

Figure 5) without heterogeneity (I2 = 0%, p = 0.996). The funnel

plot (Figure 7C) and Egger’s test (t = 0.01, p = 0.990) indicated no

publication bias.

3.6.2.2. Endurance performance

Two publications (24, 41) reported that H2 significantly increased

cycling to exhaustion time or multiple repeat sprint performance as

compared to the placebo; while another eight publications (27, 28, 30,

43, 44, 46, 48, 49) reported no such effect (Table 1).

The pooled ES of endurance performance was not significant

and trivial (SMDpooled = 0.01,95% CI −0.23 to 0.25, p = 0.949,

Figure 6) without heterogeneity (I2 = 0%, p > 0.999). The funnel

plot (Figure 7D) and Egger’s test (t = 1.18, p = 0.278) indicated no

publication bias.

3.7. GRADE assessment

The quality of evidence was determined to be moderate, and

details for the evaluation of the GRADE framework are presented in

eTable 3.

4. Discussion

The results of this systematic review and meta-analysis suggest

that H2 supplementation is a promising strategy for alleviating

subjective fatigue and clearing blood lactate as induced by high-

intensity exercise. However, H2 supplementation does not appear to

enhance aerobic capacity. The quality of available evidence to date

was moderate. Subgroup analyses revealed that the training status,

the period of H2 implementation, and the type of exercise may all

influence the effects of H2 on fatigue and thus need to be carefully

considered in the design of future research and practice.

While our results indicate that H2 can significantly reduce

subjective fatigue and blood lactate after high-intensity exercise in

healthy adults, they do not provide evidence for the underlying

bio-neurophysiological mechanisms involved. One possible

explanation is that H2 appears to be a neuroprotective agent

that facilitates the restoration of neuronal oxidative damage
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FIGURE 2

Risk of bias in the included studies.

FIGURE 3

The pooled effect size of H2 intake on rating of perceived exertion.

by reducing oxidative stress and neuroinflammation (51–54).

H2 intake has also been reported to induce positive effects on

exercise acidosis and reduce blood lactate concentration (26),

thus modulating intracellular and extracellular buffering capacity

during high-intensity exercise (55). It is also possible that the

effects of H2 intake may depend upon the resting redox state

of the user (56). Future studies are thus warranted to further

investigate these potential pathways, which will ultimately

help the design of appropriate strategies for fatigue alleviation

using H2.
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FIGURE 4

The pooled effect size of H2 intake on blood lactate.

FIGURE 5

The pooled effect size of H2 intake on VO2max (VO2peak).

Subgroup analyses reveal several important factors that likely

contribute to the effects of H2 supplementation on fatigue. First,

we observed that the effects were greater in untrained as compared

to trained individuals. This may be due to the antioxidant capacity

during high-intensity exercise is relatively lower in untrained

participants compared to trained participants (57), which may thus

interfere with the effects of H2 on fatigue (30), presenting relatively

smaller effect size of H2 on fatigue in this cohort (42, 47). Second,

longer period of H2 implementation, or multiple intakes of H2, was

not associated with greater reduction of fatigue in healthy adults, as

compared to the intake of a single dose immediately before exercise.

This observation may be due to the low between-day retention rate

of H2; for example, it was observed that over 59% of H2 can be

exhaled within the first hour after the intake of HRW (25). Third,

subgroup analyzes revealed that H2 supplementation may be more

effective for fatigue induced by intermittent exercise as compared

to continuous exercise (24, 28, 30). This may be because bouts of

intermittent exercise are typically completed against greater external

physical load, which may enable mitochondrial respiratory function

to more efficiently intake H2 and/or increase the concentration level

of ROS in muscles, boosting the redox procedure between ROS and

molecular hydrogen (58–60).
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FIGURE 6

The pooled effect size of H2 intake on endurance performance.

FIGURE 7

Funnel plots.

Intriguingly, H2 supplementation did not appear to significantly

improve aerobic capacity. This suggests that the observed impact

of H2 intake on fatigue during high-intensity exercise was not

sufficient to translate into improved aerobic capacity in healthy

adults. Aerobic capacity depends upon multiple underlying bio-

physiological procedures, including respiratory function, regulation

of oxygen, and local muscle oxygen utilization (61, 62). Previous

studies have reported that acute H2 supplementation does not
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substantially modulate these critical factors of aerobic capacity (23,

26–28, 49), which may at least in part underlie its lack of effect on this

important function in humans.

4.1. Limitations

Several of the included studies were conducted on a small number

of participants (n ≤ 10) (23, 43, 44, 47, 48), which may lead to

potential bias. Most included studies focused on only younger and

middle-aged men. As such, future studies are thus needed to examine

whether the effects of H2 supplementation differs by age and/or sex.

With respect to the latter, studies have reported that compared to

men, the antioxidant protective function in women is greater due to

estrogen (63, 64), which may potentially influence the effects of H2

on fatigue. Finally, considerable work is still needed to determine the

dose-response relationship between H2 and fatigue and the impact of

such supplementation on physiological adaptation to exercise and the

risk of injury over time.

5. Conclusions

This analysis indicates that H2 supplementation can alleviate

fatigue but cannot significantly enhance aerobic capacity in healthy

adults. The knowledge obtained from this study, such as the

appropriate protocols of H2 administration and selection of exercise

type to induce fatigue, will ultimately help inform future studies to

confirm and explicitly examine the benefits of H2 on athletes and

untrained people withmore rigorous design (e.g., matched number of

men and women), helping optimize the protocols of fatigue recovery

in the daily routines of professional athletes and untrained people.
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hydrogen mitigates performance decrement during repeated sprints in professional
soccer players. Nutrients. (2022) 14:508. doi: 10.3390/nu14030508

25. Mikami T, Tano K, Lee H, Lee H, Ohta SJ. Pharmacology drinking hydrogen
water enhances endurance and relieves psychometric fatigue: randomized, double-blind,
placebo-controlled study. Can J Med. (2019) 97:857–62. doi: 10.1139/cjpp-2019-0059
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