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Abstract

Background Both athletes and recreational exercisers often perform relatively high volumes of aerobic and strength training 

simultaneously. However, the compatibility of these two distinct training modes remains unclear.

Objective This systematic review assessed the compatibility of concurrent aerobic and strength training compared with 

strength training alone, in terms of adaptations in muscle function (maximal and explosive strength) and muscle mass. 

Subgroup analyses were conducted to examine the influence of training modality, training type, exercise order, training 

frequency, age, and training status.

Methods A systematic literature search was conducted according to the PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) guidelines. PubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus, and 

Scopus were systematically searched (12 August 2020, updated on 15 March 2021). Eligibility criteria were as follows. 

Population: healthy adults of any sex and age; Intervention: supervised concurrent aerobic and strength training for at least 

4 weeks; Comparison: identical strength training prescription, with no aerobic training; Outcome: maximal strength, explo-

sive strength, and muscle hypertrophy.

Results A total of 43 studies were included. The estimated standardised mean differences (SMD) based on the random-effects 

model were − 0.06 (95% confidence interval [CI] − 0.20 to 0.09; p = 0.446), − 0.28 (95% CI − 0.48 to − 0.08; p = 0.007), 

and − 0.01 (95% CI − 0.16 to 0.18; p = 0.919) for maximal strength, explosive strength, and muscle hypertrophy, respectively. 

Attenuation of explosive strength was more pronounced when concurrent training was performed within the same session 

(p = 0.043) than when sessions were separated by at least 3 h (p > 0.05). No significant effects were found for the other mod-

erators, i.e. type of aerobic training (cycling vs. running), frequency of concurrent training (> 5 vs. < 5 weekly sessions), 

training status (untrained vs. active), and mean age (< 40 vs. > 40 years).

Conclusion Concurrent aerobic and strength training does not compromise muscle hypertrophy and maximal strength devel-

opment. However, explosive strength gains may be attenuated, especially when aerobic and strength training are performed 

in the same session. These results appeared to be independent of the type of aerobic training, frequency of concurrent train-

ing, training status, and age.
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1 Introduction 

Performing aerobic and strength training concurrently is 

an integrative part of physical training aimed at improving 

both athletic performance and health. The recommendation 

to perform both aerobic and strength training is important 

because these activities to some extent induce distinct adap-

tations and health benefits [1, 2]. For example, aerobic train-

ing promotes increased aerobic capacity (i.e. central adap-

tations) and metabolic changes in skeletal muscle, such as 

increased mitochondrial density and capillarisation [3]. Con-

versely, regular strength training results in muscle hyper-

trophy and increased strength and power [4] but may also 

improve bone mineral density [5]. The role of skeletal mus-

cle in health maintenance has received increased attention 
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Key Points 

Concurrent aerobic and strength training is recom-

mended to improve physical fitness and health; however, 

the compatibility of these two distinct training modes 

remains unclear.

In this meta-analysis, we report that concurrent training 

does not interfere with adaptations in maximal strength 

and muscle hypertrophy, regardless of the type of aero-

bic training (cycling vs. running), frequency of concur-

rent training (> 5 vs. < 5 weekly sessions), training status 

(untrained vs. active), mean age (< 40 vs. > 40 years), 

and training modality (same session vs. same day vs. dif-

ferent day training).

However, concurrent training may attenuate gains in 

explosive strength, which is exacerbated when aerobic 

and strength training are performed within the same 

training session.

To date, few attempts have been made to quantitatively 

synthesise the literature concerning concurrent aerobic and 

strength training. The first meta-analysis conducted a decade 

ago by Wilson et al. [14] showed that peak power was attenu-

ated with concurrent training compared with strength train-

ing alone, whereas the development of muscle hypertrophy 

and maximal strength were not compromised. A more recent 

meta-analysis aimed to compare the effect of concurrent aero-

bic and strength training with strength training alone on the 

development of maximal strength in untrained, moderately 

trained, and trained individuals [15]. The results suggested 

that concurrent training may have a negative effect on lower 

body strength development in trained individuals but not in 

moderately trained or untrained individuals. While this study 

updated information on the effect of training status on maxi-

mal strength development, several other important outcome 

variables related to muscle mass and function have not been 

examined in a meta-analysis since 2012. Therefore, the aim of 

the current study was to systematically assess the compatibility 

of concurrent aerobic and strength training on adaptations in 

maximal strength, explosive strength, and muscle hypertrophy 

by means of pooled analyses. Subgroup analysis was also con-

ducted to examine the influence of aerobic training type, train-

ing modality, exercise order, concurrent training frequency, 

age, and training status. An updated literature synthesis on this 

topic is relevant to physicians, physiotherapists, exercise sci-

entists, and sports practitioners designing programmes aimed 

at developing both aerobic and strength qualities for health 

purposes, rehabilitation, and/or fitness performance.

2  Methods

2.1  Systematic Literature Search

A systematic literature search was conducted according 

to the PRISMA (Preferred Reporting Items for System-

atic Reviews and Meta-Analyses) guidelines and was reg-

istered with PROSPERO (the International Database of 

Prospectively Registered Systematic Reviews in Health 

and Social Care; CRD42020203777). The PubMed/MED-

LINE, ISI Web of Science, Embase, CINAHL, SPORTDis-

cus, and Scopus databases were systematically searched 

using a search string specifically adapted to the search 

requirements of each database (Table S1 in the electronic 

supplementary material [ESM]).

The search was conducted on 12 August 2020 and 

updated on 15 March 2021. The literature search process 

was performed independently by two researchers and 

included saving the online search, removing duplicates, 

and screening titles, abstracts, and full texts. Potential 

conflicts were resolved by consulting with a third author. 

In addition, a grey literature search was performed by 

in the last decade, with muscle tissue being understood as 

a secretory organ that releases several hundred myokines 

related to the function of other organs, such as the brain, adi-

pose tissue, bone, liver, gut, pancreas, vascular bed, and skin 

[6]. In addition, the role of muscle power has recently been 

highlighted as being strongly associated with a lower risk of 

fall-related injuries in older adults [7, 8], further underlining 

the importance of both muscle mass and muscle function as 

indicators of physical health and independence in daily life.

Aside from the health perspective, many sports require 

the athlete to simultaneously incorporate divergent training 

modalities, including aerobic and strength training, into their 

training regimen. Considering that both athletes and recrea-

tional exercisers often perform relatively high volumes (and/

or frequencies) of aerobic training alongside resistance-type 

training, it is pertinent to revisit the compatibility of aerobic 

and strength training. Aerobic training has been shown to 

interfere with the development of maximal strength when the 

overall training volume is high [9]. In contrast, no interfer-

ence in maximal strength was observed when training volume 

was reduced to two weekly aerobic and strength training ses-

sions, respectively [10–12]. Importantly, however, even low 

volumes of concurrent aerobic training have been shown to 

decrease gains in rapid force production [10, 13], which could 

translate into reduced muscle power-related benefits. Identi-

fying additional moderators hypothesised in the literature to 

potentially influence neuromuscular adaptations to concurrent 

aerobic and strength training (such as type of aerobic training, 

concurrent training modality, age, and training status) could 

further aid in fine-tuning exercise guidelines for health and/or 

fitness performance.
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screening Google Scholar and the reference lists of previ-

ously identified eligible full texts. Figure 1 is a flowchart 

of the search process and study selection.

2.2  Eligibility Criteria

Inclusion criteria were defined based on the PICO (Popu-

lation, Intervention, Control and Outcomes) criteria [16]. 

The population included healthy adults with no restrictions 

in terms of sex and age. The intervention had to consist 

of supervised combined aerobic and strength training for 

at least 4 weeks. As a comparator, eligible studies had to 

include a group receiving the identical strength-training 

prescription with no aerobic training. Outcomes of interest 

included maximal strength, explosive strength, and mus-

cle hypertrophy. The exercise tests had to be specific to the 

training performed. For maximal strength, both isometric 

and isoinertial measurements were accepted. For explo-

sive strength, any form of jump test, isometric rate of force 

development (RFD), or dynamic power measurements 

were considered eligible. For muscle hypertrophy, objec-

tive measurements of whole-muscle cross-sectional area or 

muscle thickness (e.g. ultrasound, computed tomography 

[CT] or magnetic resonance imaging [MRI]) were required. 

In addition, segmental lean mass as determined by dual-

energy X-ray absorptiometry (DXA) was accepted if values 

were reported separately for segments that were engaged in 

training.

Fig. 1  Flowchart of the search process and the study selection
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Exclusion criteria included language other than English 

or German, abstracts and dissertations, cross-sectional stud-

ies assessing only acute exercise responses, and observa-

tional studies.

2.3  Data Extraction

Data extraction was performed independently by two 

authors. The following data were extracted from each 

included study: (1) general characteristics (e.g. author[s], 

year of publication and aim of the study), (2) participant 

information (e.g. sample size, training status, and age), (3) 

intervention data for all groups (e.g. intervention duration, 

type of intervention), and (4) specific outcomes (e.g. meas-

ures of maximal and explosive strength and hypertrophy). 

If the mean and standard deviation of each group were not 

specified, we requested baseline and post-intervention data 

from the authors of the primary studies. If data were pre-

sented within a graph and no additional data were provided 

upon request, mean and standard deviation were extracted 

using WebPlotDigitizer version 4.4 (Pacifica, CA, USA) 

[17].

2.4  Data Synthesis and Analyses

Standardised mean differences (SMD) were calculated, and 

an inverse variance-weighted random-effects model was 

fitted to the effect sizes (ES). Additionally, log variability 

ratios were calculated, and an inverse variance-weighted 

random-effects model was fitted to the ES. Meta-analyses 

were performed using R (3.6.2), RStudio (1.2.5033), and 

the metafor package (version 2.4.0) [18]. ES were calculated 

for pre-test post-test control group designs using the previ-

ously recommended raw score standardisation [19, 20]. Fur-

thermore, the exact sampling variance of ES was computed 

according to recommendations [19].

Heterogeneity (i.e. τ2) was estimated using the restricted 

maximum-likelihood estimator [21]. To complete the hetero-

geneity analyses, the Q-test for heterogeneity [22] and the 

I2 statistic [23] were also calculated. Studentised residuals 

and Cook’s distances were examined to assess whether stud-

ies might be outliers and/or overly influential [24]. Studies 

with a studentised residual greater than the 100 × (1–0.05/

(2 × k))th percentile of a standard normal distribution were 

declared potential outliers (i.e. using a Bonferroni correction 

with two-sided α = 0.05 for k studies included in the meta-

analyses). Studies with a Cook’s distance larger than the 

median plus six times the interquartile range of the Cook’s 

distances were considered overly influential. If a study was 

identified as a potential outlier or overly influential, a sensi-

tivity analysis was performed. A trim-and-fill-contour funnel 

plot was created to estimate the number of studies that may 

be missing from the meta-analysis (Fig. S1 in the ESM). We 

used the rank correlation test [25] and regression test [26] 

using the standard error of observed outcomes as predictor 

to check for funnel plot asymmetry.

ES from studies with more than two intervention or con-

trol groups were combined according to the Cochrane hand-

book recommendations [27], except for subgroup analysis 

when different interventions from individual studies were 

included in separate subgroups. If there were multiple meas-

urements for the same outcome, only one measurement was 

included in the analysis, based on the following hierarchies:

• Maximal strength: (1) dynamic bilateral leg press, (2) 

squat, (3) unilateral isometric torque (knee extension), 

and (4) bilateral dynamic knee extension.

• Explosive strength: (1) jump height and (2) other meas-

ures of rapid force production as well as squat jump 

power and leg press power at 50% of maximal strength.

• Muscle hypertrophy: (1) whole-muscle cross-sectional 

area of the quadriceps femoris muscles (i.e. panoramic 

ultrasound, CT, MRI), (2) muscle thickness of the vastus 

lateralis, and (3) segmental DXA of the lower extremi-

ties.

Thus, each study was included in the final analyses with 

only one parameter to avoid inflating the weighting of indi-

vidual studies.

Because of a lack of systematic reporting, subgroup 

analyses were only performed for aerobic training type (i.e. 

cycling vs. running), concurrent training frequency (i.e. 

low frequency of 4.1 ± 0.3 vs. high frequency of 6.1 ± 1.6 

weekly sessions, based on 2.0 ± 0.3 vs. 3.1 ± 0.6 weekly 

sessions in the comparison training group), training status 

(i.e. untrained vs. active), mean age of the study population 

(18–40 vs. > 40 years), and training modality (i.e. concur-

rent training on different days vs. on the same day vs. in the 

same session). For studies comparing concurrent training in 

the same session, when a sufficient number of studies were 

available, training order was also compared (i.e. aerobic 

before strength exercise vs. strength before aerobic exercise). 

Studies were divided into subgroups based on the descrip-

tion in the manuscript. This was particularly true for training 

status, with studies classified as ‘untrained’ if participants 

were clearly described as ‘sedentary’, ‘previously untrained’, 

or ‘inactive’. Conversely, all other studies were classified as 

‘active’ (i.e. ‘recreationally active’, ‘trained’, ‘well-trained’, 

etc.). Specific rationale for the exclusion of individual stud-

ies can be found in Table S2 in the ESM.

2.5  Assessment of Methodological Quality

Risk of bias for the included studies was assessed indepen-

dently by two reviewers using the Physiotherapy Evidence 

Database (PEDro) scale. The PEDro scale has previously 
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been assessed as a valid measure of the methodological 

quality of randomised trials [28]. Studies scoring > 6 were 

classified as ‘high quality’, studies scoring 4–5 were classi-

fied as ‘medium quality’, and studies scoring < 4 were clas-

sified as ‘low quality’. The following sources of bias were 

considered: selection (sequence generation and allocation 

concealment), performance (blinding of participants/per-

sonnel), detection (blinding outcome assessors), attrition 

(incomplete outcome data), reporting (selective reporting), 

and other potential biases (e.g. recall bias). The risk-of-bias 

scores for the included studies are presented in Table S3 

in the ESM. The mean score for scale criteria 2–11 of the 

PEDro scale was 4.3/10, i.e., medium quality.

3  Results

3.1  Study Characteristics

The database search identified 15,729 potentially eligible 

articles. After further screening and eligibility assessment, a 

total of 43 studies were included in the final analysis (Fig. 1). 

The characteristics of the studies, participants, and training 

interventions are summarised in Table S1 in the ESM. The 

meta-analysis included a total of 1090 participants, of whom 

590 performed supervised combined aerobic and strength 

training and 500 performed strength training alone. In the 

included studies, cycling was the most common type of aero-

bic training (24 studies), followed by running (16 studies). In 

addition, the combination of running and cycling [9], rowing 

[29], and continuous repeated leg extensions [30] were each 

evaluated by one study.

3.2  Maximal Strength

The final analysis included 37 studies [9–11, 29–62], with 

525 participants performing combined aerobic and strength 

training and 442 participants performing strength training 

alone. The observed SMD ranged from − 1.37 to 1.99, and 

the estimated average SMD based on the random-effects 

model was − 0.06 (95% confidence interval [CI] − 0.20 to 

0.09; p = 0.446), indicating no interference effect of aerobic 

training (Fig. 2). The estimated log variability ratio based 

on the random-effects model was 0.05 (95% CI − 0.05 to 

0.15; p = 0.311). According to the Q-test, there was no sig-

nificant heterogeneity in the true outcomes (Q(36) = 32.591, 

p = 0.632, �̂2 = 0.000, I2 = 0.00%). An examination of the 

studentised residuals showed no evidence of outliers within 

this model, and none of the studies were overly influential.

Subgroup analyses showed no statistical differences 

(p > 0.05) (Figs. S2–S7 in the ESM).

3.3  Explosive Strength

The final analyses included 18 studies [11, 31, 34, 38, 39, 

42, 49, 51–54, 56, 58–60, 62–64], with 270 participants per-

forming combined aerobic and strength training and 208 per-

forming strength training alone. The observed SMD ranged 

from − 1.60 to 0.22, and the estimated mean SMD based 

on the random-effects model was − 0.28 (95% CI − 0.48 

to − 0.08; p = 0.007), indicating an interference effect of 

aerobic training (Fig. 3). The estimated log variability ratio 

based on the random-effects model was 0.04 (95% CI − 0.09 

to 0.18; p = 0.533). According to the Q test, there was no sig-

nificant heterogeneity in the true outcomes (Q(17) = 26.675, 

p = 0.068, �̂2 = 0.068, I2 = 35.81%). The studentised residuals 

highlighted Mikkola et al. [31] as a potential outlier that may 

have been overly influential. Sensitivity analyses revealed 

that excluding this study reduced the amount of observed 

heterogeneity to I2 = 0.00% (Q(16) = 13.860, p = 0.061, �̂2 = 

0.061).

Subgroup analyses showed no statistical differences 

(p > 0.05) (Figs. S8–S11 in the ESM). When studies were 

grouped by type of aerobic training, the SMD was signifi-

cantly in favour of strength training for cycling − 0.44 (95% 

CI − 0.86 to − 0.01; p = 0.043) but not for running (Fig. S8 

in the ESM). However, after the overly influential study by 

Mikkola et al. [31] was removed, this effect was no longer 

observed (SMD − 0.27; 95% CI − 0.58 to 0.04; p = 0.086). 

A similar effect was also seen for low concurrent training 

frequency, with an initial SMD of − 0.45 (95% CI − 0.87 

to − 0.02; p = 0.039) in favour of the strength training group 

(Fig. S9 in the ESM). After the study by Mikkola et al. [31] 

was removed, this reduced to − 0.25 (95% CI − 0.50 to 0.01; 

p = 0.059). Conversely, when studies were grouped by train-

ing modality, a significant interference effect was observed 

for studies that performed concurrent training within the 

same session (≤ 20 min between aerobic and strength train-

ing; SMD − 0.31; 95% CI − 0.62 to − 0.01; p = 0.043) but not 

when concurrent training was separated by at least 3 h (Fig. 

S11 in the ESM).

3.4  Muscle Hypertrophy

The final analyses included 15 studies [10, 11, 33, 45–47, 

49, 54, 55, 59, 62, 65–68], with 201 participants perform-

ing combined aerobic and strength training and 188 per-

forming strength training alone. The observed SMD in 

each trial ranged from − 0.67 to 0.28, and the estimated 

mean SMD based on the random-effects model was − 0.01 

(95% CI − 0.16 to 0.18; p = 0.919), indicating no interfer-

ence effect of aerobic training (Fig. 4). The estimated log 

variability ratio based on the random-effects model was 0.04 
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(95% CI − 0.11 to 0.19; p = 0.567). According to the Q test, 

there was no significant heterogeneity in the true outcomes 

(Q(14) = 4.687; p = 0.990, �̂2 = 0.000, I2 = 0.00%). An exami-

nation of the studentised residuals showed no potential out-

lier within this model. According to the Cook’s distances, 

no study could be considered overly influential. Subgroup 

analyses revealed no statistical differences (p > 0.05) (Figs. 

S12–S14 in the ESM).

4  Discussion

The aim of this study was to provide a systematic and evi-

dence-based appraisal of whether aerobic training interfered 

with adaptations to strength training in terms of muscle func-

tion (maximal and explosive strength) and whole-muscle 

hypertrophy. In addition, the impact of important mediating 

covariates such as type of aerobic training, training modal-

ity, exercise order, concurrent training frequency, age, and 

training status were assessed. The main finding was that con-

current aerobic and strength training did not interfere with 

the development of maximal strength and muscle hypertro-

phy compared with strength training alone. However, the 

development of explosive strength was negatively affected 

by concurrent training. Our subgroup analysis showed that 

this negative effect was exacerbated when concurrent train-

ing was performed within the same session, compared with 

when aerobic and strength training were separated by at least 

3 h. No significant effects were found for other moderators, 

such as type of aerobic training (cycling vs. running), fre-

quency of concurrent training (> 5 vs. < 5 weekly sessions), 

training status (untrained vs. active), and mean age (< 40 

vs. > 40 years).

An important goal of this meta-analysis was to provide 

evidence that can be translated into optimised and fine-tuned 

exercise recommendations for fitness and health purposes. 

Although our results are generally consistent with those 

reported by Wilson et al. [14] a decade ago, these authors 

Fig. 2  Forest plot of studies comparing differences in maximal strength. CI confidence interval, RE random effects, SMD standardised mean dif-

ference
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considered anaerobic power measures such as Wingate per-

formance as indicators of explosive strength. Since we inten-

tionally included only direct measures of explosive strength 

(i.e. jump performance, isometric RFD, and dynamic leg 

press power), our findings reinforce that concurrent aerobic 

and strength training can compromise strength qualities that 

require rapid neural activation.

The mechanism for compromised explosive but not maxi-

mal strength is interesting and requires further research. Our 

findings are supported by an early study showing that muscle 

hypertrophy and maximal strength were unaffected by con-

current training, whereas RFD was blunted, likely because 

of interference with rapid voluntary neural activation [10]. 

More specifically, although the maximal neural activation 

was not compromised, the increase in the integrated elec-

tromyographic signal during the first 500 ms was attenuated 

in the group performing both aerobic and strength training. 

Since the rate of recruitment and maximal discharge of 

motor neurons largely determines the maximal RFD [69], it 

appears that the rate of recruitment and discharge of motor 

units is particularly sensitive to the interference effect of 

aerobic training. It could be speculated that residual fatigue 

induced by aerobic training affects the corticospinal inputs 

received by the motor neurons before force is generated, 

which would subsequently compromise rapid force genera-

tion. The latter could potentially reduce the quality but not 

the quantity of strength training sessions performed concur-

rently with aerobic training, thereby potentially reducing the 

development of explosive strength but not maximal strength 

or muscle hypertrophy. This, in turn, could have implications 

for programme design, as it is apparent that concurrently 

improving both cardiorespiratory fitness and rapid force pro-

duction through rather generic exercise recommendations 

presents a physiological challenge.

Consistent with this, our subgroup analysis indicated that 

the magnitude of interference in explosive strength devel-

opment was dependent on the programming of the exer-

cise sessions, with significant interference observed when 

aerobic and strength training were performed within the 

same training session. Previous studies have indicated that 

Fig. 3  Forest plot of studies comparing differences in explosive strength. CI confidence interval, RE random effects, SMD standardised mean dif-

ference
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neuromuscular interference may be more pronounced when 

strength training is immediately preceded by aerobic train-

ing in both young [70] and older individuals [71]. However, 

our pooled analysis did not provide evidence for an order-

specific effect but rather highlights that combining aerobic 

and strength training in close proximity attenuates adapta-

tions in explosive strength regardless of exercise order. Other 

studies have suggested that, apart from limitations in rapid 

neural drive [10], adaptations in pennation angle and fascicle 

length [54] or patella tendon cross-sectional area [72] could 

be possible mechanistic explanations for these findings.

The moderators, including frequency of concurrent 

training, type of training, age, and training status, did 

not significantly influence adaptations in maximal and 

explosive strength, nor muscle hypertrophy. Similarly, no 

significant effects were observed in our analysis of log 

variability, indicating no within-group differences in vari-

ability after concurrent training compared with strength 

training alone. Our results differ from the recently pub-

lished meta-analysis that focused exclusively on the effect 

of training status on maximal strength during concurrent 

training [15]. In this study, the one-repetition maximum 

for leg press and squat was negatively affected by concur-

rent training in trained individuals but not in moderately 

trained or untrained individuals compared with strength 

training alone. Moreover, their subgroup analysis sug-

gested that the negative effect observed in trained indi-

viduals occurred only when aerobic and strength training 

were performed within the same training session. How-

ever, given the lack of consistent reporting, we chose not 

to divide the active participants into moderately or well-

trained athletes, which may have diluted potential signifi-

cant effects. Furthermore, albeit the exact calculations of 

Petré et al. [15] were not published, their analysis appears 

to differ from our approach. Apart from the smaller num-

ber of studies included (27 vs. 37 studies), studies consist-

ing of multiple intervention groups with only one com-

parator were included multiple times in the same analysis, 

potentially inflating power [73]. Although the results did 

not reach statistical significance, our subgroup analysis for 

Fig. 4  Forest plot of studies comparing differences in muscle hypertrophy. CI confidence interval, CSA cross-sectional area, DXA dual energy 

X-ray absorptiometry, RE random effects, SMD standardised mean difference
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training status showed a similar direction for the SMD in 

trained versus untrained participants as reported by Petré 

et al. [15].

In other concurrent training research, numerous stud-

ies have focused on the possible interference mechanisms 

related to muscle hypertrophy [74]. The rationale for these 

studies stems from rodent and cellular models indicating 

possible inhibition of mechanistic target of rapamycin sig-

nalling through activation of AMP-activated protein kinase 

(AMPK) following aerobic exercise [75–78]. However, 

subsequent human studies failed to confirm these find-

ings when examining physiological mechanisms such as 

metabolic stress and AMPK activation [67, 79] or protein 

synthesis [80] following concurrent exercise. Based on our 

systematic review, this is not surprising as none of the 

identified studies reported a significant interference effect 

on muscle hypertrophy. Although Wilson et al. [14] con-

cluded from their subgroup analysis that there was a nega-

tive relationship between the ES for hypertrophy and both 

aerobic training frequency and duration, our results do 

not confirm these observations. There are several possible 

explanations for this inconsistency, apart from the obvi-

ous fact that our analysis was conducted almost a decade 

later and therefore included more studies. First, the inclu-

sion criteria differed since Wilson et al. [14] included fibre 

hypertrophy as an outcome parameter and also included 

studies without a strength training control group. Second, 

we conducted our analysis based on an inverse variance-

weighted random-effects model in a pre-test post-test 

control group design [18], whereas Wilson et al. [14] esti-

mated the ES of each individual group, resulting in a total 

of 72 ES for muscle hypertrophy. The reported aerobic 

training duration and intensity were then correlated with 

ES, potentially leading to significant positive correlations.

Although the current meta-analysis provides updated 

and novel information, some limitations should be acknowl-

edged. First, it should be noted that the majority of the 

included studies were only classified as of medium quality 

(mean PEDro score 4.3 ± 0.9), and seven studies were of low 

quality. However, it is important to note that it may not be 

possible to achieve all items related to blinding in exercise 

trials. In addition, poor reporting quality may have biased the 

outcome of this ranking. Thus, more importance can possi-

bly be given to the studentised residuals and the Cook’s dis-

tance [24]. Furthermore, meta-analyses are generally limited 

to the information provided within the included individual 

studies. Even though we contacted authors to request addi-

tional information, the response rate was low. Therefore, to 

avoid speculation, we decided to include only clearly defined 

moderators. For example, aerobic exercise intensity was 

not included because the included studies did not provide 

consistent information. However, it is possible that aerobic 

exercise intensity may impact on the compatibility of aerobic 

and strength training. A meta-analysis examining the effects 

of concurrent high-intensity interval training (HIIT) and 

strength training reported that lower body strength develop-

ment was compromised by concurrent training compared 

with strength training alone, even though the authors noted 

that a possible negative effect on lower body strength may 

be ameliorated by the inclusion of running-based HIIT and 

longer intermodal rest periods [81]. This was further sup-

ported by a recent narrative review reporting that HIIT could 

minimise the risk of neuromuscular interference and that this 

effect was even more pronounced when HIIT was replaced 

with sprint-interval training [82]. However, it should be 

acknowledged that previous research appears to indicate that 

the overall health benefits of concurrent training, apart from 

muscle function and size, appear to be greater than those 

obtained with isolated training of either aerobic or strength 

training [83, 84] and that the overall risk of interference 

effects is rather low. Therefore, most individuals, includ-

ing recreational athletes, can enjoy complementary benefits 

from incorporating both aerobic and strength training into 

their training programme.

5  Conclusion

This updated meta-analysis shows that concurrent aerobic 

and strength training does not interfere with the develop-

ment of maximal strength and muscle hypertrophy compared 

with strength training alone. This appears to be independent 

of the type of aerobic training (cycling vs. running), fre-

quency of concurrent training (> 5 vs. < 5 weekly sessions), 

training status (untrained vs. active), and mean age (< 40 

vs. > 40 years). However, the evidence of reduced develop-

ment of explosive strength with concurrent training, particu-

larly when aerobic and strength training are performed in 

the same session, suggests that practitioners who prioritize 

explosive strength may benefit from separating aerobic and 

strength training to achieve optimal adaptations.
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