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Abstract
Background Cold-water immersion (CWI) is one of the main recovery methods used in sports, and is commonly utilized 
as a means to expedite the recovery of performance during periods of exercise training. In recent decades, there have been 
indications that regular CWI use is potentially harmful to resistance training adaptations, and, conversely, potentially ben-
eficial to endurance training adaptations. The current meta-analysis was conducted to assess the effects of the regular CWI 
use during exercise training on resistance (i.e., strength) and endurance (i.e., aerobic exercise) performance alterations.
Methods A computerized literature search was conducted, ending on November 25, 2019. The databases searched were 
MEDLINE, Cochrane Central Register of Controlled Trials, and SPORTDiscus. The selected studies investigated the effects 
of chronic CWI interventions associated with resistance and endurance training sessions on exercise performance improve-
ments. The criteria for inclusion of studies were: (1) being a controlled investigation; (2) conducted with humans; (3) CWI 
performed at ≤ 15 °C; (4) being associated with a regular training program; and (5) having performed baseline and post-
training assessments.
Results Eight articles were included before the review process. A harmful effect of CWI associated with resistance train-
ing was verified for one-repetition maximum, maximum isometric strength, and strength endurance performance (overall 
standardized mean difference [SMD] = − 0.60; Confidence interval of 95% [CI95%] = − 0.87, − 0.33; p < 0.0001), as well 
as for Ballistic efforts performance (overall SMD = − 0.61; CI95% = − 1.11, − 0.11; p = 0.02). On the other hand, selected 
studies verified no effect of CWI associated with endurance training on time-trial (mean power), maximal aerobic power 
in graded exercise test performance (overall SMD = − 0.07; CI95% = − 0.54, 0.53; p = 0.71), or time-trial performance 
(duration) (overall SMD = 0.00; CI95% = − 0.58, 0.58; p = 1.00).
Conclusions The regular use of CWI associated with exercise programs has a deleterious effect on resistance training adapta-
tions but does not appear to affect aerobic exercise performance.
Trial Registration PROSPERO CRD42018098898.
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Key Points 

Regular use of cold-water immersion decreases strength 
performance parameters (i.e., one-repetition maximum, 
maximal isometric strength, strength endurance, and bal-
listic effort performance).

Cold-water immersion does not affect aerobic exercise 
performance (i.e., time-trial performance and maximal 
aerobic power).

Studies involving the regular use of cold-water immer-
sion present moderate methodological quality.
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Graphic Abstract

Abbreviations
1RM  One-repetition maximum
CI95%  Confidence interval of 95%
CWI  Cold-water immersion
DOMS  Delayed onset muscle soreness

MAP  Maximal aerobic power
mRNA  Messenger ribonucleic acid
PGC-1α  Peroxisome proliferator-activated receptor-γ 

coactivator-1α
SMD  Standardized mean difference
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1 Introduction

Cold-water immersion (CWI) is a widespread method used 
by athletes and non-athletes in an attempt to aid muscle 
repair and performance recovery after the stress of exercise 
[1]. The procedure involves total or partial immersion of 
the body in ~ 10–15 °C water for 5–20 min [2], preferably 
immediately after physical efforts [3]. In addition, CWI may 
also be done as either one continuous [4] or multiple, inter-
mittent sessions [5].

The proposed effects of CWI have been attributed to 
local vasoconstriction and hydrostatic pressure caused by 
cold water temperature and water depth [1], respectively. 
These effects may contribute to physiological alterations 
such as decreases in metabolic activity [6], hormone secre-
tion [7], infiltration of immune cells [8], and limb blood 
flow [9–11]. Although there is no consensus [12, 13], these 
alterations may acutely decrease markers associated with 
exercise-induced muscle damage and inflammation [3, 7, 
14–16], reduce delayed onset muscle soreness (DOMS) [14, 
17, 18], and maintain muscle function [16, 19, 20], thereby 
improving muscle recovery.

Several studies have investigated the effects of regular 
CWI use (i.e., chronic effect) on training-induced muscle 
and performance adaptations, including mitochondrial bio-
genesis, muscle protein synthesis, and muscle repair [4, 
21–25]. Initial findings suggested that the effects of regu-
lar post-exercise CWI may be task dependent. For exam-
ple, regular CWI may attenuate training-induced anabolic 
responses, protein synthesis, and satellite cell activation 
[23–25], thereby contributing to an attenuation in muscle 
hypertrophy and strength development, when used during 
resistance training programs. Conversely, regular CWI may 
have little to no effect on oxidative signaling pathways when 
used during endurance training programs [4, 22], consistent 
with the lack of effect on aerobic exercise performance [4, 
26–28].

Most sports incorporate both endurance and resistance 
training to develop both strength/power and aerobic capac-
ity, as these attributes are associated with sport-specific 
skills and consequently physical performance [29–31]. 
The regular use of CWI following training sessions may 
have important implications for modifying physical perfor-
mance. However, despite the growing number of reviews in 
recent years investigating methodological aspects of CWI 
[1, 18], and the acute effects of CWI on muscle recovery 
[1, 32], only one narrative review has summarized findings 
regarding the regular use of CWI in the training routine 
on long-term muscle adaptations and exercise performance 
gains [33]. The aim of the present investigation was to sys-
tematically review existing research that has investigated 
the effects of regular CWI on performance adaptations to 

resistance and endurance training, thereby providing robust 
evidence-based guidelines for practitioners and/or future 
research direction.

2  Methods

The present systematic review was guided by the Preferred 
Reporting Items for Systematic reviews and Meta-Analy-
ses (PRISMA) statement [34] and registered in an interna-
tional database of systematic reviews in health and social 
care (PROSPERO CRD42018098898). A computerized 
literature search was conducted, ending on November 25, 
2019. The databases searched were MEDLINE, Cochrane 
Central Register of Controlled Trials (CENTRAL), and 
SPORTDiscus.

To optimize the search, a strategy of combining the fol-
lowing keyword groups was used: (1) performance OR exer-
cise performance OR exercise OR trial; AND (2) cold-water 
immersion OR cold water immersion OR cold water OR 
ice-water immersion OR ice water immersion OR cooling 
OR ice bath OR ice-bath; AND (3) chronic OR long-term 
OR long term OR regular; NOT (4) animal OR animals. The 
restrictions on language (i.e., articles published in English 
language only) was adopted, while the searches were con-
ducted only on the titles, abstracts, and keyword topics. No 
year restriction was placed on the search. In addition, refer-
ences of the selected studies were examined for identifica-
tion of further eligible studies.

The selected studies were clinical controlled studies that 
investigated the effects of the regular use of CWI associ-
ated with exercise training programs on performance gains 
(i.e., strength or aerobic exercise performance) in humans. 
Therefore, books, theses, dissertations, reviews, and con-
ference papers that passed through the initial filter were 
subsequently excluded. The criteria for inclusion of stud-
ies were: (1) being a controlled investigation, (2) conducted 
with healthy humans, (3) with CWI performed at ≤ 15 °C 
(after training sessions), (4) being associated with a regu-
lar training program (≥ 3 weeks), and (5) having performed 
baseline and post-training assessments of strength or aerobic 
exercise performance.

The study selection process was conducted in two stages 
by two researchers (ESM and YMD). In the first stage, the 
title and abstract of the selected studies were checked for 
relevance. In the second stage, the full article text was 
retrieved and considered for inclusion. If any difference 
in opinion between researchers was present, the study was 
discussed in depth until a consensus was achieved. The 
software Mendeley Desktop 1.17.13 (Elsevier, NY, USA) 
was used for management of the papers and exclusion of 
duplicates.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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2.1  Data Extraction

Study data were similarly extracted by two researchers 
(ESM and YMD), and disagreements between the research-
ers were mediated as per above. The primary variable/s of 
interest were exercise performance, namely the change in 
performance from pre- to post-training, for the intervention 
(CWI) and control (CON) conditions. The variables related 
to strength performance were one-repetition maximum 
(1RM), maximal isometric strength, strength endurance 
(number of lifts), and ballistic efforts (force measured dur-
ing jump performance and rate of force development), while 
those related to aerobic exercise performance were time-
trial duration, mean power in a time-trial, and maximal 
aerobic power (MAP) in a graded exercise test. In addition, 
details such as the study design, intervention methods, and 
training description were also extracted. Relevant data not 
reported in the manuscript were requested directly from the 
corresponding author by e-mail and/or via ResearchGate 
private messaging.

2.2  Quality and Risk of Bias Assessments

The methodological quality of all studies included 
was assessed using the PEDro-scale considering 11 

criteria. The methodological quality of studies was clas-
sified according to their respective scores as high quality 
(scores ≥ 7), moderate quality (scores 5–6), or poor qual-
ity (scores ≤ 4). The quality assessment was not used as 
an inclusion criterion. In addition, the risk of bias anal-
ysis for all and individual single studies was calculated 
according to the Cochrane Collaboration guidelines (Rev-
Man software, version 5.3, Copenhagen, DK). The bias 
risk was judged as high, low, or unclear, considering five 
methodological domains (selection, performance, attrition, 
reporting, and other) [35]. The risk of bias analysis and 
methodological quality evaluation were performed by two 
authors (ESM and YMD). As per above, if any difference 
in opinion between researchers was present, the risk of 
bias analysis and methodological quality evaluation was 
discussed until a consensus was achieved.

2.3  Data Analysis

The software Review Manager 5.3 was also used in the sta-
tistical analyses and to generate forest plot figures. For all 
variables, the standardized mean difference (SMD) and 95% 
confidence intervals (CI95%) were calculated.

Fig. 1  Flow chart for the 
selection of studies. CENTRAL 
Cochrane Central Register of 
Controlled Trials

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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3  Results

In total, 697 articles were identified in the database search 
(i.e., 195 articles in MEDLINE, 470 in Cochrane Cen-
tral Register of Controlled Trials (CENTRAL), and 32 in 
SPORTDiscus). Next, duplicates were excluded, resulting 
in a total of 604 articles. After analysis of the titles and 
abstracts, 11 studies were selected for full text analysis. 
Finally, 8 studies were included in the final review pro-
cess and data extraction. No studies were added after the 

reference review process. Figure 1 shows the schematic pro-
cess of the study selection.

In general, the selected studies presented a high risk of 
bias, mainly in the randomization and blinding process. The 
majority of the investigations did not present explicit infor-
mation about the method used in the randomization (e.g., 
coin tossing, shuffling cards or envelopes, throwing dice, and 
drawing lots) and the allocation concealment. In addition, 
no investigations were blinded (i.e., single-blinding or dou-
ble-blinding) and only two presented explicit information 

Fig. 2  Individual and sum-
marized results for risk of bias 
of included studies. * “Other 
bias” in the present study refers 
to risk of bias associated with 
study design (with possible 
cross-talk effect)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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about the sample loss (i.e., incomplete outcome data). On 
the other hand, all investigations demonstrated appropriate 
outcome reporting (i.e., without selective reporting) and five 
investigations did not present other limitations. Figure 2 pre-
sents the individual and general results of the risk of bias 
judgment.

Among the eight articles selected for the present study, 
one was performed in Brazil [21], four in Australia [4, 23, 
24, 27], two in Japan [28, 36], and one in Germany [5], and 
all were published between the years 2006 and 2019. The 
study volunteers were healthy men classified as trained [27], 
physically active [5, 21, 23], recreationally active [4, 24, 36], 
or sedentary [28] (total number including CWI and control 
groups = 470 volunteers).

Table 1 presents the selected studies, methodological 
parameters, results, and their PEDro quality score. Regard-
ing the control groups, passive recovery (i.e., resting at 
room temperature) [4, 5, 21, 27, 28, 36], active recovery 
(i.e., 10 min of low-intensity exercise on a cycle ergometer) 
[23], or water immersion in a neutral temperature (15 min 
at 23 °C) [24] were performed. The CWI temperature and 
duration were 9.7 ± 2.9 °C and 16.5 ± 3.6 min, respectively. 
In addition, two studies divided the CWI application into 2 
sets of 20 min [28] and 3 sets of 4 min [37]. The training 
programs used in the selected studies were plyometric and/
or hypertrophy training (resistance training) [5, 23, 24, 28, 
36], moderate-intensity continuous training, high-intensity 
interval training or sprint interval training (endurance train-
ing) [4, 21, 27, 28], while the number of sessions was 16 ± 5 
sessions for resistance training and 22 ± 11 sessions for 
endurance training. The methodological quality of the stud-
ies included showed a mean of 5.3 arbitrary units (indicating 
moderate quality), of which blinding was the criterion most 
commonly not contemplated in these studies since CWI is 
readily perceived by volunteers and conventional blinding 
is not applicable in this case.

For the analysis of the effect of CWI on resistance train-
ing performance metrics, five studies were used [5, 23, 24, 
28, 36], of which five provided data related to 1RM, three 
included maximal isometric strength, two included strength 
endurance, and two included ballistic efforts. Decreases in 
performance gains were verified for 1RM (SMD = − 0.50; 
CI95% = −  0.90, −  0.10; p = 0.01), maximal isometric 
strength (SMD = -0.65; CI95% = − 1.14, − 0.17; p = 0.009), 
and strength endurance (SMD = − 0.73; CI95% = − 1.29, 
− 0.16; p = 0.01), when resistance training was performed 
followed by CWI (overall SMD = − 0.60; CI95% = − 0.87, 
− 0.33; p < 0.0001) (Fig. 3). In addition, decrease in per-
formance gains were verified for the performance of bal-
listic efforts (overall SMD = − 0.61; CI95%: − 1.11, − 0.11; 
p = 0.02).

For the analysis of the effect of CWI on endurance train-
ing performance metrics, four studies were used [4, 21, 27, 

28], of which two provided data related to time-trial perfor-
mance (mean power), three related to MAP in a graded exer-
cise test, and three included time-trial performance (time). 
No changes in performance were verified for time-trial per-
formance (mean power) (SMD = − 0.12; CI95% = − 0.60, 
0.36; p = 0.63), or MAP (SMD = − 0.01; CI95% = − 0.54, 
0.53; p = 0.98), when endurance training was performed 
with CWI (overall SMD = − 0.07; CI95% = − 0.54, 0.53; 
p = 0.71). In addition, no changes in gains were verified 
for time-trial performance (time) (overall SMD = 0.00; 
CI95% = − 0.58, 0.58; p = 1.00) (Fig. 4).

4  Discussion

The main findings from this systematic review were that 
CWI mitigates training-induced improvements in maxi-
mum strength or strength endurance (overall SMD = − 0.60; 
p < 0.0001), but has no effect on training-induced 
improvements in aerobic exercise performance (overall 
SMD = − 0.07; p = 0.71). Regarding the effects of CWI on 
muscle strength, it is noteworthy that gains in all strength 
parameters investigated (i.e., 1RM, maximal isometric 
strength, strength endurance, and ballistic efforts) were 
reduced by CWI.

During a resistance training program, maximal strength 
(assessed by 1RM and maximal isometric strength) and the 
performance of ballistic efforts may be altered via a com-
bination of neurological (e.g., learning and coordination) 
and morphological adaptations (e.g., increases in muscle 
cross-section area, myofibrillar size, and myofibrillar num-
ber [38]), assisted by alterations in numerous molecular 
mechanisms/pathways (e.g., muscle protein synthesis, sat-
ellite cell activation/proliferation, etc.). Similarly, strength 
endurance (i.e., the ability to withstand fatigue under condi-
tions of extended force performance) is related to some mor-
phological adaptations (e.g., improved mitochondrial func-
tion, increased capillary density, improved buffer capacity, 
etc.) and may also be affected by muscle repair and protein 
synthesis processes [39]. Therefore, should CWI alter any 
of these training-induced processes, it is likely to influence 
the muscle’s adaptive response to exercise and subsequently 
exercise performance.

Consistent with the aforementioned, Roberts et al. [23] 
reported that regular CWI following resistance training 
attenuated the training-induced increases in type II muscle 
fiber cross-sectional area and the number of myonuclei per 
fiber, compared with a control group (active recovery). In 
addition, CWI acutely delayed and/or inhibited satellite cell 
activity, suppressed phosphorylation of proteins associated 
with hypertrophy, and mitigated 1RM and maximal isomet-
ric strength improvements. Cooling has been reported to 
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decrease regulatory factors associated with myogenesis (e.g., 
myogenin), and consequently impair skeletal muscle growth 
[40] and strength development [41]. In a subsequent study, 
Fyfe et al. [24] also reported a blunting of training-induced 
increases in skeletal muscle fiber hypertrophy, but no effect 
on 1RM performance. These results were not unexpected, as 
hypertrophy is not always accompanied by strength increases 
[42]. In addition, differences in hypertrophy and strength 
outcomes between studies may be explained by differences 
in the training prescription variables (e.g., effort-pause ratio, 
1RM percentage related load, training frequency, and dura-
tion, etc.), which play a large role in the adaptive response 
to resistance training [39]. For example, Roberts et al. [20] 
submitted the volunteers to 12 weeks (2 × week) of lower-
limb resistance training (3–5 sets of 8–12 repetitions at 
8–12-RM), as well as plyometric efforts (3 sets of 12 bal-
listic efforts), while the study of Fyfe et al. [24] included 
7 weeks (2 × week) of lower- and upper- limb training (3–5 
sets of 12 repetitions at 1–12-RM) and abdominals (3 sets of 
20 repetitions at 20-RM). Therefore, in addition to training 
duration and frequency, there are some important differences 
in the number of sets and the training composition (e.g., only 
Roberts et al. [23] performed plyometric efforts).

Another explanation for cold-induced reductions in 
strength are that CWI induces a vasoconstrictive response 
and a subsequent reduction in blood flow [9]. Considering 
blood flow is correlated with muscle protein synthesis [43], 
and a positive muscle protein synthesis/breakdown balance 
is important for hypertrophy and strength development 
[44], this may also explain why CWI attenuates training-
induced strength adaptations. In this context, Fuchs et al. 
[25] reported that myofibrillar protein synthesis rates were 
decreased when CWI was performed following resistance 
training (combined with protein ingestion), which is likely 
explained by a reduction in the delivery and/or uptake of 
protein after resistance training. This was hypothesised to be 
due to decreased amino acid transport or lower blood sup-
ply, although this hypothesis has not yet been investigated.

The use of regular CWI during endurance training pro-
grams (e.g., high-intensity interval training, sprint interval 
training, and/or moderate-intensity continuous training) 
appears to have no effect on gains in aerobic exercise per-
formance, regardless of the performance metric used (e.g., 
MAP during a graded exercise test or time-trial perfor-
mance). Aerobic exercise performance is primarily related 
to factors such as an individual’s maximal oxygen uptake, 
running economy, and lactate threshold [45–47], which 
are influenced by skeletal muscle adaptations that include 
increases in mitochondrial density [48] and greater aerobic 
enzyme activity [49]. These adaptations have been proposed 
to arise from homeostatic perturbations in response to exer-
cise (i.e., changes in primary messengers, such free fatty 
acids, lactate, calcium, the redox state of the cell, reactive 

oxygen species, and adenosine triphosphate turnover). These 
changes may activate secondary messenger proteins, such as 
calcium/calmodulin-dependent kinases II, 5′ AMP-activated 
protein kinase, p38 mitogen-activated protein kinases, and 
sirtuin 1. These secondary messengers subsequently activate 
transcription factors, which initiate gene transcription and 
the translation/synthesis of functional proteins. For a more 
detailed account of this process, please refer to some excel-
lent reviews on this topic [48, 50, 51].

Although CWI does not affect performance gains in 
response to endurance training [4, 21, 27, 28], some inves-
tigations have reported post-exercise CWI to augment 
exercise-induced increases in the gene expression of key 
endurance training regulatory proteins, such as proliferator-
activated receptor gamma coactivator-1α mRNA (PGC-1α 
mRNA) [52–54]. However, it is important to note that there 
is not always a strong correlation between changes in gene 
expression and subsequent increases in functional protein 
content [55], which may help explain the absence of effects 
on aerobic exercise performance [4, 21, 27, 28]. In support 
of this, mRNA transcript abundance is only partially cor-
related with protein abundance (r =  ~ 0.40) [56]. Only one 
study to date has reported regular CWI to augment muscle 
content of endurance-related proteins (e.g., PGC-1α) [22]; 
however, performance outcomes were not evaluated in this 
study due to the experimental design used (i.e., CWI was 
performed in one leg, while the contralateral leg remained 
outside the cold-water bath [control]).

Another potential explanation for the lack of effect of 
CWI on aerobic exercise performance is that peripheral 
changes in muscle aerobic function/oxidative capacity are 
likely to have smaller effects on aerobic performance when 
compared with central adaptations [57]. Furthermore, cen-
tral limitations in aerobic endurance exercise are more com-
mon in trained participants, while peripheral limitations are 
more likely in untrained participants (e.g., peripheral circu-
lation and muscle metabolism) [58]. While there were not 
a sufficient number of studies to investigate the influence of 
training level, future studies should investigate the effects of 
CWI in participants with different training levels.

It is commonly hypothesised that regular CWI use dur-
ing training will accelerate short-term recovery [14, 18, 
59–61], and thereby contribute to maximizing the adap-
tive response after a training program. However, the lack of 
additional improvements in aerobic performance, and the 
attenuation of strength performance, reported in the current 
review are contrary to this hypothesis. Therefore, evidence 
regarding the positive acute effects of CWI on “recovery 
parameters” (e.g., markers of muscle damage and/or inflam-
mation, DOMS, and muscle performance) do not seem to 
contribute to greater long-term adaptations to training. For 
example, acute reductions in the post-exercise inflammatory 
response following a single exercise session and CWI have 
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been interpreted as positive [14]; however, inflammation is 
an important component of the muscle repair process [62] 
and limiting inflammation may be counterproductive for 
long-term training adaptations [62, 63]. As such, while CWI 
may be beneficial in the recovery of performance in the short 
term, it does not seem to benefit adaptations to training. In 
this manner, “recovery periodization” may be an important 
approach in sport training programs. For example, it may be 
advisable to avoid CWI during training blocks focused on 
improving strength, hypertrophy, and power. It could also be 
suggested that CWI may be most beneficial when used dur-
ing competition when heavy resistance training is not typi-
cally performed [64, 65] and slow physiological recovery 
may compromise subsequent performance [66].

A number of limitations in this research area have been 
identified as a result of this systematic review. For exam-
ple, there is a large heterogeneity in the parameters of 
CWI application, namely the time of exposure and water 
temperature. Acute beneficial effects of CWI on muscle 
recovery have typically been reported when performed at 

11–15 °C and for 11–15 min, which is thought to be the 
optimal CWI temperature and duration to reduce pain per-
ception and to improve muscle function [18]. In the studies 
selected for the present review, the CWI temperature was 
9.7 ± 2.9 °C, and the exposure time was 16.5 ± 3.6 min. 
However, it is unclear whether this CWI temperature and 
duration are optimal for regular CWI during exercise 
training. It may be that different water temperatures are 
required to enhance the acute recovery of muscle perfor-
mance than to facilitate adaptations to training.

It is also important to highlight the large variance in 
training and CWI durations used; some interventions [23, 
24] were over ~ 2–3 times longer in duration that others 
[4, 5, 21, 27, 28, 36]. These methodological differences 
make direct comparisons between studies difficult, and it is 
possible that the varying training and CWI stimuli admin-
istered to participants had varying effects on the perfor-
mance metrics measured. For example, it is expected that 
39 endurance training sessions [27] would have a greater 
accumulative effect on aerobic exercise performance than 

Fig. 3  Forest plot of the meta-analysis illustrating the comparison between CWI and the control condition for strength parameters. CWI cold-
water immersion, CI confidence interval
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12 endurance training sessions [21], provided there was 
adequate training progression. Finally, the quality of the 
selected studies in the current systematic was classified 
as moderate, mainly due to the difficulty of blinding. In 
addition, the studies presented a high risk of bias due to 
the difficulty of blinding and problems in describing the 
randomization. Therefore, a possible placebo effect of this 
method should not be discarded in this type of procedure. 
For example, a CWI placebo (administered by deception) 
has previously been reported to be as effective as CWI, and 
more effective than a thermo-neutral control immersion 
[12]. As such, investigations could improve the quality of 
their studies by including a placebo condition, which in 
turn would strengthen the CWI literature as a whole.

5  Conclusion

In summary, the regular use of post-exercise CWI does not 
appear to influence performance adaptations associated 
with aerobic exercise training. However, there is contrary 
evidence reporting that CWI has a deleterious effect on 
muscle strength gains associated with resistance exercise 
training. Considering the scarcity of research investigating 

the effects of regular CWI on performance adaptations 
following exercise training, more high-quality research 
is needed. For example, more research investigating the 
molecular mechanisms regulating skeletal muscle adapta-
tion following regular post-exercise CWI, the role exercise 
prescription variables (i.e., frequency, intensity, duration, 
and type) play on attenuating or augmenting these adapta-
tions, and/or the optimal parameters of CWI application to 
optimize these adaptations, are warranted.
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